REPRINTED FROM

FIFTH INTERNATIONAL CONFERENCE
ON VERY LARGE DATA BASES

RIO DE JANEIRO, BRAZIL
OCTOBER 3-5, 1979

Sponsors and Supporters

The following societies and institutions have approved
sponsorship or support of the Fifth international
Conference on Very Large Data Bases at the time of the
publication of the advanced program.

Association for Computing Machinery (ACM)-SIGMOD,
SIGBDP, SIGIR

International Federation for Information Processing
|IEEE Computer Society

SUCESU-Share Users Association, Brazil

1BM, Brazil

79CH 1406-8C

A Description Language and Pilot-System. Executive
for Information-Transport Systems

Erik Sandewall
Informatics Laboratory
Linképing University
Linkdping, Sweden

Abstract: The. paper describes a problem: oriented
representation for in formation-flow systems ("in formation
systems”), and an (existing) implementation which interprets
the problem descriptions, and which thereby permits
demonstration, testing, and modi fication of new application
systems in a prototype stage. The work described here is part
of a larger project, whose other parts provide tools for
trans forming the prototype into a production system.

This research has been supported by the Swedish Board of
Technical Development (Dnr 77-4380b).

1. Outline

This paper describes one part of a system for
computer-aided development of data processing systems for
information transport, ie systems which can be
characterized as consisting of one or several streams of
tasks, where in each stream tasks are initiated in one or a
few ’stations’ and then forwarded through successive
stations which perform other operations. The tasks may
represent for example patients that require hospital care,
purchase orders, or grant applications. The operations may
involve interactions with a terminal operator, accumulation
into a file or proceeding along from a file on- a certain
condition, or printout on an external medium.

For precision, we shall use the term ’informatien-transport
systems’ for such applications, although the term
’information system’ also often suggests this kind of system.
Information-transport systems are different from (the
conventional view of) data base systems since they
emphasize that information packages are moving and
active: in an organization, they carry a stimulus or an
order to a person to perform a certain function, while data
base systems are large collections of knowledge which the
user can ask questions from, or add knowledge to.

Furthermore, an information-transport system should
usually be viewed as a set of cooperating programs, which
can be run at different times and/or by different users,
and which perform different functions for the common
purpose.

The term information transport in this paper oniy re fers to
the logical description of the application. It may or may not
be implemented as transfer of records between several
hardware or software systems, i.e. transaction processing. It
is perfectly consistent with: the approach to keep-all records
in one data base, with tag fields for indicating the logical
location of a record, so that the logical transfer of a
record is implemented as an update of the tag field.

Reprinted from VERY LARGE DATA BASES,
October, 1979

101

In many cases, people in lower echelons in am enterprise
(have to) wuse an information system: as an
information-transport system, while people on an executive
level are more interested in the data base perspective. Thus
a good information-transport system should contain files
which for its own purposes are resting-places in the data
streams, but which also are the sources for queries made
from higher levels, and summaries provided for higher
levels. But it is important to have tools which can also
provide good facilities and flexible systems for the lower
echelons. :

The aim of our research program is to develop a tool for
design of information-transport systems (as well as tools
for certain other types of data processing systems), with
the following characteristic properties.in the tool:

- to reduce the amount of manpower required to develop a
data processing system' for information transport, by
providing more sophisticated computer services to the
programmer or system designer.

- to reduce the (calendar) time that is required to develop
a system

- to increase the flexibility of systems and cut down the
time that is required to change the system in response to
user’s needs

In particular, the tool uses one common system specification
as basis for generating several programs which together
constitute the information-transport system.

In the approach taken in our research program, each system
is to be developed in three steps as follows:

First stage: develop prototype. The prototype version of the
intended data processing system is developed in a highly
interactive programming system, and then ' gradually
transformed into a production system. The prototype is a
model of the information system, which contributes to
documentation and to the flexibility of the system, but it is
also a running system which can be wused for
demonstrations and trial use by the final users of the
intended system. This makes it possible for users to
understand the system and propose changes to it while it is
still in a formative stage.

The prototype system is to a large extent expressed in a
declarative language, with small segments of
application-dependent code (procedures) attached-to it. The
system for interpreting the prototype description is written
in Interlisp (ref. 1). This programming system can best be
explained as a data base system for a data base of
moderate size, which 18 able to store programs in its data

CH1406-8/79/0000-0101$00.75 © 1979 IEEE

base, and which contains an interpreter and a compiler for
such programs. It is a workspace-oriented system, like APL,
which means that the whole system, including system
software, programs, and the data base are stored in cne
uniform address space (virtual memory).

The tools for developing the prototype are the topic of the
present paper. The second and the third stage (described in
other papers) are:

Second stage: larger data base. In the second development
step, the data for the prototype system are moved out of
the Interlisp workspace and to a separate data base system
(see figure 1). This allows the system to handle larger
volumes of data, and is necessary for field tests of the
prototype at least in most cases. The data base system
MIMER, developed at Uppsala University Computing
Center (ref. 2) is used for the data base part. It is in
principle an inverted-file type system, similar to e.g. the
1022 system on DEC-10 computers.

Third stage: generate production system. In the third

development stage, the new application system leaves the

"dry dock” of the Interlisp environment, and a production-

system is generated. The major change in this step is to

increase performance by eliminating two kinds of overhead
in the prototype version, namely:

- the overhead in the Interlisp system, which has been
designed as a program development tool and not as a
production tool. Its large reportoire of services for the
programmer are not needed in the production system

- the overhead involved in interpreting the predominantly
declarative information in the prototype description. The
third step thus includes a compilation of this declarative
information into a program (although still in a
machine-independent language) where the same
information is implicit.

Thus the development system contains programs (i.e. sets of

procedures) for the following services on system prototypes:

- entry of the prototype descriptions

- administration of the meta-database
descriptions of prototypes

- interpretation of a prototype, as used in stages one and
two

- compilation of a prototype, i.e. performing the operations
of the third stage.

that contains

The compilation program takes the description of the
prototype as input, specializes the program (in the sense
described in section 5 below), and generates the
corresponding, customized -program or (more often) set of
programs in a lower-level programming language, namely
BCPL (ref. 3).

The essential advantage of this strategy is that it allows
the use of a truly problem-oriented representation of the
application in the environment of the prototype system.
Also, since the Interlisp system is strongly oriented towards
manipulation of structured data, including programs and
other formal languages, one may fairly easily build a
reportoire of tools for analyzing models and for generating
pieces of programs from models of the application or the
intended DP system.

102

Since the prototype system contains a description of the
desired target system (programs and data base), we refer to
it as a meta data base. It contains the "data dictionary” of
other systems, but the term meta data base emphasizes that
the programmer can easily extend it with more information,
and he can make use of the meta information in any way
he wishes.

In this approach, object data and meta data are handled
by two different systems with different characteristics, in
our case MIMER and INTERLISP. The first system is
oriented towards large volumes of uniform, bulk data, the
latter system towards smaller data bases with very rich
structure.

This paper describes the prototype system used for stage
one, since most of the software for the other stages has
been described before (ref. 2, 3, 10, 11). The software that is
described here for the first stage has been developed and
is in experimental use.

2. Related work

This approach represents a continuation and synthesis of a
number of different ideas and systems, in particular:

The use of a meta-database that contains a description of
an object data base is in a certain sense characteristic of

all data base systems. However, in many systems the
meta-database is only intended to be used by the system
itself. Works by Roussopoulos and Mylopoulos (ref 4)
describes the use of an externally available meta-database,
which in their case is a semantic network. The
query-language: compiler of Risch (ref. 5) and the SRI
natural language query facility (Hendrix et al, ref. 6) are
other examples:

The use of pilot systems:as a way for the final user to
influence system design has been described by Berild and
Nachmens (ref. 7). The CS4 system which they propose as a
tool for prototype systems has some facilities which are
similar to those of Interlisp, but we have also made heavy
use of Lisp’s facilities for analysis and generation of
programs.

Strong tools for the programmer in a system for interactive
program development, has been pioneered by Teitelman
(ref. 8).

The approach in the REMORA project (ref. 12). is similar
to ours but does not seem to be in a concrete
implementation: phase, and does not give any specific
advise about what we call phase two and three.

8. A concrete example

When our tools are used, the first. stage in the system
development process is to build the prototype and to use it
for test runs. We shall describe how the prototype is
developed, and to make the discussion concrete we will use
a specific case from the: Linkdping University Hospital,
namely the information flow between the patient ‘wards and
the chemical laboratory. This section describes the example.

This application has the following characteristics in the
current, non-computerized organization. Requests for
laboratory analyses are prescribed by a doctor, and notes

are taken by the head nurse. She completes forms for the
same requests, and forwards them to the laboratory.
Sometimes the nurse also takes the test samples; in other
cases the laboratory receives the requests, prepares lists of
which test sample(s) to take from which patient, and
laboratory personnel collect the samples.

In the laboratory, test samples are processed according to
the instructions on the request forms. Usually samples
requiring the same analyses are grouped into batches that
are processed together. A result list for each batch is
produced, and the results are transferred to the analysis
request forms, which aie then returned to the ward.

The head nurse sorts the returned lab results by patients.
Once a day (usually), a doctor inspects the resuits and
prescribes further action. The nurse then transfers the
resuits to a table containing the analysis results for the
patient over a period of time, with one column per day,
one iine per analysis.

This is the main structure of the application. It contains a
number of fine points, and the reader can probably guess

many of them: the ward nurse keeps records of analysis
requests which have been sent but not yet been returned,
and takes action if they take too long time. This time is
widely different for different types of analyses. The
laboratory keeps back-up copies of all results, and also
accumulates charge information. There is often a
transformation from the raw data produced by the analysis
itself, to the data desired by the doctor, for example the
transformation from concentration and volume to amount
for a certain substance.

In summary, this application can be characterized as an
information transportation system, where packets of
information are generated at one time, obtain more
information attached to them as they circulate through the
system, and also sometimes stay in information buffers for
a duration of time before they proceed. The present
manual system requires these data to be re-arranged several
times (for example from being sorted by patient, to being
sorted by analysis, and fater back again). In the present
organization, all information is carried on paper, and the
reorganization is done manually. It is an obvious candidate
for computer support, and we believe it is typical of many
DP applications, in medicine and elsewhere.

Let us now describe how this application is approached
using our current system.

4. Building
application

a prototype for- the

4.1 The speci fication of the intended: system. The intended
information-transport system is initially described by the
user-programmer in four ways. (In Cobol terminology, the
description consists of four 'divisions’):

- specification of the stations and types of stations, that
are used in the application. Technically, a station is an
intended program that serves one user or small group of
users. In the present application, there would be one
station type for ’wards’ (with one instance for each
ward), one station type for analysis works in the lab, one
station for archive, and so forth.

103

The specification of stations only introduces their names
and a fem simple facts about them. Additional
information about each station is provided implicitly by
the other three ’divisions’:

specification of the data types that are to be used in the
application. This is a fairly conventional description of
records consisting of terms, nested sub-sequences of
sub-records, etc. In addition, the data type description
also specifies the HISTORY of each term; this will be
explained below.

- specification of the layout(s) that is(are) to be used for
displaying each data type on screen and/or paper. This
specification is entered using an interactive tool which
enables the user to build up and edit the desired layout
on the CRT screen.

specification of the in formation transport lines that are
used in the application.. This concept is crucial for our
system, and will be abbreviated IT line. An IT line is a
standard path (through stations) along which information
packets are sent for processing. In the sample application,
there is one major IT line from wards to laboratory and
back to the originating ward. Other lines are for
complaints for lost analyses, and for checkin/checkout of
patients (a new information packet is set up when the
patient checks in, and is transferred to archive when he
or she checks out).

The specification of an IT line indicates which record
structure(s) are used along the line, and which operations
are performed as packets move along the line.

To insure that the model is viable, it is important to
have a sufficiently powerful set of such operations.
Besides operations for data entry, output, waiting in
queues, and accumulation and data extraction in files, we
also need operations for transformations on record
structures and operations where several lines are
intermeshed, e.g. ’wait for mate’ operations.

4.2 The trans formation to the executable model: The four
parts of the system specification have to be reorganized
somewhat in order to provide a model which can be
executed as a prototype. When it is executed (=
interpreted), the model must specify for each station which
operations can be performed in the station. For example, in
a ward there may be operations for “send laboratory
request”, ‘“receive results: from laboratory”, “check in
patient”, "check: out patient”, and others. Each operation in
a ward may be realized e.g. as a separate program, or as a
set of parameters for an existing, more general program.

Each operation in a station is usually an aggregate of
several consecutive operations along an IT line. For
example, if an IT line specifies that a lab request is to be
entered interactively, accumulated to a local log file, and
then sent to the lab, these three IT line operations together
constitute one operation in the station.

For each operation in a station, it must be specified:

- where input information packets for the operation are to
be fetched from, and where output information packets
are to be sent

- which record type is used

- which IT line operations are to be performed

- which layout (or other interaction format) is to be used
in the operations. (Usually each station operation consists
of exactly one interactive operation, and optionally one
or more non-interactive operations)

Thus the transTormation from the user’s system description
to an executable model cuts up the IT line descriptions into
segments, each consisting of one or a few IT line
operations, and adds each segment to the appropriate
station or station type.

In principle, each record type is associated with a form
description, which may be used for all interactions along a
line, ie. in several operations in different stations.
However, the layout (= form) must be used somewhat
differently in the different steps, since typically a few
fields in the record are completed when the record is
initiated, and other fields are assigned contents in
subsequent steps.

Each layout therefore exists in several variants, which
differ with respect to which fields are to be protected,
which fields are to be entered from the user, which fields
are to be assigned values by reference to existing files in
the data base, etc. The most convenient way to enter these
variants seems to be the following: the record declaration
specifies for each term where along the IT line that term
is to be assigned a value, and in what way the value is
obtained. This is what we called term history information
above. The record declarations, the IT line descriptions,
and the basic layout description (consisting of only the X-Y
coordinates for each field on the screen as well as auxiliary
text there) may then be used to generate the variants of
the form that are to be used at the various interaction
points.

In summary, the executable model is hierarchical rather
than parallell: it consists of stations, each of which
contains a number of operations, each of which consists of
a number of IT line operations, some of which are
associated with layouts, which consist of term descriptions,
which contain variant information derived from the record
declaration. The transformation from user-defined model
to executable model is a transformation from a parallell to
a hierarchical structure, and is outlined by figure 2.

4.3 The chemistry-lab example worked out. Let us work out
the chemistry-lab example of section 3 in more detail, to
illustrate the previous section. We cover only the IT lines
for checkin/checkout and lab requests (not complaints), and
also make some other simplifications to save space here.

We need two major record structures: PATIENT and

LABREQUEST. The first record type contains fields such

as:

- patient’s name (PATNAME)

- patient’s identification (such as social security number)
(PATNR)

- date of checkin

- date of checkout

- bed number

- previous lab results (which for the: present purpose may
be viewed simply as a sequence- of records of type
LABREQUEST) (LABRES)

104

Mnemoni~s for term names are given in those cases when
they will be used in the subsequent example. Other
infurmation such as “ailment” are of course estential for
the application as such but not for the present example.

The second record type, LABREQUEST, contains fields
such as:

- patients name (PATNAME)

- patient’s identification (PATNR)

- ward that the patient is in (WARD)

- desired analysis (ANALYSIS)

- identification number of the sample (SAMPID)

- date of sample

- result of analysis

Since several analyses are often ordered at the same time

for the same patient, it is convenient to have one
additional record type LABORDER which is like
LABREQUEST except that instead of the term

ANALYSIS there is a term ANLIST whose value is a list
(sub-sequence) of desired analyses for this patient.

The layouts for these record types offer no surprises. (For
the real application, many more fields are needed, and the
screen becomes rather jammed).

The two IT lines are described graphically in figure 3 and
in equivalent formal notation in figure 4. Appendix 1 (nor
included in proceedings; cviavailable from author) contains
the reportoire of operations that we are presently using;
the set is of course continously revised. Figure 5 describes
the structure of stations, with one station for each ward,
one for each analysis workplace in the lab, one each for
receiving and delivery in the lab, and one for archive. The
arrows in figure 5 specify the normal paths of information
flow.

Figures 3-4 should be read as follows. The IT line for
patient checkin/checkout starts at CI, where new
information packets (records) are entered each time a
patient checks in. These records are accumulated to the
register of current patients (in the ward), CPAT. At CO,
records in the file CPAT are released when patients check
out, and are then accumulated to the archive file ARCH.

The other IT line, for ordering lab analyses, starts at OLA
where the patient number and list of desired analyses are
entered, as a record of type LABORDER. The patient’s
name (and other information about the patient) is fetched
from the current patient register CPAT dynamically during
data entry. The record is expanded: into several records,
one for each analysis, which implies a transformation to
records of type LABREQUEST. Each such record is
accumulated to the register of pending requests,: PREQ. It
is also dispatched to the appropriate analysis station in the
lab, on the basis of the desired analysis (ANALYSIS field)
and a procedure which knows which lab station performs
which analysis.

In the appropriate station: within the lab (in position RA),
the results of the analysis are entered. It is then forwarded
to the exit station of the laboratory, where results are
accumuiated to the backup file BU, and also dispatched to
the originating ward on the basis of the contents of the
term WARD. Back there, each record goes two ways: to an

interaction operation DI where the doctor is enabled to
inspect recent results, and to being accumulated into the
patient register CPAT as a sub-record of the main record
for the patient.

The reader will have noticed that the: formal description in
figure 4 is more specific than the graphic description in
figure 3, particularly with respect to which data fields are
affected in the various steps. Of course, one may
informally add text in the figure, or in an appendix to the
figure, if one does not wish to proceed directly to the
formal representation.

The present, implemented system makes it possible to input
the application description in the user-oriented notation,
and to generate and execute the prototype model fully
automatically. The convenience of this system makes it
practical to tailor the information transport system very
closely to user’s needs, for example to design different
stations differently to conform to specific local needs.

44 Application dependent meta-data and procedures. In
many applications, it is useful to have application
dependent meta-data. This observation was previously made
by Higglund and Holmgren in another project in our
group. Examples of such meta-data in the example of this
paper are:

- for each analysis, one may specify the range of normal
results. It is sometimes desired to provide this
information on the result form, or to provide the result
only if it is outside the range.

- for each analysis, there is also an expectancy for how
long it should take at the lab. This information is used
by the head nurse at the ward to determine when to
complain about a missing result.

- there are groups of analyses which may be obtained
using the same sample.: This information is used when
more than one of the analyses is prescribed by the
doctor.

Our meta database system makes it easy to enter and
administrate such information, and to wuse it for
table-driving the application dependent procedures. This
facilitates modification of the pilot system to conform to
changing specifications.

Notice that the application dependent meta-data are
strongly intermeshed with the general-purpose meta-data.
For example, each analysis usually appears as one term in
some record for analysis results, and the different analysis
stations in the laboratory are also stations from the point
of view of the information system.

Similarly, it is sometimes necessary to write specific pieces
of program for an application, and embed them in the
model o that they are executed as steps along an IT line.
Also, one often wishes to associate pieces of program with
fields in a form, for example for automarically computing
the contents of the field, for fetching it from another file,
for checking correct input data, or for performing 2a
side-effect when a certain term value is entered in a
record. This can easily be done in our system, and is
available as a consequence of LISP’s almost unique facility
for data-driven programs (see ref. 9). But since the general
framework is provided by the generel-purpose system, such

105

application-specific programming may be restricted to those
parts that are really specific to the application. Often it
comes out as only a few lines of code.

4.5 The executive for the in formation- flow model. In order
to test and demonstrate the prototype, one uses an
executive which may be viewed as an interactive simulation
system for the information-flow model. The prototype may
be run either resident ot distributed. In resident mode, one
single Interlisp workspace is used for all work stations, and
the system devotes attention to one of them at a time. It
may run with one terminal for all work stations (this is the
usual mode in early checkout by the programmer), or with
one terminal for each of several work-stations. In
distributed mode, several copies of the workspace are set
up, and ave specialized to service one station each, with one
terminal for each station. The distributed mode of use is
preferred for demonstrations to final users.

For early stages of checkout, the executive is directed by
user commands such as "execute operation O" (for example
the operation where the nurse creates lab request records
and sends them to the lab) or "what are the contents of
channel C?* If the required operation is to be performed
manually, the interaction is performed over the same
terminal; if it is an automatic operation it just: runs, and
prints out a message when it has finished.

In later stages of checkout while still in resident mode, a
higherlevel executive may be used which essentially calls
different operations according to the obvious strategy of
first clearing channels by doing "receive’-type operations,
and then performing operations which create new
transactions.

For distributed execution of the prototype, the prototype
system is able to create a number of copies of itself, where
each copy is customized at least to the extent that the copy
knows which operations it is to perform, and which
terminal it is to run on. It is also possible, but usually not
useful, to trim each copy so that it only contains the
meta-database information that it really needs.

The presently implemented system only allows us to execute
the different programs in the generated system on one
single computer, but the possibility of distributing ’stations’
in the sense of our system over several computers is an
obvious possibility.

4.6 Starus of the prototype system. In summary, the
prototypa system enables the programmer or system
desizner to enter his systemn description in a notation which
is predominantly declarative, and which is stored in the
metadatabase. This description is interpreted by the
standard programs in our system, such as the data editor
and the station/operation executive. In addition, most

applications require a number of small
application-dependent procedures to be written (or retrieved
from the library) and attached to entities in this
description.

This prototype system is entirely embedded in Interlisp,
meaning that standard programs have been written in this
language, that the system description is stored in the

Interlisp data base, and that the attached procedures must
also be written in Lisp.

The standard models in the system (ie. for forms,
information flow, etc.) are not final. The characteristics of
the programming sytem makes it easy to modify these
models as we go along, and we are making use of this
possibility. The significant resuit of this research is by no
means the models, but the system: which allows us to
maintain a spectrum of meta-information, ranging from the
standard patterns to the very application specific.

All parts of the software for prototype support as
described here have been implemented and are running on
our computer, a system DEC-20. The impiementation
language is Interlisp, with certain low-level routines in
assembler (Macro-10 and LAP). The present status can be
characterized as experimental use; the system is not yet
stable enough for export.

5. Downloading the prototype into a
production system

In the second and third step of the system development,
the performance of the prototype is improved by
transferring it out of the Interlisp environment, by
specializing programs, and by knitting parts of programs
closer together by eliminating data-driven procedure calls.
The details of how fto do this are being reported elsewhere,
and we will here only describe this process in short, for
completeness, and report on the status of that work.

The second stage is to enable the prototype to communicate
with larger volumes of data, administrated by the MIMER
system for bulk data. This requires two things:

the Interlisp system must be able to co-exist with and
communicate with the MIMER system. This has been
done at Uppsala Computing Center for the IBM
370-based systems, but we are running on a DEC-20
system for which MIMFR has not yet been implemented.
That work is in progress and is well understood.

the form-oriented data editor must be able to access data
from MIMER. This has been prepared for in the
following way: the data editor assumes that each file is
associated with an access method and each access method
is characterized by a number of access procedures. All
data access in the data editor goes through the access
method's procedures for the current sequence. Thus in
order to communicate with MIMEP, a new set of access
procedures has to be written. However, the set of

procedures that the access method: manager requires, is
similar in structure to the procedures that are
implemented in MIMER, so again we do not foresee any
substantial problems.

The third step is to transfer the whole program out of the
Interlisp environment. The strategy for this is to write a
translator from Interlisp (with certain restrictions on the
language) to the Ilow-level, semi-machine-independent
language BCPL, as well as the necessary run-time system in
BCPL for operating on LISP’s characteristic data
structures. This software is being completed; it has so far
been used successfully on a subset of the data editor.

The prototype system contains general-purpose programs:
such as the data editor and the executive, which operate on
parametric data. One may use the translator in a.
straight-forward fashion to translate the general programs.
to BCPL, but in many cases one would prefer to generate a
specialized program which has been customized to the:
chosen parameters. This process is called fartial evaluation,
and has DLeen the subject of a number of studies (see e.g.
ref. 10 and the survey of previous work therein).

In simple cases, one can identify certain procedure calls in:
the general program where some of the procedure’s:

arguments are parameters, and thus can be considered as
fixed within each application. One may then use
conventional macro techniques to expand the expression to
one which is specialized for the constant parameters. We.
are doing this already when our system is compiled in the:
Lisp compiler, and the required macro facility is included
in the Lisp-to-BCPL translator.

A more systematic specialization requires a full scan of the
general program in order to perform constant propagation:
and various algebraic operations on the program. A system'
called REDFUN for performing this task has been
developed within our group by Anders Haraldsson (ref. 11),
and using this system is part of the future plans for the:
project. We first want to see how far we can get using the
macro techniques.

In certain cases, inner loops of parts of the system may be
distributed out to local processing capacity in {(or close to)
the terminal, for example for the core of the data editor.
In such cases partial evaluation may not be of interest at
all, since the program in the terminal may run better
interpretively.

6. Conclusions

The approach and the system described here offer a
powerful method of supporting the development of data.
processing systems, and to meet the objectives stated at the
beginning, i.e. to cut manpower costs for programming, cut
system developrment time, and increasc the flexibility of the
developed system. In looking for possible disadvantages of
the approach, two aspects are of particular interest:

- Run time performance. The prototype is developed as a
declarative structure, which means that the executive
("interpreter”) for the prototype is a very strongly
parametrized program. The classical disadvantage of
such programs is low performance. We offer a set of
techniques for dealing with that, namely:

cross compiiation

macro techniques

partial evaluation

alt of which rely on Lisp’s almost unique facilities for

program manipulation. Although these techmiques have

been successful in other contexts, they have not yet been-
tried for any problem where the programs are as big as
here.

L}

- Complexity. The programmer or system developer who:

specifies each new application by building the right

106

declarative structure, will need a fairly detailed
knowledge of the development system. Training time may
bz a problem. Also, the development system must be very
well engineered before it is put in regular use, otherwise
the system developer will end wup fighting the
development system instead of (as now) fighting his own
programs.

The obvious approach for dealing with these problems is
to make the development system interactive and
self-instructing, and to develop it gradually while doing:
a number of applications with it. This work is in
progress.

In summary, the software for stage one is in experimental
use; the software for the second and third stage exists and
has been reported before; and integration of the full
system has not yet been done. It is therefore too early to
say whether the possible problems with the approach have
been solved, namely performance and complexity, but we
have reasonable expactations to be able to handle them
both.

7. Future plans

The immediate plans of the project .are to use the system
for a number of applications, to gain additional experience
with the selected approach and the existing development
tools.

Medium-range plans emphasize:

the generation of software for distributed systems from
the prototype

more systematic methods for partial evaluation,
particuiar using the REDFUN system

use of the prototype to document and control the
production use of the generated system, ie..as a ’job
control system’ that supersedes current ’job control
languages’.

in

Longer-range plans include interfacing the system to a
model of the application environment as such (including
other aspects than the informations processing aspects).

Acknowledgements

This work has been made possible by cooperation with
Doctor Werner. Schneider, Professor Bo Strbo, Professor
Ove Wigertz, and Doctor Lennart Tegler. Within our own
research group, Peter Fritzson, Erland Jungert, Gunilla
Lénnemark, Dan Stromberg, and Katarina Sunnerud have
worked on related projects without which the present work
would not have been possible. Jan Komorowski, and Henrik
Sorensen have recently joined the effort reported here.

References

1. Warren Teitelman: INTERLISP re ference manual. Xerox:
Palo Alto Research Center; Palo Alto, Calif., 1974

2. A. Berghem; Anders Haglund, Sven G. Johansson, Ake-
Persson: A partially inverted database system with a:
relational approach, MIMER (earlier RAPID). Uppsala,
University Data Center (UDAC), July 1877

107

3. Martin Richards: BCPL reference manual., Technical
memorandum 69/1, University of Cambridge, Computin
Laboratory, 1969 g pating

4. Nicholas Roussopoulos and John Mylopouios:
Semantic Networks for Data Base Manaéemen:.

International Conf on Very Large Data Bases;
144-172

Using
Proc. Ist
1975, pp.

5. Tore Risch: Compilation of multiple file queries in a
meta-database system. Dissertation, Linképing University,
Sweden, 1978

6. Gary G. Hendrix et al... Leveloping a Natural Language
Inter face to Complex Data. ACM Transactions on Data
Base Systems, Vol. 3, Nr. 2 (June, 1978)

7. Stig Berild and Sam Nachmens: CS4 - A4 Tool Sor
Datcbase Design by In fological Simulation. Presented at Srd
1ntemationa1 Conference on Very Large Data Bases, 1977.
(To appear in ACM Transactions on Database Systems)

8. Warren Teitelman: Toward a programming laboratory.

Proc First International Joint Conf Artificial Intelligence,
1989

9. Erik Sandewall: Programming in an interactive
environment: the "LISP" experiencs. Computing Surveys,
Vol. 10, No. 1 {IMarch 1978)

10. Lennart Beckman, Anders Haraldson, Osten Oskarsson,
Erik Sandewall: A partial evaluator, and its use as a

programming tool. Artifical Intelligence Journal 7 (1976), PpP-
319-357

Il Anders Haraldson: 4 partial evaluator, and its use for
compiling iteraiive statements in LISP. Conference Record
of the Fifth Annual ACM Symposium on Principles of
Programming Languages, 1978, pp. 195-202

12. O. Foucault and C. Relland: Concepts for Design of an
In formation System Conceptual Schema and its Utilization
in the Remora project. Proceedings of the 4th International
Conference on Very Large Data Bases, 1978.

Lisp system

Lisp system

Production Program

almost

real data

Mass-data base system

U

real data

Mass-data base system

Figure 1: The three stages of system development

WARD #1

WARD #2

l ARCHIVE

LABENTRY

Figure 5:

Station model and information paths between stations

108

LABSTN #1

LABSTN #

LABEXIT

S~
Tl
P

¢ sandtg

W R

p—d

@ I ... W Bmmsgmmﬁ_\“e

badd

HIaH04V']

(ogut
JUEBTJIBA) WIOJ UT
spTa1y JoJ oads

do suty II
UT pPasn WIojg

+do uotgelS ®
ut suotjeasado

QUIT JI pue
2aN30NI]S PIOISI

uoTqETo
® Ut
suotqeIado

SUOT3EqS

[F a

mHDP

LVdO

=

—

INATLVd 1D

ws3s£s LI JO [9DOW S[qBIN0SXa 03 U0t4dTd0Sap P93USTIO-I9SN WOLJ SUOTFRUIOJSUBIL, :g oINITJ
SauTT S35 0NIYS Tapou
II noAey €1BD uotT1els

I I

109

Description of chemistry-lab application's information flow
in IFL notation

IT line for patient checkin/checkout:
record structure: PATIENT

operations: (STATIONTYPE WARDS)
(ENTRY CI)
(ACCUM CPAT)
(RELEASE CPAT CO)
(STATLON ARCHIVE)
(ACCUM ARCH)

IT line for orders of lab analyses:
initial record structure: LABORDER

operations: (STATIONTYPE WARDS)
(ENTRY OLA)
(EXPAND
(LABREQUEST ANLIST (...) (...))
(BRANCH NIL NIL
(ACCUM PREQ)
(RELEASEBY (READY PREQ (SAMP1D SAMPID))))
(STATION LABENTRY)
(DISPATCH (STATIONFOR (GV* ANALYSIS)) RQSTPORT)))
(STOP)
(STATIONTYPE LABSTN)
(CHANNEL RQSTPORT)
(MODIF RA)
(STATLON LABEXIT)
(BRANCH NIL NIL (ACCUM BU))
(DLSPATCH (GV#* WARD) FROMLAB)
(STATIONTYPE WARDS)
(CHANNEL FROMLAB)
(AUTORELEASE READY)
(BRANCH NIL NIL (MODIF DI))
(ACCUMSUB (CPAT (PATNR PATNR) LABRES))

10

	
	
	
	
	
	
	
	
	
	
	

