BIOCLOGICAL SOEFTWARE

Erik Sandewalk
Informatics. Laboratory
LinkSping University
Linkdping, Sweden

Abstract and introduction: The robot in the common: science fictionrmovel appears as a man on the
surface, but is:built mechanically from wheels <and levers :inside. In AL, we usually visualize-an. Al
system as having a similan structure: it communicates in man’s language {English), .or performs: other tasks
which make it appear manslike, but it is:in fact a large program, written in a programming language, and.

executed under:a common time-sharing system.

The present paper argues on the contrary that Aul, systems:skould no: need to appear: man-like; and that
it is necessary, both from the AL point of view:and:from:the software:engineering point of view, that
the next level down in theiA.L system has quasi-biological properties, such as the ability to reproduce.

Remark: due to.space limitations, this paper has been
written in ¢ condensed style.

1. Reproduction is a mechanism for a species 20 :adapt.
It is natural to make analogies:between the biolagical
system that forms the substrate. of natural intelligente,
and the computer hardware/software system thatsforms
the substrate of A.I. Among characteristic. properties
of organisms we: find homeostasis and the ability to
reproduce. Do they have counterparts in software?

The common game of writing programs that -create
many identical copies of themselves, misses an
important reason for biological reproduction: it is e
mechanism for-adaptation, from the point.of view -of
the species. Human. reproduction involves not only
copulation and: child-birth, but also: two: decades of
work for training the new:individual (sometimes called
"social reproduction” by sociologists)y In the training
process, the new person inherits some knowledge, but
also selects, reviews and reorganizes his or her
intellectual heritage. Imagine how much progress: there
would be if* humans lived forever and never
reproduced!

2. Software also needs:.to adapt, in response to
changing user needs. Conventional software does not

744

adapt autonomously to any significant extent::it is
adapted by a programmer who changes the program
("maintenance"). or throws it away and writes a new
one.

Future software: systems with a more complex behavior
will have much bigger needs to adapt, and will be
harder to change from:- the outside. They should
therefore be enabled to change without programmer
intervention, in:response to requests from the end user.
They tan do so either by modifying their internal
state, or by creating a modified copy of themselves.
Both of these methods are viable if the programming
technique o f conceptual programming ds used.

Remember that adaptation was a topic of interest in
earlier AL work, but it- has gone out of fashion
because it seemed one could only do trivial-things with
it, such as adjusting.numerical parameters. What one
would really like to do was to adapt programs, but
that seemed too hard, and had to wait for automatic
programming to happen first.

But ‘there is a ‘trend in several areas of software to

use specialized application languages (implemented

either as interpreters i.e. general, highly parametrized

programs, or as program generators) to develop

applications. Examples of this trend are:

- commercial program generators for reports, :screen
layouts, data. base queries, etc.

- the system. for information-flow applications;
developed in our group (ref. 1).
- special-purpose languages in Al research eg.

grammar languages.

These are signs of .an emerging sofitware technology
where computer applications are - implemented by
selecting a small number of general-purpose: tools,
combining them in appropriate ways, and providing
them with a description of the application in (several)
specialized application languages. . This style of
programming has been called conceptual programming
in ref. 2,3,4.

Self-modification in a . system should clearly be
relatively easy if it can be performed by modification
of parameters or application-language expressions, as
compared to direct self-modification .of a conventional
program. This ‘is both because easier "maintenance” is
one of the reasons for specialized languages, and
because end-user requests for modification: are
naturally expressed in application-language terms:-

8. Should an Al system ’live’ forever? In other words,
is internal self-modification sufficient as an
adaptation mechanism, .. and is reproduction
unnecessary? The answer .is that perhaps it is not
practical for software to adapt forever: For
adaptation, new knowledge has to:be added to a
system, which means that other knowledge has to give
way, otherwise.the system will grow: indefinitely. But
whenever knowledge is removed, one encounters a
well-known but yet un-named problem which I propose
to call the delete problem, for example in the following
simple form: suppose A has been asserted in a data
base, and B has also been asserted by forward
inference using: "A implies B", and later A is ito be
deleted. Should: B be deleted as well? There might be
other, independent support:for B, so that it should not
be deleted. The problem is well-known on 'many
software levels,: from conventional garbage collectors to
semantic networks.

The conclusion: is that for a system to: be indefinitely
adaptible, it must containia considerable overhead of
information about the details of its own insides; such
as back pointers from :B' to all its independent
supports, in the example. Reproduction offers an

745

alternative, with copyingr garbage collection as an
example on the low software level,' and training of
off-spring as. examples among animals and (I
conjecture) for: A.L systems..

4. Reproduction takes many forms; ours is a biological
exception. Reproduction in mammals has a simple
structure: two. individuals together generate an
offspring which grows up: continously. But butterflies,
ants, fish, jellyfish, frogs, and funghi offer a' rich
reportoire of more: complicated schemes, where the
organism exists in' more than one physical form during
the reproductive cycle.

In several projects in our research group, I have seen
needs for similar, non-trivial schemes:for reproduction
in software. .

- Background: :some of the group’s work assumes that
the programming techniques that have been developed
in Al research, are a signi ficant spinof f result of
that research; and should be used for other purposes
as well.

Two specific cases are of interest:

A4) Use of the Interlisp -system for development of
pilot versions of application programs. (A pilot version
is one which can: easily be changed until the end: users
are happy). Development of the initial program. went
smoothly, but the subsequent user-initiated
modifications were clumsy to make: Analysis:. when
conventional languages are used, one does debugging
in the production environment (i.e. using the regular
compiler). The: Interlisp system provides a “"dry-dock”
environment for program: development, which implies
that a non-trivial effort is required to take the
program into -and out of the "dry dock”. This is
worthwhile if a lot of work has to be done there, and
in particular if the program never ‘really leaves the
development environment,:as is often the case in AL
research. But the same programmer support did not
seem worthwhile as the programmer’s effort for
transfer from development environment to produttion
environment was much bigger than the effort of the
update itself.

The problem was solved by allowing: each application
to exist in two forms: a: development system and a
production system. The development: system was the
one that really ’adapted’; and it had the ability to
create corresponding production versions.

This solution embodies the following:basic attitude: a
programming system should not be like a street-front
clinic, where a program walks in to: be operated. on
(for example, for being compiled, or debugged during

a debugging session), and then leaves againl It should
instead be a permanent dwelling for the program. The
programming system plus the program it accomodates,
should be viewed as an organism, which contains a
fair amount of knowledge about itself, and in
particular has the ability to generate systems which are
similar to itself although tuned for production use -
like a queeri bee does.

B) Modelling in formation-flow systems. Many data
processing applications can be characterized as
information-flow systems: there are specialized
work-stations for different people or roles in the
organization; information packets ("transactions") are
generated in such stations, sent in channels from one
station to the next, accumulated in files that are local
to each station, and the task of the person at a station
is to review the information that flows by, take
actions, add more information to the transactions, and
pass them on.

Recent work in our group has resulted in a pratotype
software tool which allows the various aspects of the
information-flow application to be described in
specialized languages, and which allows one to do pilot
execution of the system, work on a generator of
production systems is in progress. The system is
designed with the programming techniques that are
usual in Al programing, such as strongly
parametrized programs, handles, and data-driven
procedure calls.

In the terms of the previous sections, this system is
"organism-like" in that it can create modified copies of
itself, namely copies for each of the work-stations.
These specialized production-phase copies have been
obtained by selecting subsets of the parameter
structure, and by specializing programs through
“smart" compiler macros.

These and other applications in our group are using a
general-purpose tool for accomplishing system
reproduction, called ACTEMAN (ref. 5).

B. Knowledge acquisition. The reproduction in: these
two examples as presently implemented, does not
involve any selective acquisition of knowledge by the
off-spring. (There is however a rea! need already to
have that). The major reason for the examples is to
illustrate that multiple ’life-forms’ and unusual (for us)
reproduction structures may be useful for software
systems.

With a system which is organized along the lifies of
conceptual programming, as mentioned above,
knowledge acquisition by the young off-spring could
be organized as follows:

746

- let the ancestor generate a basic system (for example
a fresh instance of the Lisp system), and load the
appropriate general programs inta it. Also let the
ancestor transfer the appropriate parameters and
datadriven procedures to the descendant, but usually
only a subset:of what the ancestor "knows"

- let the descendant engage in work, usually by
serving a human user, where in doing so one
identifies missing parts in its structure and obtains
the information by communication with senior
computer systems, (in particular, systems similar to
the “deveopment phase" system described above,
which contain extra knowledge and which specialize
in training new systems), and only in hard cases,
communication with a human programmer.

In such an architecture, it is possible but not natural
to let the computer systems communicate between
themselves in human natural language. It is much more
natural to exploit the properties of the computer
medium, and let them communicate in terms of
program segments, data structures, and so forth. (This

does not preclude that some of the characteristics of
naturallanguage communication will still be needed)

6. We can now proceed to the other issue mentioned
in the introduction to this paper: The emphasis in
current Ad. research on systems with humanoid behavior.
Its main historical reasons are:

A) The training issue: it has been argued: that
intelligence presumes knowledge, and that the computer
can only gain knowledge by talking to people and/or
being among people, as a robot.

B) The usefulness issue: it has. been argued that an
intelligent computer system can only be useful to us
people, if it can talk to us in our language (which is
assumed to be natural language).

The training argument addresses the ‘wrong bottleneck:
It is true that a lot of work will have to be spent by
people for transferring knowledge to computer systems,
and it is conceivable that it will be facilitated if
natural language may be used. But already scores of
programmers have as their profession to transfer
knowledge and ability to computers. The. significant
problem is instead that computer systems can not
transfer knowledge to each other. If one computer

s%stem could train others, then it would not matter if
the initial knowledge transfer to one computer :system

had to be done in a formal language

The reproduction chain can start when we have built
systems which have the necessary properties for being
useful, and for generating useful offspring,
recursively. In order to start it, we ourselves will have
to understand the reproduction process fairly much in
detail. It then seems more convenient to create the

first generation by performing manually the operations
that will later be done by the ancestor, rather than
create a natural-language understanding capability only
fot the purpose of the first system generation.

The usefulness argument (B) is valid if we consider
current research results as given, and search for
possible applications. But suppose instead that we
would focus on current data processing (D.P.)
applications, and ask what role programmed
intelligence could play in them. The role might not be
dominant: the resulting: thought product is not
necessarily a computer intelligence incarnated into an
application. A car with a micro computer in it is well
described as a car and not well described as a
computer, and intelligence might be very useful in a
similar, subordinate role in the D.P. system.

7. There is a signi ficant area of common interest for
Al and software engineering. In Al, conventional
programmmg has traditionally been considered
as an intelligence-requiring activity that is observed
to occur in real life, and which therefore: is a
candidate A.L. application, and

- as a part of the support work for an AL lab and a
temptation for the graduate student to waste his
time on

It is then assumed that software engineering and A.L

are disjoint areas. The arguments of the presentipaper

imply on the contrary that

- systems which adapt, internally and by reproduction,
are necessary both for AL and for future software
engineering

- conceptual programming techniques may facilitate
design of large and complex systems (which is a
topic of common interest for A.L and S.E.) as well
as adaptation and reproduction.

- such systems, performing conventional D.P. tasks, are
a likely early application area for A.IL research. But
intelligence can hot then be obtained as an add-on:
the system has to be built from the start using some
of the programming techniques which are common in

8. How does this fit in with other work in Al
Hewitt’s actor concept is clearly related in the abstract
sense that he also talks of structures formed by
individuals with a lotal autonomy -and initiative.
However, he has mostly worked with actors of very
simple structure, in particular as an elementary object
in a theory of computation. We emphasize systems
which are complex enough to contain intelligence;
systems which are pseudo-individuals. Marr’s work in
computer vision has already started a trend to take the
biological foundations of intelligent systems seriously
again

747

Acknowledgements

Jim Goodwin and Sture Higglund have contributed
strongly to the ideas expressed in this: paper.

References
l. Erik Sandewall: A description language and
pilot-execution executive for im formation-transport

systems. Proc. Very Large Data Bases :conference, 1979.

2. Terry Winograd: Five lectures
intelligence. Stanford AL Memo, 1974

on artificial

3. Erik Sandewall: Some observations on conceptual
programming. Machine Intelligence 8, 1977

4. Bob Wielinga: A I Programming Methodology.
Proceedings of the AISB/GI Conference on Artificial
Intelligence, Hamburg, 1978

5. Erik Sandewall: Self-organizing In formation and
Operations for Reproduction in Distributed
Programming S4ystems. Internal report, Informatics
Laboratory, Linkdping University, 1979.

	
	
	
	

