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Lisp systems have been used for highly interactive programming for more than a
decade. During that time, special properties of the Lisp language (such as program/
data equivalence) have enabled a certain style of interactive programming to develop,
characterized by powerful interactive support for the programmer, nonstandard pro-
gram structures, and nonstandard program development methods. The paper summa-
rizes the Lisp style of interactive programming for readers outside the Lisp community,
describes those properties of Lisp systems that were essential for the development of
this style, and discusses some current and not yet resolved issues.
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INTRODUCTION

Why do some programming systems
have to be large and complex?

In recent years there has been a trend
towards simple designs in computer sci-
ence research. The widespread revulsion
against OS/360 in the academic commu-
nity led to a quest for primitive concepts
in operating systems and for very simple
systems, which have been successfully de-
veloped by, for example, Brinch Hansen
[1]. Similarly, reaction against large and
messy programming languages encour-
aged the development and adoption of lan-
guages that minimized the number of fa-
cilities and features, notably PascaL [2]. I
believe that the great attraction of very
simple programming languages such as
Basic and very simple database systems
such as Mumps [3] in the world of practical
computing are other examples of the same
trend towards simplicity.

Despite the above, the present paper is
concerned with programming systems

which by necessity have to be large and
complex and which are very hard to struc-
ture well because we know so little about
their design. Such systems are of interest
for a combination of two reasons.

First, there is a long list of things that
one wants a programming system, partic-
ularly if it is interactive, to do for the
programmer. (“Programming system”, is
used to mean an integrated piece of soft-
ware which is used to support program
development, including but not restricted
to a compiler.) The reader can easily gen-
erate his own list of functions, but here
are some possibilities:

® Administration of program modules

and of different generations of the
same module (when errors are cor-
rected and/or the scope of the program
is extended);

® Administration of test examples and

their correct results (including side
effects), so that the relevant tests are
performed automatically or semiau-
tomatically when sections of the pro-
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gram are changed, and a report is
made to the user if a discrepancy has
been observed;

Administration of formal and infor-
mal documentation of program seg-
ments, and automatic generation of
formal documentation from pro-
grams;

Interdialect translation;

Checking of compatibility between
parts of programs;

Translation from general-purpose or
specialized higher-level languages to
the chosen base language (“preproces-
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sors”), with appropriate support for
compile-time and run-time error di-
agnostics in the base language, com-
ments, etc.;

@ Support for a given programming
methodology. For example, if top-
down programming is to be encour-
aged, then it is natural to let the
interactive programming system
maintain successive decomposition
steps, and mutual references between
an abstract step and its decomposi-
tion;

@ Support of the interactive session. For
example, a history facility [4] allows
the user to refer back to previous
commands to the system, edit them,
and re-execute them. An undo facility
[4] allows the programmer to back up
and undo effects of previously per-
formed incorrect commands, thus sal-
vaging the data-structure environ-
ment that was interactively created
during the interactive debugging ses-
sion;

® Specialized editing, performed with
an editor that understands at least
the syntax of the chosen program-
ming language, and which therefore
allows the user to refer to natural
entities in this language and to give
fairly high-level instructions as to
where additions to the program are
to be inserted;

® Optimizing programs which trans-
form a program into an equivalent
but more efficient one;

@ Uniform insertion programs, which
in a given program systematically
insert additional statements, for ex-
ample for producing trace printouts
or for counting how often locations in
the program are visited during exe-
cution.

Second, and this is the crucial point, if
these functions are performed by separate
and independent programs, a considerable
duplication of effort will result. Syntax
analysis has to be performed not only by a
compiler or interpreter, but also by spe-
cialized editors, optimizing programs, uni-
form insertion programs, documentation
generators (such as cross-indexers), and so



Programming in an Interactive Environment . 37

on. Analysis of the relationships between
modules (calling structure, data-flow
structure, etc.) is needed for generation of
documentation, administration of test ex-
amples, compatibility controls, and pro-
gram optimization. Since the results of an
execution count may be used to tell an
optimizer where it should spend its efforts,
programs for these two tasks should be
able to communicate. Also, some of the
above facilities, such as the undo facility,
are only possible if they are integrated
into the programming system. For these
reasons, it is natural to try to integrate
facilities such as the above into one coher-
ent programming system, which is capable
of performing them all in an economic
and systematic fashion.

I believe that the development of inte-

grated, interactive programming systems, .

and the methodology for such systems, is
the major research issue for programming
systems and programming methodology
today. It is significant for programming
methodology, since every detailed recom-
mendation on how to write programs is
also a recommendation on how to design
an interactive programming system that
supports the methodology. In the area of
research on programming systems, this is
relatively unexplored territory waiting to
be considered now that other problems
such as compiler design for conventional
languages seems to be fairly well under-
stood.

The task of designing interactive pro-
gramming systems is hard because there
is no way to avoid complexity in such
systems. Because of all the dependencies
between different parts of an interactive
programming system, it is hard to break
up the design into distinct subproblems.
The only applicable research method is to
accumulate experience by implementing a
system, synthesize the experience, think
for a while, and start over.

Such systems have been built and used
for the programming language Lisp. I
believe that the time is now ripe for a
synthesis and discussion of the experience
that has accumulated in this context. The
present paper is intended to serve such a

purpose.

1. BACKGROUND

Requirements on a Programming Language
for integrated, interactive Programming
Systems

In a research project to design and build
an integrated, interactive programming
system as an implementation experiment,
one early decision must be which program-
ming language the system will support.
This language must satisfy minimal crite-
ria, as follows.

Bootstrapping. An obvious choice is to
implement the system itself in the lan-
guage it supports; then one needs to work
only with a single language, and the sys-
tem supports its own development.

Incrementality. To achieve real inter-
action, the basic cycle of the programming
system should be to read an expression
from the user, execute it, and print out
the result while preserving global side
effects in its database. The expression may
of course contain such things as calls to
procedures.

Procedure-orientation. For obvious rea-
sons, the language chosen should be pro-
cedure-oriented.

Internal representation of programs.
Since most of the operations listed in the
previous section are operations on pro-
grams, the language should make it as
easy as possible to operate on programs.
Therefore, there should be a predefined,
system-wide internal representation of
programs which reflects their structure in
as pure a form as possible, for example as
a tree structure. This structure should be
a data structure in the programming lan-
guage, so that user-written programs may
inspect the structure and generate new
programs. As a consequence, the kernel of
the programming system must contain the
following programs:

® a parser which transforms the user’s

programs to the internal representa-
tion;

@ a program-printer that performs the

reverse operation;

® an interpreter for programs in the

internal representation; and/or

® a compiler that transforms the inter-

nal data-structure representation to
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machine language for the host ma-
chine.
Notice that the tasks performed by a com-
piler for a conventional language are di-
vided among the parser and the compiler
in this architecture.

Full checking capability. All possible
input from the programmer/user must re-
sult in rational responses from the system.

Declaration-free kernel. The contents
and use of declarations is one of the impor-
tant issues that one wants to experiment
with in a research system, and therefore
should not be frozen in the system kernel.
Instead, the internal form of programs
should be declaration-free, and one of the
services of the developing programming
system should be to account for declara-
tions as input by the user.

Data structures and database. The sys-
tem must minimally have data structures
that are able to represent programs as
tree structures, and a database facility
where one can conveniently store and re-
trieve properties of items that appear in
the program or in descriptions of the pro-
gram. (Variable names and procedure
names are simple examples of such items.)
A relational database where program
items are allowed to appear as arguments
of relations, so that facts about them can
be stored, is one way to satisfy the data-
base requirement.

In addition to these minimally neces-
sary data structures, the system will of
course contain additional data-structuring
facilities which may be desirable for the
intended experimental applications of the
system.

Defined inputloutput for data struc-
tures. In order to test a procedure inter-
actively, one wants to be able to type in a
call to the procedure and obtain back the
value. Since the arguments and/or the
value may be data structures, I/O for data
structures must be defined in the system.
Since programs are internally stored as
data structures, this I/O may also be used
as parser and program-printer.

Handles and interactive control. The
actions taken by the system in specific
situations should be controllable by the
user in such a way that a user-defined
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procedure (a “handle”) can be inserted
instead of the original procedure provided
by the system. For example, such handles
are useful for the operation applied to
expressions input by the user, and reac-
tions to errors and exceptional conditions
during the execution of a procedure.

Also, the system must allow for an as-
sortment of different control signals that
may be typed-in by the user at arbitrary
times to control the ongoing computation.
The “killer” interrupt, which terminates
the interactive session and returns to the
operating system, is exactly what the user
does not want. The response to control
signals should also be user-controllable
through handles.

Additional properties may of course be
required or desired, but the above list will
do for our purpose. A quick check of exist-
ing languages against this list shows that:

® Most conventional languages (For-
TrRAN, PL/I, SimurLa, PascaL, etc)
have insufficient data structure facil-
ities (especially 1/0), are not incre-
mental, have no internal representa-
tion as above;

@ BASIC has no data structures;

@ LISP, SNOBOL, and APL satisfy the
requirements, in different ways with
respect to data structures and inter-
nal representation of programs.

At least for Lisp (and I believe also for
SnoBoL and APL) the match to the re-
quirements is quite accidental: the lan-
guage was developed for other purposes,
and most texts about the language de-
scribe it in a different way. It is not my
intention here to argue that Lisp should
necessarily be chosen; a project to build
an integrated programming system might
also choose a less-known language, or de-
sign its own. My purpose is simply to
explain the experience accumulated in the
Lisp community with integrated interac-
tive programming systems.

The Lisp Users’ Community

Before a discussion of the accumulated ex-
perience from implementation and use of
Lisp systems, a few observatlor}s about
the community of Lisp users are in order.
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The following account is simplified and
slightly caricatured to make its point as
concisely as possible.

Lisp 1s used almost entirely as a re-
search tool. It is the dominant language
for artificial intelligence research, and a
major implementation language for for-
mula manipulation systems. Typical ap-
plications are semantic understanding sys-
tems, program analysis and generation,
and theorem proving. The average Lisp
user writes a program as a programming
experiment, i.e., in order to develop the
understanding of some task, rather than
in expectation of production use of the
program. The act of developing the pro-
gram, not the act of running it (even for
test data), constitutes the experiment. As
a consequence, the program is likely to be
large and complex, to undergo drastic re-
visions while it is being developed, and to
be thrown away before it has been “com-
pleted” by conventional programming
standards since it will already have served
its purpose before then.

The environment in which the program
is written is specialized for this style of
research. The programmer works in a
large group with relatively good comput-
ing facilities. He expects to have a termi-
nal at his desk and to be able to use it
continuously as a tool. More importantly,
his group will have been one of the first to
be able to use computers in this fashion.

One consequence of this scenario (which
as I said is simplified and to some extent
exaggerated) is that a considerable expe-
rience with interactive programming has
developed in the Lisp community, both
with respect to programming system facil-
ities that support the user and with respect
to programming style and program struc-
ture. Another consequence is that this
know-how about interactive programming
has not been properly exposed: the re-
searchers have tended to consider the prin-
ciples embodied in the program as the
principal result of their work, and the
craft of programming as a trivial aspect.
They have probably been less motivated
to discuss programming methodology than
average programmers are, since the style
is one of throw-away programming. To

the extent that attention has focused on
programming systems and programming
methodology, these have been viewed as
potential applications of artifical intelli-
gence techniques. The emphasis has there-
fore been on longer-range goals and rela-
tively utopian systems. One example is
provided by Winograd [5].

An additional reason for the reluctance
in the Lisp community to discuss program-
ming style may be a reaction to the debate
about goto, which raged in the community
in the early sixties. Programs without
goto are written in Lisp using recursive
procedures and/or standard procedures
with open procedural arguments, and a
so-called “PROG feature” enables a re-
stricted form of goto locally in a block.
The controversy was resolved by a general
agreement that the matter was not as
important as it first seemed; this has dis-
couraged subsequent discussion of other
aspects of programming style.

Current Dialects and Implementations

Most implementations of Lisp systems
were accomplished in a research group
that wanted to use the system, with strong
feedback from users to implementers. As
a consequence, the language has changed
over time to satisfy new user needs, and
several dialects have appeared.

The original variant of Lisp was called
LISP 1.5 and is described in the LISP 1.5
Programmer’'s Manual [6], a document
which is still a standard reference but has
long since become obsolete. Besides the
original implementation for IBM 7090,
there have been implementations for CDC
3600, IBM 360/370, and the UNIVAC 1100
series. There is also an implementation
written in FORTRAN [7].

The LISP 1.6 dialect has been developed
for DEC-10 under Tops-10 (the manufac-
turer-provided operating system). This di-
alect again split into two branches, one at
Stanford that preserves the name Lisp 1.6,
and one at MIT called MACLISP. The
latter exists both under Tops-10 and un-
der the local operating system ITS (Incom-
patible Timesharing System).

The INTERLISP dialect was originally
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developed at Bolt, Beranek and Newman,
Inc. (BBN) under the name BBN-LISP.
After a part of the implementing group
moved to Xerox Palo Alto Research Center
and the responsibility for the system be-
came shared, it changed to the new and
more neutral name. The original imple-
mentation for INTERLISP was for DEC-
10 under the TENEX operating system,
also developed by BBN. It has been
adapted for use under the Tops-20 operat-
ing system. Additional implementations
exist for IBM 360 and 370, and are being
developed for other computers.
These three dialects differ in several
important ways:
® Mechanisms for variable binding are
different. All Lisp systems use late
binding, also called dynamic binding,
but the three major types of systems
use different mechanisms for storing
the variable-value binding pairs. This
is a fairly technical issue and not of
interest here, but it is one of the
more important points of incompati-
bility between programs in different
dialects.
® Mechanisms for nontrivial input/out-
put, file handling, etc. are different
in the different dialects.
® INTERLISP has a very large repertoire
of facilities that support the user in
his work with his own program: Mac-
LisP has fewer such facilities and or-
ganizes them differently, namely as
separate progams rather than as
part of an integrated programming
system. This will be discussed further
below.
Additional dialects and implementations
exist, although a complete listing does not
seem to be available. Lisp for CDC 6600
builds on Lisp 1.5 but has a number of
special facilities, such as three-pointer
cells. Variants of Lisp 1.5 have been imple-
mented on 16-bit PDP machines. The im-
plementation of INTERLISP for IBM 360 has
been transferred to computers from other
manufacturers (Siemens, ICL) with com-
patible instruction sets.
The INTERLISP variant relies heavily on
the special facilities provided by the Te-
NEX and Tops-20 operating systems. For

the benefit of DEC-10 users running Tops-
10, the Lisp 1.6 system has been modified
and extended with a subset of INTERLISP’S
user support facilities. The work was done
by a group at the University of California
at Irvine, and the resulting system is
called UCI-Lisp.

Special-purpose processors running sin-
gle-user Lisp systems have been developed
at Xerox Palo Alto Research Center, at
the MIT Artificial Intelligence Labora-
tory, and at Bolt, Beranek, and Newman
Inc. (BBN). All of these are experimental
systems, and documentation is scant or
entirely unavailable. The BBN machine
is described in [8].

It is quite easy to write a simple Lisp
interpreter, and a large number of more
or less complete systems have been devel-
oped, including multiple implementations
for the same computer series. The list
given here is therefore by no means com-
plete. It is intended to give some idea of
the range of existing implementations,
and to characterize the two systems that
will be used in the discussion that follows,
namely MAcLIsP and INTERLISP.

A Simple Lisp Application

The present paper is intended to discuss
issues and principles of interactive pro-
gramming systems that arose in the expe-
rience with Lisp systems, rather than the
details of Lisp itself; it should be possible
to read the paper without previous knowl-
edge of the programming language Lisp.
For concreteness, however, the paper also
presents specific Lisp programs or sessions
which illustrate some of the issues. These
examples will be helpful for readers who
have previously learned the Lisp lan-
guage, for exampie from one of the current
textbooks [9, 10, 11, 12], but may be
skipped by readers who do not know Lisp.
These examples are printed in smaller
type than the rest of the text. The exam-
ples use the INTERLIsP dialect, but should
be equally intelligible to readers who are
used to other dialects. (Of course, another
dialect would have served as well for the
examples.)

The following simple application will be
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used for all the examples. It has been
chosen to illustrate some of the points in
the section on requirements above. The
task is to write a system which adminis-
ters the calendars of meetings, appoint-
ments, etc. for a number of users. It should
provide services such as the following:

® update and print-out each user’s per-
sonal calendar;

® determine a suitable time for a meet-
ing between two people, or a meeting
of a committee, send a message to
the intended participants, and update
their calendars.

Later extensions might include these serv-
ices:

@ allow a user who receives a “computer
mail” message about a seminar or
other open meeting to transfer the
message to the appropriate position
in the calendar;

® reschedule appointments when a
higher-priority or less easily movable
appointment is suggested.

The set of services should be extensible in
response to suggestions from the users. I
will attempt to illustrate how the problem
may be approached and the first stage of
the program development, but certainly
not the full solution.

In working out this application we by-
pass the problem of how the system can
be made to communicate with several
users at once, and assume that all calen-
dars go into the same database. Obviously
our program will emphasize simplicity
rather than economy of operation. It will
be referred to in the balance of the paper
as the demo program.

In the first step of program develop-
ment, the programmer selects a represen-
tation of data in the database and makes
a first guess about which procedures he
will need to write. These decisions are of
course based on the given list of required
or suggested facilities in the final system.
The creative activity of making those de-
cisions will also be bypassed here. Once
the data structure has been chosen, the
writing of the procedures is usually a
straightforward task.

In the chosen data structure for the demo program,
each user is represented as an atom, e.g., LARS-
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SON. The user’s calendar is represented as a prop-
erty called CALEND, which might look as follows:

(( (MON JAN 12)

((9 15) (10 00) SEE ANDERSON)

((10 45) (11 00) SEE LUNDSTROM)

((13 00) (15 00) ATTEND
X-COMMITTEE-MEETING))

( (TUE JAN 13)

((10 30) (11 30) ATTEND
(INFORMATION ABOUT NEW
PRODUCTS))

o)

)
In general, it is a list of day-plans, where each day-
plan consists of a date followed by a list of appoint-
ments. Each date is a list of day-of-week, month,
and day. Each appointment is a list of starting
time, ending time, verb, and object. Each starting
time and ending time is a list of hour (on a 24-hour
clock, for simplicity) and minute.

For convenience, we define selector functions
which retrieve the components of some of these
structures, e.g.,

(DEFINEQ

(HOURS

[LAMBDA (TIME)

(CAR TIME])

(MINUTES

[LAMBDA (TIME)

(CADR TIME))

(FROM

[LAMBDA (APP)

(CAR APP))

(TO

{LAMBDA (APP)

(CADR APP}))

We also define some other elementary functions,
such as the obvious next-day function:
(DEFINEQ
(NEXTDAY
[LAMBDA (DATE)
(CONS (GETPROP (CAR DATE)
(QUOTE NEXTWEEKDAY))

(COND
((EQ (CADDR DATE)
(GETPROP (CADR DATE)

! Procedure definitions are reproduced here as
printed by INTERLISP’S indentation printing pro-
gram, pp. A left square bracket is equivalent to a
left parenthesis. A right square bracket is equiva-
lent to one or more right parentheses, sufficientl
many to match back to the corresponding le
bracket or to the beginning of the expression.
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(LIST (GETPROP (CADR DATE)
(QUOTE NEXTMONTRH))
)

(T (LIST (CADR DATE)
(ADD1 (CADDR DATE)))

42 .

This definition assumes that the standard data
about the succession of months and weekdays, and
the length of months, are stored as properties. This
information is input interactively by typing in:

(PUTPROP 'JAN 'NEXTMONTH 'FEB)
(PUTPROP 'FEB 'NEXTMONTH 'MAR)

(PUTPROP 'JAN ‘NRDAYS 31)

(PUTPROP 'MON 'NEXTWEEKDAY 'TUE)

When we have done this in our interactive ses-
sion, we can check out the procedure definition by
typing in, for example,

(NEXTDAY 'MON 'JAN 10))
and getting back
(TUE JAN 11)

To check the exception case in the conditional, we
type in

(NEXTDAY '(MON 'JAN 31))
and get back
(TUE FEB 1)

We are then fairly satisfied with the procedure.

A procedure to determine a shared free time
period for a new appointment should run down
successive days and for each day seek a time that is
available for all participants. This may be done by
first forming the set of free slots or “holes” for each
person, and then forming intersections (in the ob-
vious sense) of such sets of holes for different people.
The set of holes is formed by the function holesin
(st, apl, et), where st is the starting time (e.g., (9
00) = 9 a.m.), apl is a list of appointments during
the day, and et is the ending time (e.g., (17 00) = 5
p-m.). The definition is obvious:

(DEFINEQ
(HOLESIN
[LAMBDA (ST APL ET)
(COND
((NULL APL)
(LIST (LIST ST ET))
(T (CONS (LIST ST (FROM (CAR APL)))
(HOLESIN (TO (CAR APL))
(CDR APL)
ET])
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Thus the value is a list of free slots, each indicated
as a list of starting time and ending time. The
given definition will include zero-length periods in
the list, and might be trimmed to avoid that.

The procedure is immediately tested with an

example. We set the global variable apll to an
appointment list, which we intend to use for testing

purposes:

12_(SETQ APL1 ‘(
((9 15) (10 0) SEE ANDERSON)
((10 45) (11 0) SEE LUNDSTROM)
((13 0) (15 0) ATTEND
X-COMMITTEE-MEETING)
)
(((9 15) (10 0) SEE ANDERSON)
(10 45) (11 0) SEE LUNDSTROM)
(13 0) (15 0) ATTEND X-COMMITTEE-MEETING))

Here “12__" is typed out by the system and serves
to number the interaction (for future reference) as
well as for a prompt. Then follows the expression
we typed in, and the value that the system returned.
We then use apll in a test of holesin:

13__(HOLESIN (9 0) APL1 ‘(17 0))
(({9 0) (9 15)) ({10 0) (10 45)) ((11 0) (13 )}
(15 0) (17 0))

Thus, there are free slots from 9:00 to 9:15, from
10:00 to 10:45, etc.

Next, to form the list of common holes in two

such lists, we define

(DEFINEQ
(COMMONHOLES
[LAMBDA (L M)
(COND
((NULL L)
NIL)
((NULL M)
NIL)
((BEFORETIME (FROM (CAR M))
(FROM (CAR L))
(COMMONHOLES M L))
((BEFORETIME (TO (CAR L))
(FROM (CAR M)))
(COMMONHOLES (CDR L)
M))
[(BEFORETIME (TO (CAR M))
(TO (CAR L))
(CONS (CAR M)
(COMMONHOLES L (CDR M]
(T (CONS (LIST (FROM (CAR M))
(TO (CAR L))
(COMMONHOLES (CDR L)
M))

The definition is obvious. It arranges that the

first hole in ! will start before the first hole in m,
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and then checks the three possible cases: the first
element in m entirely after the first element in /,
entirely included, or partially included. It proceeds
appropriately for each case.

The definition of commonholes assumes a “<”
predicate on time specifications, with the obvious
definition

(DEFINEQ
(BEFORETIME
[LAMBDA (V U)

(OR (LESSP (HOURS V)
(HOURS U))

(AND (EQ (HOURS V)

(HOURS U))

(LESSP (MINUTES V)
(MINUTES U)))

Again the definition is immediately tested:

36_(SETQ H1 (HOLESIN (9 0) APL1 (17 0)))
(((S 0) (9 15) ((10 0) (10 45)) ((11 0) (13 0))
((15 0) (17 0)))

37__(SETQ H2 ‘(
((8 45) (10 30))
((10 40) (11 30))
((11 50) (12 20))
((12 40) (15 30)) ))

(8 45) (10 30)) ((10 40) (11 30)) (11 50) (12 20))

((12 40) (15 30))

38__(COMMONHOLES H1 H2)
((9 0) (9 15)) ((10 0) (10 30)) ((10 40) (10 45))

((11 0) (11 .30)) ((11 50) (12 20)) ((12 40) (13 0))

(15 0) (15 30)))

Finally, to find which periods of duration =d
minutes are free for both persons pI and p2 on day

date, we define (using the iterative statement of

INTERLISP):

(DEFINEQ
(COMMONTIME
[LAMBDA (P1 P2 DATE D)
(for V in (COMMONHOLES
(HOLESIN STARTDAY
[CDR (SASSOC DATE
(GETPROP P1
(QUOTE CALEND]
ENDDAY)
(HOLESIN STARTDAY
[CDR (SASSOC DATE
(GETPROP P2
(QUOTE CALEND]
ENDDAY))
collect V when (GREATERP
(DURATION V) DJ))

This definition looks up the calendars for the
given date, determines the remaining free time for

each, combines them using commonholes, and se-

lects a subset of the resulting list, consisting of
those elements which have the required duration.
The definition uses two auxiliary functions. The
function sassoc is like the standard Lisp assoc, but
does the comparison with equal rather than eq and
is defined with INTERLISP’s iterative statement as

(DEFINEQ
(SASSOC
[LAMBDA (X L)
(for Vin L do (RETURN V)
when (EQUAL X (CAR V]))

The function duration which converts a time-
interval into a number of minutes is defined as

(DEFINEQ
(DURATION
[LAMBDA (P)
(PLUS [TIMES 60 (DIFFERENCE
(HOURS (TO P)) (HOURS (FROM P]
(DIFFERENCE (MINUTES (TO P))
(MINUTES (FROM P]))

Both of these are of course trivial.

The global variables startday and endday, in-
tended to specify the beginning and the end of the
working day, are defined through:

45_(SETQ STARTDAY '(9 0))
(90

46__(SETQ ENDDAY (17 0))
(17 0)

To test commontime, we design simple calendars
as CALEND properties of LARSSON and SVENS-
SON, and then find a common time for them. We
also make simple tests of duration and sassoc:

48__(DURATION '((8 45) (9 15))
30

49__(DURATION ({10 30) (12 50)))
140.

50__(PUTPROP '"LARSSON ‘CALEND
(LIST (CONS '(MON JAN 10) APL1)))
(((MON JAN 10) ((9 15) (10 0) SEE ANDERSON)
((10 45) (11 0) SEE LUNDSTROM)
((13 0) (15 0) ATTEND X-COMMITTEE-MEETING)))

51__(PUTPROP ' SVENSSON ' CALEND
(- ((FRI JAN 7)
((10 30) (11 30) SEE GUSTAFSSON)
((14 15) (16 15) ATTEND (INFORMATION
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ABOUT NEW CAR-POOL RULES)))
((MON JAN 10)

((9 0) (10 30) SEE PERSSON)
((13 30) (14 45) VISIT LIBRARY))))

44 .

(printout of value omitted)

64__(SASSOC (A B) '((A AA) (B BB) ((A B) AABB)
(CD))
((A B) AABB)
77—(COMMONTIME ‘LARSSON
"(MON JAN 10) 90)
(11 0) (13 0)) ((15 0) (17 0)))

Thus, among the common free slots for Larsson and
Svensson on January 10, only those between 11:00
and 13:00, and between 15:00 and 17:00, were 90
minutes or longer.
In this fashion the program develop-
ment continues. The example may raise
questions regarding the notational aspects
of the programming language, and regard-
ing the programming methodology. These
issues will be treated at length later on in
the paper, with reference to this example.
Let us simply note here that the example
has illustrated some key characteristics of
the language:
® There are two unusual data struc-
tures in Lisp, namely the properties of
atoms which allow one to store binary
relations in the data base, and the
list structures which allow one to form
composite expressions such as, in the
example, the calendar for a number
of days.
® The data base (stored on property-
lists) is used not only for the data of
the program, but also for constants of
the program such as the NEXT-
MONTH and similar properties.

® Lisp atoms are different from named
scalars in PascaL since they are dy-
namic. New atoms are created all the
time during the interactive session.
(In PascaL, scalars have to be de-
clared in the program, and I/O of
named scalars is not defined in the
standard language.)

® Each procedure definition is a list

structure. It can therefore be proc-
essed like any other data in the sys-
tem. The question of readability and
syntactic sweetening in programs will
be discussed later in this paper.

'SVENSSON
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® To define a procedure in the system,
one uses a procedure-defining proce-
dure (defineq in our example) which
takes as argument a list of a proce-
dure name and its intended defini-
tion. Procedure-defining procedures
have all the properties of other proce-
dures; in particular, they may be
called from other procedures, which
is the basic requirement for a pro-
gram-generation facility.

® The normal routine in program devel-
opment is to first structure one’s data,
then write the corresponding proce-
dures (which are often obvious when
the data structure is given), and then
immediately to run a number of test
examples for the procedure. This rou-
tine is possible because list structures
have a textual representation in
terms of sequences of characters, as
well as an implementation in terms
of records and pointers in the pro-
gramming system. Therefore, I/O for
them is defined.

® The argument/value relationship
(“input-output characteristics”) is
more useful for describing what a
procedure does than comments at ar-
bitrary places in the program.

2. RESIDENTIAL AND SOURCE-FILE
SYSTEMS

The description of the demo program omit-
ted a discussion of debugging and program
correction. The approach to this issue is
different in different Lisp systems. We
will discuss it here with special reference
to two systems, INTERLISP and MAcLISP.
Interactive program development con-
sists alternatingly of tests of procedures
(or other program parts) and editing to
correct errors discovered during the tests
and/or to extend the program. INTERLISP
systems, unlike many other interactive
programming systems, support both of
these operations. The user talks exclu-
sively to the INTERLISP system during the
interactive session. Procedures are stored
in internal form as data structures in the
system, and editing of procedures is done
by rearranging those data structures. We
shall refer to this architecture as a resi-
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dential interactive system, since the pri-
mary copy of the program (the copy that
is changed during editing operations) re-
sides in the programming system itself.
The executing system (containing proce-
dures in internal form, test data, etc) can
also be preserved between runs as a dump
of the virtual memory, and will be referred
to as an incarnation of the system.

The MacLisp implementation, on the
other hand, assumes the existence of a
separate text editor. Programs are main-
tained as text files, which can be read
(“loaded”) by the Lisp system. When a
program is to be changed, the user leaves
the Lisp system, uses a text editor that
operates on the program file, returns to
the Lisp system, and reloads that file. We
refer to this as a source-file system. This
is of course also the standard way of imple-
menting and using languages other than
Lisp.

The Lisp 1.6 implementation represents
an intermediate stage. It contains a resi-
dent editor (*ALVINE”) but one which is
not as well-developed as the one in INTER-
LISP, and many users prefer to use a gen-
eral-purpose text editor, thus running in
source-file mode.

The primary source for an evaluation of
residential vs source-file systems should
of course be user reaction. Unfortunately,
this source of verdicts is not particularly
reliable: as usual, users of the various
systems tend to prefer the one with which
they are familiar. Also, it is hard to isolate
the issue of source-file vs residential sys-
tems from the many marginal circum-
stances that influence the convenience of
the respective systems. The purpose of the
present section is to discuss those circum-
stances.

Parallel Jobs

When a source-file system is used, the
user must be able to maintain the pro-
gramming system and the editor as paral-
lel jobs, and to switch between them using
a minimal number of keystrokes. Such
service is provided by MacLisp through
ITS and at Stanford through their termi-
nal system, but is not available to users

at other locations who run Lisp 1.6 or
Macrisp under Tops-10.

Use of Text Files in a Residential System

INTERLISP contains a facility (“makefile”)
whereby procedure definitions in internal
form can be printed on a text file in an
input-compatible format, i.e., those files
can be read into the system again.
Example. In the demo example, if the user decides
to name the file CALEND, he might define the
contents of the file through

(SETQ CALENDCOMS '(

(FNS HOURS MINUTES FROM TO
NEXTDAY HOLESIN COMMONHOLES
BEFORETIME COMMONTIME SASSOC
DURATION)

(PROP (NEXTMONTH NRDAYS) JAN
FEB ...)

(PROP (NEXTWEEKDAY) MON TUE ...

)]

Here the global value of the variable calendcoms is
set to a list of three commands, the first of which
specifies which procedure definitions are to be in-
cluded in the file. The second command specifies a
number of objects, namely the “names” of months,
whose NEXTMONTH and NRDAYS properties are
to be printed on the file, and similarly for the third
command. Then doing

(MAKEFILE 'CALEND)

will cause the file to be created. Similarly, to store
the calendars of a number of persons according to
the storage conventions of the demo program, one
might type

(SETQ CURCALENDCOMS ‘(
(PROP (CALEND) LARSSON SVENSSON .. .)

)]

(remember that the calendar was stored as the

CALEND property of the owner) followed by
(MAKEFILE ‘CURCALEND)

The contents of these files are loaded back by typing

(LOAD 'CALEND)
(LOAD 'CURCALEND)

The makefile facility might seem redun-
dant, since the philosophy of residential
systems implies that one should be able to
use the same incarnation during the entire
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lifetime of the program, but is useful for
several reasons:

1. Transfer of programs. An auxiliary
program that has been developed in
one environment might be needed in
another. A text file of procedure defi-
nitions can be printed from one incar-
nation and loaded into the other.

2. Back-up. A system incarnation is
relatively vulnerable to system fail-
ures and to mistakes by the user.
Text files of all procedures (and re-
lated data) are useful as a back-up.

3. Complete garbage collection. Printing
out all procedures and all necessary
data as text files, and reloading them
into a fresh incarnation, serves as a
strict form of garbage collection.

4. Copy for the user. Some work with a
program is best done by having a
paper copy of the whole program to
read and annotate. Saved text files
can be listed and used for this pur-
pose.

The usefulness of the second and third
features depends in each instance on the
reliability of the system, in the broad
sense, and on the thoroughness of the
garbage collector. The fourth feature has
been debated: several INTERLISP users feel
that copy for the user should be produced
by a printout program which is separate
from the file generator. This would make
it possible to make the printout nicer-look-
ing (since the reloadability restriction
would no longer apply), and would also
permit more compact reloadable text files,
since legibility for users could be ignored
almost entirely in such files.

The file generated by makefile merely
contains a sequence of forms, i.e., expres-
sions of the same kind as those that are
input interactively be the user. The func-
tion load reads the file using the same
routine used for reading user input (except
that some interactive features are sup-
pressed). Corresponding to the FNS com-
mand in calendcoms, the file will contain
calls to the procedure-defining procedure
defineq; corresponding to PROP com-
mands, it will also contain calls to a pro-
cedure that stores property values given
as arguments. Using other commands, one
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can cause the file to contain calls to an
arbitrary set of other procedures, for ex-
ample for doing a computation to initialize
global variables or the database. Such files
are widely used in Lisp programming
regardless of dialect.

Size of Text Files

A large Lisp program consists of a large
number of procedures. It is common prac-
tice to organize it as a small number of
text files, with many procedure definitions
or other operations in the same file. For
every file, there may be a parallel file
containing the compiled versions of the
same procedures. An alternative method
would be to let every procedure definition
be an individual file.

The usual practice has several disadvan-
tages.

1. In residential systems it is a cause of
inefficiency: if one or a few procedures
have been changed, then the whole file
containing those definitions must be re-
generated. The operation of “pretty-print-
ing” a file of procedure definitions (i.e.,
printing with meaningful indentation) is
fairly expensive in processor time. Simi-
larly, the whole file may have to be recom-
piled after an edit, even if compilation is
done independently for each procedure,
which again is a waste.

These have been major problems in the
INTERLISP environment. The attempted
solution has been to add extra intelligence
(= a kludge?) to the pretty-printer, so that
it will copy the old pretty-printed file char-
acter-by-character into a new file, and
only substitute freshly generated output
for those procedures where a change has
been made. A similar addition has been
made to the compiler. While these im-
provements on the INTERLISP system level
provide the illusion that each actual file
consists of many small files, it would
clearly be more elegant and economical to
design this facility into the operating sys-
tem in the first place (particularly since
very small files are potentially very useful
for other purposes as well, e.g., for the
user’s archive of computer mail).

2. In source-file systems, the recom-
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mended routine of text-editing the source
file and reloading it into the programming
system does not work well. For example,
if the file also contains initialization oper-
ations as discussed under “nontrivial use
of text files” above, they may cancel the
test data that have been laboriously built
up during the interactive session. Also, if
some of the other procedures in the file
have been temporarily changed in their
internal versions, for example to obtain
trace printouts, the changes will be over-
written. In such cases, one would like to
reload just one procedure definition rather
than the whole file.

In MaAcuisp, a facility has recently been
introduced which attempts to solve the
problem through a Lisp procedure for ed-
iting procedures, which pretty-prints its
argument as a temporary file, calls the
text-editor and causes it to operate on that
file, allows the user to edit, returns to the
Lisp system, and reloads the temporary
file, all automatically. This, however, is a
sensitive and error-prone process since the
source files also have to be maintained,
and does not seem to be in widespread use
yet. Again, the problem would be resolved
if each procedure definition were its own
text file.

The ability to handle a large number of
very small files is a nontrivial require-
ment on future operating systems (or to
be precise, file management systems) in-
tended for use in interactive program de-
velopment. This requirement has several
implications:

® There must be economical storage
and representation of such small files.
In Lisp an average procedure defini-
tion may be a few hundred charac-
ters, and definitions of less than a
hundred characters occur for many
programmers (as exemplified by the
demo program).

@ File catalogs must have enough space
and the right organization to handle
the resulting very large number of
files.

® File naming conventions must enable
the user to operate conveniently with
large numbers of files. It is no longer
sufficient to let each file have one

single name, even if it is mnemonic.
Instead, tree-structured or property-
oriented naming is necessary, to-
gether with utility functions that op-
erate on groups of files.

® Since several programs in a residen-
tial programming system need to
maintain and make use of knowledge
about procedures, the interface be-
tween the file catalog and the data-
base maintained by the programming
system becomes critical. User-written
programs must be able to retrieve
information, and even store their own
information in the catalog, which
then generalizes into a “system data-
base,” and/or enable user programs to
maintain their own “shadow catalogs”
whose contents are a superset of the
system catalog. Even in the second
case, the supporting program that
maintains the shadow catalog must
be able to inspect the main system-
supported catalog, and in some way
keep up-to-date with it.

Handling of Comments

Different Lisp implementations have de-
veloped different conventions for com-
ments. In source-file system, comments
are ignored by the read routine, and exist
only in the text files. In residential sys-
tems, comments must clearly be preserved
in the internal representation of proce-
dures, so that they will be available when
definitions are printed-out to the user or
on a file. Thus if comments are a signifi-
cant percentage of the total text they be-
come a memory problem. Even if virtual
memory is used, they contribute to frag-
mentation if they are stored in the same
pages as surrounding code (assuming of
course that the code is executed much
more often than it is edited). On the other
hand, if comments are located on separate
pages, one may have to make “comment
text” a separate data type and/or treat it
separately in the general-purpose I/O for
data structures to make it possible to use
it for procedure definitions.

Many users prefer to have one relatively
large main comment for each procedure
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which specifies the intended purpose and
typical behavior of the procedure, and only
very sparse additional comments. It is not
at all clear that such comments should be
integrated into the program code, since
one may often want to print out those
descriptive comments together with other
documentation (such as cross-reference in-
formation) but without the code. Inter-
nally, it would be better to store the defi-
nition and the main comment of a proce-
dure in two separate locations in the data-
base, although of course one should be
able to move easily from one to the other.
In the text-file representation, it would be
tempting to store the definition and the
main comment as two separate files, if
small files as discussed are made avail-
able.

Current Editing Methods

The question of residential versus source
file systems is strongly interrelated with
the question of editors. Existing Lisp pro-
gramming environments offer a range of
different types.

Macuisp under ITS (the local operating
system at MIT) coexists with an editor (a
variant of the standard DEC text-editor,
Teco) which permits display editing (“the
real-time feature”), i.e., the user who runs
from a display terminal may display the
text that is being edited, and use single-
keystroke control codes to move a cursor
around the screen and perform changes
(insertions, deletions) one character at a
time. This is an extremely convenient and
natural form of editing, but as noted above
it is not easy to integrate such an editor
into the programming system.

The INTERLISP editor, which is part of
the INTERLISP system and therefore writ-
ten in Lisp, is a procedure for editing
arbitrary list structures (= tree struc-
tures), but of course primarily intended
for list structures that represent pro-
grams. The central routine is called with
a list structure as argument, and receives
user commands that operate on this tree.
Elementary commands move a cursor up
and down the tree, perform simple
changes, and print out the “current” part
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of the tree (from the cursor and a few
levels down). A wide repertoire of higher-
level commands is available, for example,
commands for searching occurrences of
certain patterns and for substitution by
pattern, all the time in terms of tree
structures rather than text. This editor
was developed for an environment of hard-
copy terminals, and although it can ob-
viously be used on display terminals as
well it does not make full use of their
possibilities.

Example of the INTERLISP editor. In the demo pro-
gram, suppose we want to correct the procedure
holesin so that it suppresses zero-length periods in
the list that it returns as value. This is easily done
by introducing two additional branches in the con-
ditional expression in the definition of holesin, so
that the expression comes to read:

(COND

((EQUAL ST ET) NIL)

((NULL APL) ...)

((EQUAL ST (FROM (CAR APL)))

(HOLESIN (TO (CAR APL)) (CDR APL) ET))

T...)
where the dots indicate the two old branches in the
conditional. This update would be performed using
the following edit commands (commands in capital
letters, comments in small letters):

(EDITF 'HOLESIN)

F COND

(-3 ((EQUAL ST (FROM (CAR APL)))

(HOLESIN (TO (CAR APL)) (CDR APL) ET]

insert new element before the third
element of the current expression

(-2 ((EQUAL ST ET) NIL]
insert new element before the second
element of the current expression

PP
pretty-print the current expression
to check that it came out right
(optional)

OK
return from the editor

Both of these editors have higher-level
capabilities, for example for defining and
using macros. The INTERLISP editor may
also call arbitrary Lisp programs, which
is a very powerful feature. Even if the
language for writing macros in Teco has
the power of a programming language, it
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is an advantage to be able to communicate
between code that is executed in the editor
and the database that the integrated pro-
gramming system maintains for describ-
ing the program under development.

The choice between the residential IN-
TERLISP editor and the display-oriented ed-
iting used in the MAcLIsP environment
(as well as by some INTERLISP users) differs
for different people, even after careful dis-
cussion and comparison of the alterna-
tives, and may therefore be explained as a
matter of personal taste. However, these
two alternatives do not exhaust the full
range of possible choices. We can distin-
guish three dimensions of choice, as de-
tailed in Table I.

For each of these dimensions, Choice B
is clearly better than Choice A, all other
things being equal. A list-structure editor
communicates with the user in terms of
the real structures of interest, rather than
their incidental textual representation.
Also, everybody who has used a screen-
oriented editor will agree to its superior-
ity.

For the third dimension, size of incre-
ment, there is a possible intermediate
case, namely the procedure-level edit in
which the main programming system
“knows” that a certain procedure is being
edited, but does not know the details of
how it is changed. The new MacLisP editor
described above is on this level. Choice B
is superior to this intermediate choice,
which again is superior to Choice A, with
respect to the possibilities they offer for

bookkeeping when a procedure has been
edited. For example, if the edit is intended
to be definite rather than temporary, then
information which has previously been
computed from the old definition becomes
obsolete and must be deleted and possibly
replaced at once. If the procedure had
been compiled, it now has to be recom-
piled. If the procedure-call structure or
other similar formal documentation had
been extracted from the program, that
analysis must be reperformed or, better
still, amended in those parts which need
to be changed. If code had been temporar-
ily inserted in the old definition, for ex-
ample for trace printouts or statistics gath-
ering, that code should probably be added
to the edited procedure as well. (Editing
should sometimes be done on a clean ver-
sion of the procedure, rather than a ver-
sion where these temporary changes have
been made, so that the edit is retained
when the insertion is removed, and so
that program files will be correct when
they are generated). The list could be
continued; the general observation is that
the editor is a crucial part of a residential
programming system, and has to commu-
nicate with almost everything else. It is
therefore very important to organize the
total system so that such communication
is helped rather than hindered. Both in
principle and in practice, this is done much
better when the programming system has
access to more details of the editor’s oper-
ations, i.e., the increments are small.

The trivial form of an editor is the one

TABLE 1. PossiBLE CHOIEES OF EDITING CAPABILITIES

Issue

Choice A

Choice B

Objects on which the editor
operates

Preferred medium

Size of increment in communi-
cation between editor and rest
of programming system

Text

Hard copy (i.e., a “print” com-
mand is used to display the
current state of the edited
item)

File (i.e., editor is used to edit a
file, which is then loaded into
the programming system)

List structures

Screen (i.e., editor dynamically
maintains a picture of the item
that is being edited)

Single edit operation (i.e., each
individual edit command is
available to the rest of the pro-
gramming system) (this corre-
sponds to a “residential edi-
tor”)
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represented by the left-hand column, i.e.,
a hard-copy-oriented text editor that is
applied to program files. The INTERLISP
editor and the editing facilities of the Mac-
LISP environment represent improve-
ments in different dimensions. For the
future, one would of course want a system
that implements the advanced, Choice B
facilities in all three dimensions.

Theoretically, the simplest way of ac-
complishing that is to write the entire
screen-oriented editor, including input
and output of individual characters, in
Lisp. Unfortunately this does not seem to
be realistic, except in a personal-computer
environment, because the run-time char-
acteristics of a large Lisp system makes it
hard to implement low-level routines for
continuously updating a screen. The dedi-
cated single-user Lisp machine at MIT,
described above, however, has a screen
editor written in Lisp.

Procedure-Level Awareness of Editing

A possible compromise is to maintain the
display editor as a separate program, but
enable the Lisp system to call it after
having stored a procedure definition as an
intermediate file. This approach could be
used in a residential system. It would be
easier to do there than it was in the
source-file MAcCLISP environment, since
the automatic maintenance of source files
would no longer be necessary. This ap-
proach represents Choice B along the di-
mension of the medium, and the interme-
diate choice along the awareness-level di-
mension. Some disadvantages remain:
this approach enables the programming
system to know which procedures have
been edited, but not easily which parts of
procedures have been edited. It does not
apply for certain types of data structures
that do not print well, such as common
sublists and circular structures. Nor does
it apply when one is really interested in
editing the contents of the “relational”
database (property-list information) rather
than list structures. Finally, the powerful
ability to call arbitrary Lisp code from
editor commands is likely to be lost.

A variation of the same idea is to locate
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the display-oriented editor in the terminal
communication interface of the operating
system, and to let it operate on a buffer
containing the immediately past history
of the conversation between user and com-
puter.” Besides trivial uses, for example
for scrolling back to the previous interac-
tion, the buffer would be used for editing
of procedures in a residential system as
follows: when the user asks to edit the
definition of a certain procedure, the sys-
tem prints out the definition on the user
terminal. The user edits it, changes its
status from “output” to “input”, and sends
it back to the computing system as a new
definition of the procedure. This solution
has the same disadvantages as the pre-
vious variation, but has the possible ad-
vantage that the editor in the terminal
communication interface can be used for a
number of other purposes as well.

Screen Supervisor

Another possible approach is to let the
structure editor itself be integrated in the
Lisp system, but to let it communicate
with a screen supervisor routine which is
responsible for receiving commands (in-
cluding cursor movements in some sense)
and for updating the screen, and which is
set up so that it can provide sufficiently
fast response. One may want to locate it
in a processor other than the one that
runs the Lisp system. In this architecture,
the resident Lisp editor and the screen
supervisor routine have to communicate
for each edit operation made by the user.
One would expect systems of this kind to
consume a lot of processor time, which,
however, should not be a big problem in
the future. But some hard design problems
must also be solved for this approach, and
it should be regarded as an interesting
research topic and not a simple implemen-
tation job. An experimental system has
recently been presented by Teitelman [13].

Among these alternative implementa-
tion strategies, the approach using a
screen supervisor routine implies struc-

2 Such a facility has been proposed at the Stan-
ford Artificial Intelligence Project (the “page edi-
tor”).
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ture editing, whereas the approach of us-
ing a display editor which communicates
with the Lisp system in increments of one
procedure at a time can be implemented
more straightforwardly if one assumes
text editing rather than structure editing.
However, the use of a text editor enables
one to use the same editor for several
programming languages and for ordinary
text, as opposed to having a separate edi-
tor for each purpose. In some computing
environments this is a significant advan-
tage.

Efficiency Considerations

Since a residential system may be ex-
pected to provide more services to the user,
one would presumably be willing to pay for
this by a certain increase in resource re-
quirements, namely processor time and/or
memory requirements. Even if one figures
on computer costs only, a system which
makes it possible to develop the same
program in a smaller number of terminal
hours because it has better debugging fa-
cilities may clearly be acceptable even if
its costs per terminal hour are higher.

It is, however, very hard to quantify
the variables in this tradeoff. There is
considerable controversy regarding the
relative resource consumption of MacCLIsP
and INTERLISP for the DEC-10. Also, these
systems differ in ways which are signifi-
cant for resource consumption, or mea-
surements of resource consumption, but
which are not directly related to the issue
of residential versus source-file systems;
for example, INTERLISP is more complete
in its checking of possible user errors.
Some other difficulties are related to the
issue at hand, but would go away if the
system were built right. As noted earlier,
printing text files of program definitions
is quite costly; this problem would be
greatly reduced if each procedure were its
own file, as proposed above. Additional
considerations are introduced by system
facilities that are expensive in resources
(time or space) and unwanted by many
users, but hard to remove from the inte-
grated system. With all these incidental
circumstances, it is very hard to tell how

costly the residential design as such has
to be. Furthermore, if the present optimis-
tic expectations about the advent of per-
sonal computers for Lisp materialize, the
question might lose its interest as the
residential design becomes affordable.

Complexity Considerations

A related problem in residential systems
is their complexity. There are so many
things that one would like to do in a
residential system with an integrated set
of facilities for the user, and which in
principle one could clearly do. Unfortu-
nately too many of these features interre-
late in too many ways, and it becomes
very hard to control the resulting complex-
ity. This leads to unpredictability, unreli-
ability, unhabitability, undocumentabil-
ity, and other unpleasant properties. As
always, the user, who was the intended
beneficiary of the system, instead becomes
the victim.

Summary

The residential system design offers many
possibilities to the system designer, and
should in principle allow very attractive
systems. But in designing such systems,
one must be careful not to sacrifice objec-
tives which are of basic importance to
users, such as an editing regime which is
as convenient as possible; convenient han-
dling of text files; convenient storage of
comments; efficiency; and control of com-
plexity.

3. SUPERIMPOSED LANGUAGES

One of the consequences of the program/
data equivalence in Lisp is that it is useful
as a high-level implementation language
for new languages that the user invents
in the course of his work. This is clearly a
useful property in experiments with pro-
gramming systems. It has been used in a
number of different ways.

Providing a Surface Language

The usual syntax for writing Lisp pro-
grams as parenthesized expressions (“S-
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expressions”) was illustrated in the demo
example. It is widely known and some-
times abhorred by people that do not use
the language. This notation came up in
the first place as a corollary of two basic
design choices in Lisp, namely that 1)
programs should be represented as data
structures; and 2) I/O for all data struc-
tures should be defined.

Thus in the basic programming system
one does not have to implement a special
program for reading source programs and
convert them to internal representation
as list structures: it is possible to rely on
the general-purpose I/O, and it is clearly
advantageous to do so in a minimal imple-
mentation. However, if one should prefer
some other notation for programs, one
may of course implement an alternative
read program which converts that nota-
tion to the internal representation.

Example. Suppose we want to use an ArLcoL-like
notation, with the following infix operators for list
structures:

L.hd the head (first element of) the
list [

1.tl the tail of the list /, i.e. the
remainder after the head had
been removed

lom the list obtained from the list m
by adding one element, /, at the
front

(I, 1,, ...l the list with the /; as successive
elements

Then the procedure holesin in the demo program
would be written as
holesin (st,apl,et) = =
if apl = NIL then ((st, et))
else (st, from (apl.hd)) o
holesin (to (apl.hd), apl.tl, et)
instead of the S-expression representation:

(HOLESIN
[LAMBDA (ST APL ET)
(COND
((NULL APL)
(LIST (LIST ST ET))
(T (CONS (LIST ST (FROM (CAR APL)))
(HOLESIN (TO (CAR APL))

(CDR APL)
ETI)

A Lisp program for reading the ALGOL-
like notation would rely on low-level input
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primitives: the Lisp system kernel con-
tains procedures both for low-level 1/O
(which read or write one character or one
atom at a time) and high-level I/O (which
read or write a list structure as a paren-
thesized expression in one single stroke).
The program reader itself must of course
be entered into the system in S-expression
form, as in the second example above.

Notice, then, that such a program is not
a translator from the AvrcoLr-like notation
to the S-expression representation above.
There are three representations involved:
the list structure (tree structure) used in-
side the computer, the textual S-expres-
sion representation, and the textual AL-
coL-like representation. The general-pur-
pose input routine translates from the sec-
ond to the first representation; the alter-
native. input routine for programs, from
the third to the first representation.

We shall use the term surface language
for a notation for programs that has to be
read by a special program reader, e.g.,
the Argor-like notation in the example.
The issue of such surface languages is
bound to come up whenever one organizes
a programming system according to the
criteria in the section on requirements
above, and it may therefore be worthwhile
to summarize the Lisp experience with
them.

In the early stages of Lisp’s history,
everyone seems to have assumed that sur-
face languages would appear. After all,
John McCarthy, who originated Lisp, was
also a member of the committee that de-
fined ALgoL 60. The name Lisp 1.5 seems
to indicate that it was an intermediate
solution to be used until Lisp 2 (which
would use such a surface language) ap-
peared. The Lisp 2 project started out
ambitiously, but reportedly caught the PL/
I disease (proliferation of features) and
did not enjoy the PL/I antidote (money),
and therefore was never completed.

Since that time, a considerable number
of readers for surface languages with the
same intended purpose have been written
{14, 15, 16]. Users have been reluctant to
adopt these systems; most users of Lisp
systems prefer not to use them. Some
reasons are: _

® The representation obtained from
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standard high-level I/O, although for-
bidding at first, is quite easy to work
with when one gets used to it.

® The major problem when writing S-

expressions, namely matching of pa-
rentheses, has been solved with the
introduction of “super-parentheses”
such as the right bracket in the ex-
ample above.

® The legibility problem has been solved

by systematic indentation (“pretty-
printing”) to indicate depth of paren-
theses, equivalent to depth in the tree
structure.

® It is very difficult to write a good

surface-language system. Writing the
translator itself is the trivial part;
what is harder is to make sure that
error diagnoses and other communi-
cations with the user will come out
right. One must allow mixed repre-
sentations such as those needed to
support program-generating pro-
grams.

® In integrated systems, these problems

become much harder: one must ar-
range for correct printout of the sur-
face language from the internal rep-
resentation, which means that either
the transformation must be reversible
or the source form must be preserved.
One must also modify the editor to
allow the user to edit in the surface
representation. It turns out that the
surface language processor tends to
interrelate with almost every part of
the integrated programming system,
i.e., there is a serious structuring
problem.

The moral of the story is that if a surface
language is to be used, then it should be
designed into the system from the start.
ECL [17] has taken this approach; it is
only described to the users in terms of its
surface language, although the internal
structure of its programming system is
very similar to a Lisp system. But one
should also be aware that the decision to
use a surface language will place a heavy
burden on all other facilities that one
wants to build into the system. Further,
it isolates the user from the internal rep-
resentation of programs, and discourages
him from using it for his own purposes.

Viewing Control Primitives as Procedures

If one decides not to have a special reader
for procedure definitions, one must look
into others ways of improving the local
readability of procedure definitions. Let
us discuss first the issue of control primi-
tives, where several approaches have been
tried.

In its original conception {6], Lisp was a

very simple programming language with
conditional expressions, and function calls
allowing recursion as the only control
primitives. While these primitives are the-
oretically sufficient, they force the pro-
grammer to introduce and name a new
procedure almost every time a loop is to
be performed. This is clearly inconventent.
However, other control primitives can eas-
ily be accomodated within the syntax of
LisP’s standard input/output, i.e., nested
tuples.
The obvious notation for an iteration state-
ment and for local goto’s in a block are
exemplified by the following two equiva-
lent procedures for printing n and n®
where n ranges from 1 to m:

(DEFINEQ
[PRINTSQUARES1 (LAMBDA (M)
(FOR N FROM 1 TO M DO (PROGN
(PRIN1 N)
(TAB 10)
(PRINT (TIMES N N ]
[PRINTSQUARES2 (LAMBDA (M) (PROG (N)
(SETQ N 0)
LOP (SETQ N (ADD1 N))
(COND ((GREATERP N M) (RETURNY))
(PRINT N)
(TAB 10)
(PRINT (TIMES N N))
(GO LOP))

The for expression and prog expression in
these examples satisfy the data-structure
syntax, and also satisfy a basic assumption
of the Lisp interpreter, namely that in
every list which is to be evaluated (every
“form”), the first element must be a func-
tion name or operator which specifies how
the rest of the form is to be treated. (Infix
operators are harder to handle and will be
discussed below). The prog primitive was
implemented on the machine-code level in
early stages of Lisp’s development, which

Computing Surveys, Vol. 10, No. 1 March 1978



54 « E. Sandewall

established a de facto standard. The for
primitive was not standardized. One can
guess that the following reasons contrib-
uted:

1) It is easy for each user to define a for
primitive similar to the one above,
using the existing primitives of the
language. _

2) Many variations of for statements
are possible, for example involving
loops over the members of a list, and
there are different ways of collecting
a value of the expression—one may
form a list of the value returned in
each cycle of the loop, add those val-
ues if they are numbers, form their
union if they are sets, or perform
almost any other binary operation.

3) The prevailing ethics of Lisp pro-
gramming in its early days encour-
aged the use of so-called mapping
functions. For the example above,
one would define a mapping function
that might be called mapint, and use
it as follows:

(DEFINEQ
(PRINTSQUARES3 (LAMBDA (M)
(MAPINT 1M (FUNCTION (LAMBDA (N) (PROGN
(PRIN1 N)
(TAB 10)
(PRINT (TIMES N N]

Here mapint would be defined as (in Lisp
1.5) ‘

(DEFINEQ
(MAPINT (LAMBDA (FROM TO FN)
(COND ((GREATERP FROM TO) NiL)
(T (PROG2 (FN FROM)
(MAPINT (ADD1 FROM)

TO FN]

which means it calls the procedural argu-
ment fn for integer arguments ranging
from from to to in steps of 1. Mapping
functions are nice and pure in theory but
not so convenient in practice, since each
user tends to build up a wildly growing
fauna of different mapping functions. In a
for operator, it is easier to accomodate
different facilities through different choices
of keywords such as from and to in the
example. INTERLISP [4] contains a rich for
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statement in its program library; it allows
one to write, for example, the following
expression for forming a list of those mem-
bers of a given list 2 whose position num-
ber is a member of a given list p:

(FOR X IN K AS | FROM 1 COLLECT X WHEN
(MEMBER | P))

where x and { are the two iteration varia-
bles and run in parallel.

Mapping functions and the for operator
have one thing in common: they are
higher-level constructs which allow the
user to express program control conven-
iently, and which have been defined from
other and more basic primitives in the

Lisp system. Additional control structures

such as a case construct (called selectq in
INTERLISP) have also been developed in
some Lisp systems and by individual
users. This development can be under-
stood by viewing Lisp as a very-high-level
implementation language, and as an ex-
tensible language with facilities for defin-
ing new control structures.

If interpretation of the Lisp program
is sufficient, then then the implementa-
tion of constructs such as for and selectq
only requires system primitives which ex-
ist in Lisp 1.5 and all subsequent systems,
namely the so-called FEXPR’s (or
NLAMBDA'’s) and also the prog facility.
In order to compile them as well, one
needs either a macro facility or handles
on the compiler. (Handles will be de-
scribed in a later section.) In fact, a macro
facility may be viewed simply as a handle
on the compiler. Current Lisp systems are
usually equipped with a macro facility for
exactly this purpose.

Infix Operations

Perhaps the most striking difference be-
tween the basic Lisp notation and conven-
tional programming languages is the ab-
sence of infix operators. The interpreter
assumes as input a data structure where
the procedure name er operator is the first
element of every sublist. Such data struc-
tures print as shown in the following ex-
ample: a*b+c—d become
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(PLUS (TIMES A B) (DIFFERENCE C D))

Several methods are possible for allowing
the user a more natural notation:
1) Introduce a special operator that in-
dicates infix expressions, so that one
would write the above example as

(' A TIMES B PLUS C MINUS D)

The | operator would then be defined
in the same way as for and selectq,
discussed in the previous section.

2) Modify the Lisp interpreter to allow,
for example,

(A TIMES B PLUS C MINUS D)

3) Modify the I/O conventions so that
the printed expressions are infix, but
the internal representation as data-
structures is prefix like before.

Rely on the exception handling mech-
anism in the interpreter. The user is
allowed to type, for example,

o

A'B+C~D

which is read as one single atom by
the input routines. When the inter-
preter encounters this “variable” an
error occurs because the “variable”
does not have a value. The error
machinery will then inspect the
name of the “variable,” reconstruct
its intended meaning, and convert to
the basic Lisp notation.

The first method does not look as well as
‘the others, but is easy to implement and
use and can be implemented by any user
who wants an infix-notation facility. The
second approach has been used in QLisp
[19], but not in Lisp for several reasons
including compatibility. The third ap-
proach would very likely cause confusion
for users, if provided as an add-on feature.
However, Tholerus [18] has developed this
idea in a systematic way; his proposal
should be considered seriously in design-
ing future systems. The fourth method
is used by the Cuisp facility in INTER-
LISP [4]. It has several advantages, such as
allowing a natural notation and being
transparent to users who do not use the
facility (at least theoretically). However,
the Curisp facility, which in its entirety

contains several other mechanisms be-
sides this one, is controversial among IN-
TERLISP users: some like it, some do not. It
is an open question whether this is due to
remaining initial difficulties in the cur-
rent implementation, or whether it is in-
appropriate to locate the infix/prefix trans-
formation in the exception-handling ma-
chinery.

Since numerical computations are usu-
ally of minor importance in Lisp applica-
tions, the availability of infix operators
for arithmetic functions is not very impor-
tant. Infixes for Boolean connectives and
for common operaticns on lists, such as
cons, append, member, union, and many
similar functions are more- significant.
However, a possible objection is that in-
fixes seem to do best in relatively small
expressions, and may do more harm than
good in complex expressions with many
levels of application of functions, which
are common in Lisp. Consider for example
the following translation into Crisp (in
the INTERLISP system) of the function next-
day as defined in our calendar application
above:

(NEXTDAY
[LAMBDA (DATE)
((GETPROP DATE:1 'NEXTWEEKDAY) !
(if DATE:3=(GETPROP DATE:2
'NRDAYS)
then ((GETPROP DATE:2
'NEXTMONTH)
1
else (LIST DATE:2 DATE:3+1}))])

Here the exclamation sign is used as an
infix operator for cons. It is not at all
clear that readability has increased com-
pared to the original definition.

Declarations

The term “declarations” is used here for
information about entities in a program
(variables, procedure names, etc.) which
is stated once and then used during the
execution of the program and/or in an
analysis of the program such as a com-
piler. With this definition, declarations in
an incremental system often take on a
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different appearance than in a conven-
tional compiling system. In the conven-
tional system, declarations are always
statements in the program that is fed to
the compiler. In an incremental system,
where one has a database which may be
updated and used by successive expres-
sions that are evaluated by the system, it
1s possible to input declarations sepa-
rately, to store them in the database, and
to use them either statically when proce-
dures are input or compiled, or dynami-
cally when they are interpreted. This ap-
proach also makes it possible to extend
the use of the declarations gradually, and
thus obtin a more and more complete
description of the program.

The first use of declarations in conven-
tional languages such as ALGOL was to
distinguish integer, real, and Boolean var-
iables. This usage is not necessary in in-
terpreted Lisp, since the distinction is
made in the data and determined dynami-
cally during execution. The first use of
declarations in Lisp was instead to provide
the compiler with information about free
variables, i.e., variables that are declared
in one procedure and used in another pro-
cedure deeper in recursion.

When Lisp is to be compiled on today’s
conventional computers with typeless
data, however, the compiler can make
good use of typing information for numer-
ical data (integer, real, etc.). Most Lisp
systems do this in the same fashion as
assembler languages, i.e., by having a
separate real plus, integer plus, etc., in
addition to the general-purpose plus. The
specialized functions are recommended for
frequently executed parts of the program.
Surface-language systems such as REDUCE

[16] also allow conventional, Arcor-like
type declarations for variables, and do the
same type checking, type conversion, and
selection of operation as a conventional
compiler.

The approach used by the current Lisp
systems in this area may seem shockingly
primitive, but one must remember that
numerical calculations play a very minor
part in the artificial intelligence applica-
tions in which the systems are most used.
REDUCE, on the other hand, is used mainly
for formula manipulation, where heavy
calculations do occur and where there is a
fairly broad assortment of numerical or
pseudonumerical types: real, integer, com-
plex, rational, polynomial, etc.

Especially for artificial-intelligence ap-

plications of Lisp, declarations of data
structures are potentially more useful.
Relatively little has been done to imple-
ment such facilities, and some users argue
that they are not needed.
Example. Let us first illustrate with an example
what data-structure can do in the Lisp context. The
data structure for the personal calendar in the demo
program could be described as per Display 1, accord-
ing to a design proposal for an extension to REDUCE
(19].

The definition should be self-explanatory
since the data structure has been defined
informally above. The final LIST in the
definition of TIME is a constructor func-
tion which is defined by default in the
other declarations. With these definitions,
the user can declare variables to have one
of these types, for example

DECLARE FR:FROM,;

and to select and change their components
using a functional notation, for example

DiISPLAY 1.

RECORD CALENDAR = LISTOF DAYPLAN;

RECORD DAYPLAN = STRUCT(DATE:DATELIST, APPS: LISTOF APPOINTMENT);

RECORD DATELIST =

STRUCT(DAYOFWEEK:DAYNAME, MONTH:MONTHNAME, DAY:INTEGER);

RECORD DAYNAME = (MON, TUE, WED, THU, FRI, SAT, SUN);

RECORD MONTHNAME = analogous
RECORD APPOINTMENT =

STRUCT(FROM:TIME, TO:TIME, VERB:ATOM, OBJECT:SYMBOLIC);

RECORD TIME = STRUCT(HOURS:INTEGER, MINUTES:INTEGER):LIST;
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HOURS(FR).

This machinery obviously serves two ma-
jor purposes, namely to make programs
more easily legible, and to make type
checking possible. Since REDUCE is a sur-
face language to LisP’s interpretable data
structures, the type checking and choice
of operation for each selector is done when
a procedure is read into the system. The
checking is done individually for each pro-
cedure that is input, and global declara-
tions may be stored permanently in the
database.

The arguments for such a use of decla-
rations are the same as in other lan-
guages, and are well known. However,
some Lisp users oppose it on the same
grounds as they resist separate readers
for programs, namely that declarations
used in this way interact unfavorably with
other parts of the programming system
and tend to insulate the program from the
programmer. It is then often argued that
1) The kinds of bugs which can be diag-
nosed by type checks can also be quickly
found and corrected in interactive program
development; 2) Bugs in symbol-processing
programs have more visible effects, and
are therefore easier to find, than bugs in
programs for, let us say, numerical com-
putation or simulation; and 3) The obliga-
tion to declare the data types of variables
in conformity with one of the proposed
systems does more harm than good be-
cause it restrains the programmer.

These statements are of course con-
tested, but their validity may be a matter
of personal programming style.

Even if one does not need declarations
for type checking, there is still the ques-
tion of program legibility. Many Lisp pro-
grammers solve this problem in the man-
ner indicated in the demo program, i.e.,
by defining low-level procedures such as
hours and from which select components
of structures, and then use them rather
than the elementary combinations of car
and cdr. This practice can obviously be
automated. This has been done in the so-
called record package in INTERLISP, where
some of the declarations in the above ex-

ample for REDUCE could be written as

(RECORD DAYPLAN (DATE - APPOINTMENTLIST))

(RECORD DATE (DAYOFWEEK MONTH DAY))

(RECORD APPOINTMENT (FROM TO VERB
OBJECT))

(RECORD TIME (HOURS MINUTES))

The facility in INTERLISP does not do any
type checking, and only serves the pur-
poses of legibility and data independence.
It is weaker than the proposed facility in
REDUCE in some ways; for example, it does
not allow one to declare APPOINT-
MENTLIST to be a list of APPOINT-
MENTs in the example. It is stronger in
some other ways, particularly since it al-
lows records to be implemented in various
ways such as lists, arrays, hash-arrays,
property-lists, etc., and therefore achieves
data independence over a wider range of
realizations.

Still other uses of declarations are for
documentation purposes and as support
for utility programs that perform service
operations on parts of the database, e.g.,
data entry, tabular presentation, and
merges of structured data from different
sources. The design of such facilities has
been treated in [20] and [21].

These different experiments with the
use of declarations in Lisp systems have
one thing in common, namely that they
all work by extensions to the basic Lisp
system. The approach is similar to the
one used for control primitives, as dis-
cussed above: the basic system is used as
an implementation tool and for its exten-
sibility. It does not contain the desired
facilities, but it makes it easy to imple-
ment the facilities of one’s choice, and to
experiment with changes in these facili-
ties. In the case of declarations, the pro-
gram/data equivalence and the database
during the interactive session are the sig-
nificant properties of the language that
make this approach possible.

The extensibility properties which make
it possible to implement subsystems for
control structures and high-level data
structures are also generally available for
the users of these subsystems. For exam-

ple, the for construct in INTERLISP allows
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the user to add more keywords to the
existing ones (do, collect, while, etc.) and
to define how the new keywords are to be
used. Similarly, the proposed new type
facility in REDUCE stores coercion rules as
properties of data-type names or, more
abstractly, as a network with names of
data types as nodes. This network is avail-
able to the user, who can extend it dynam-
ically.

The language extensions mentioned
here, such as REbuck and the Crisp facil-
ity in INTERLISP, are by no means the only
ones. Because of the ease of implementing
simple facilities of this kind, many Lisp
users implement and use their own.

A conclusion from this experience is
that extensibility in programming lan-
guages may not be particularly interesting
as a goal in itself. If the language is
designed on certain basic premises such
as incrementality and program/data
equivalence, extensibility is obtained au-
tomatically.

Very-High-Level Languages

The period 1970-75 saw a number of at-
tempts to create very-high-level languages
based on Lisp. PLANNER [22], QA4 [23],
CoNNIVER [24], QuisP [25], and PoPLER
[26] are the best known ones. An early
forerunner was Lisp A [27]. These systems
have been reviewed in [28].

The basic feature of these systems is
that they integrate a number of ideas and
facilities which could be described and
discussed separately, but which enhance
each other and therefore should be imple-
mented together. They include:

® A common mechanism for invocation
of programs and data. A procedure
call and an instruction to check for
the existence of a relationship in the
data base should use the same syn-
tax, and should be interchangeable.
® Pattern-directed invocation. Each in-
vocation should be an expression con-
taining constants and variables,
which calls for the values of the vari-
ables to be computed through access
to the database to find entries that
match the pattern, and/or through
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calls to procedures whose “names” or
description indicate that they can be
useful for filling in blanks in such
patterns.

® Nondeterminism, meaning that the
computation may split in such a fash-
ion that it continues independently
in each of the branches. Pattern-di-
rected invocation may result in non-
determinism, since one pattern may
be matched in several ways and since
several procedures or data items may
be relevant for the same pattern.

The implementation of at least some of
these systems was quite modular. It con-
sisted of a pattern-matcher, a database
handler, a nondeterministic executive,
etc., with common conventions and mu-
tual procedure calls as the common glue.
In retrospect, it appears that the glue was
not as strong as it first seemed.

Each of the modules could be built in
many different ways, and the particular
combination of choices implicit in any one
system found very few satisfied users.
Also, the resulting systems were big and
clumsy, and users were reluctant to pay
the price in computer resources of using
the entire systems. Except for a few strik-
ing early demonstrations, for example by
Winograd {29], these systems do not seem
to have been used much. The present trend
is to make use of, and continue to develop,
each module separately, and to use them
as individual tools for various applica-
tions.

Higher-level languages of still another
type built on the Lisp system, namely
embedded languages, are closely related
to questions of program structure, and are
discussed separately further on.

4. PROGRAMMING METHODOLOGY

The Lisp community has barely partici-
pated at all in the last few years’ debate
on structured programming and other as-
pects of programming methodology. How-
ever, some program development methods
are explicitly encouraged by properties
which are now classical in the Lisp lan-
guage and existing Lisp systems.

For bottom-up program development, it
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is desirable to be able to test procedures
as they are developed. Lisp systems sup-
port this practice through the incremental
implementation and the predefined 1/0 for
data structures. This was illustrated in
the demo program.

The complementary method of top-down
programming (usually carried out through
stepwise refinement) also suggests some
reasonable properties for interactive pro-
gramming systems, for example:

® If the definition of the procedure P
contains a call to the procedure Q,
but @ is not actually called for a
certain argument vector x to P, then
the programming system should be
able to operate and to compute P(x)
even if @ has not yet been defined.

@ If P calls @ as in the previous case
and @ is undefined, but computation
of P(y) actually leadsto a call to @,
than the programming system should
make a “soft landing.” In other words,
it should not print an error message
and abort, but rather preserve the
current environment and allow the
programmer to inspect the situation,
decide on a suitable value that @
could have returned, type it into the
programming system, and make the
computation continue.

The first of these possibilities is of course
available in Lisp, as in most interpretive
systems. My own experience as well as
reports from other programmers indicates
that this method is standard practice.

The second method, i.e., interaction as
a substitute for an undefined procedure, is
supported by INTERLISP systems (and also,
but not as smoothly) by MacLisp.

Example. The following sample console session il-
lustrates what happens in our calendar application
if the function beforetime (which is intended to
check whether one hour-minute combination pre-
cedes another one) has not been defined when the
function commonholes is tested. User input is in
italics.

34__(COMMONHOLES H1 H2)
u.d.f.

(BEFORETIME broken)

35:IN?

COMMONHOLES: (BEFORETIME (FROM (CAR
M)) (FROM (CAR L))

35: (FROM (CAR M))

(8 45) :

36: (FROM (CAR L))

(90)

37:RETURN T

BEFORETIME = T

The system has typed out u.d.f. (for “undefined
function”) and the name of the offending function.
The user typed the command IN? to find out where
the problem occurred. He then typed in the argu-
ments of the function in the offending position, to
find out their current values. With this, he decided
the value that the offending expressions should
have, and allowed the computation to continue.

The next time the problem occurs, he decides
that he had better define beforetime after all. He
does so in the ordinary way, and then proceeds as
follows:

41:GO
BEFORETIME = NIL
(((® 0) (9 15)) ((10 0) (10 30))
((10 40) (10 45)) ((11 0) (11 30))
(11 50) (12 20)) (12 40) (13 0))
((15 0) (15 30)))

L

The computation proceeds to the final answer.

The example is slightly artificial, since
normally INTERLISP would not bother with
an interaction when the error occurs at
such a shallow level of recursion.

The common programming practice,
however, is not to leave procedures unde-
fined intentionally, but instead to make a
simple definition at first, and later substi-
tute a more elaborate one. The original
definition may be a real dummy, for ex-
ample it may simply return a constant
value, but more often it is a viable al-
though simplified case of the intended def-
inite procedure. For example, input/out-
put of object data is often done in the form
of S-expressions (i.e., using high-level ker-
nel 1/0) in early stages of program devel-
opment, and nicer-looking I/O is substi-
tuted later on. This enables the program-
mer to focus first on the essential aspects
of the problem.

Example. This practice was illustrated in the cal-
endar example, where we showed how calendars
were output using the standard I/O for data struc-
tures. The resulting notation is obviously not ac-
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ceptable for the final user, but is acceptable for
small test cases during program development. As a
first step towards improved readability, one could
try the system’s standard pretty-printer (for print-
ing using indentation), which would print Svens-
son’s calendar in the example above as

(((FRI JAN 7)
((10 30)

(11 30)

SEE GUSTAFSSON)

((14 15)

(16 15)

ATTEND

(INFORMATION ABOUT

NEW CAR-POOL RULES)))

((MON JAN 10)

(9 0)

(10 30)

SEE PERSSON)

((13 30)

(14 45)

VISIT LIBRARY)))

As this clearly did not work very well, one could
define a special printing function for calendars as

(DEFINEQ
(PRINCAL
[LAMBDA (P)
(for DAY in (GETPROP P (QUOTE CALEND))
do (PROGN (PRINT (CAR DAY))
(for ENTRY in (CDR DAY)
do (PROG2 (TAB 6)
(PRINT ENTRY)))
(TERPRI)))

This results in the output shown by Display 2.

This example serves to illustrate two
different principles. First, we notice that
a few lines of programming produced a
reasonably legible printout, and infer that
15 or 20 more lines of straightforward code
should be sufficient for producing a listing
that is entirely satisfactory to the final

user, with 10:30 instead of (10 30) etc. The
programmer can therefore confidently as-
sign low priority to communication of data
from the program: it is something which
almost takes care of itself, with just a
little help. An analogous situation holds
for input of data to the program. In a
conventional programming language the
programmer would have to write and de-
bug input/output routines for data before
even starting to test and debug any other
code.

The example also illustrates a method
of program development which may be
characterized as structured growth: an in-
itial program with a pure and simple
structure is written, tested, and then al-
lowed to grow by increasing the ambition
of its modules. The process continues re-
cursively as each module is rewritten. The
principle applies not only to input/output
routines, but also to the flexibility of the
data handled by the program, the sophis-
tication of deduction, the number and ver-
satilty of the services provided by the
system, etc. The growth can occur both
“horizontally,” through the addition of
more facilities, and “vertically” through a
deepening of existing facilities and mak-
ing them more powerful in some sense.

That Lisp users tend to prefer structured
growth rather than stepwise refinement
is not an effect of the programming sys-
tem, since both methods are supported. I
believe, however, that it is a natural con-
sequence of the interactive development
method, since programs in early stages of
growth can be executed and programs in
early stages of refinement cannot. Nor has
there been much discussion about the mat-
ter, at least not in terms of abstract pro-
gramming methodology. (The term struc-
tured growth has not been used before).
Structured growth seems to be simply a

DispLAY 2.

95_(PRINCAL 'SVENSSON)
(FRI JAN 7)

((10 30) (11 30) SEE GUSTAFSSON)
((14 15) (16 15) ATTEND (INFORMATION ABOUT NEW CAR-POOL RULES))

(MON JAN 10)
((9 0) (10 30) SEE PERSSON)
((13 30) (14 45) VISIT LIBRARY)
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technique that people tend to use sponta-
neously if they are given a free choice in
an open environment.

An obvious objection to this program-
ming method is that it may encourage
“featurism,” i.e., large programs with
many different facilities rather than con-
cise programs that embody a small num-
ber of powerful principles. A possible an-
swer is that a computer program that
approximates an aspect of intelligent hu-
man behavior very often has to account
specifically for many different kinds of
situations and thus that one really needs
a programming technique for building fea-
ture-rich systems, whereas attempts to
find simple principles are doomed anyway.
Incidentally, the techniques for obtaining
feature-rich systems may also be impor-
tant for designing programs with which
untrained humans find it comfortable to
interact.

From the moralistic view of program-
ming methodology, one might of course
still argue that the method of structured
growth is a bad habit, since it encourages
one to make changes in programs, and
changes are a known source of errors. The
answer would be that even if some kinds
of program changes are dangerous and/or
bad, that does not prove that all of them
are.

Stepwise refinement and structured
growth are both variants of top-down pro-
gramming, since they encourage one to
decide on the overall structure of the pro-
gram first, and then proceed to decisions
about its parts. Much could be done in the
programming system to further support
top-down work in addition to what is done
by current Lisp systems, for example:

@ Keep track of “open statements” or
“expansion points.” When users type
in a piece of code which they know
has to be refined or rewritten later,
it should be possible to tell this to the
system and ask later what work re-
mains to be done.

® Distinguish different types of edit op-
erations. Given an initial approxima-
tion to a program, some changes will
be made to correct bugs, and some to
extend the program. It would be desir-

able to treat these two kinds of
changes separately, so that several
layers of refinement or growth could
be maintained in parallel. It is a com-
mon observation that early versions
of a program are useful introductions
to later, full-grown versions. Simi-
larly, the value of (idealized) early-
refinement steps as documentation
has been emphasized in [30]. The
problem, of course, is that the distinc-
tion between the different types of
edits is not as clear-cut as one would
wish.

5. PROGRAM STRUCTURE

The debate about structured programming
in the world of conventional programming
languages has been very much concerned
with the proper syntax and semantics for
control primitives, such as iteration state-
ments (for loops), selection statements
(case statements), and others. In one sense
these questions are about the local struc-
ture in the program text. However, they
also affect the global structure of programs
because of the principle of hierarchical
design of programs: the top-level structure
of a program is a procedure or block which
refers to subprocedures and/or subblocks
recursively, but all entities on all levels
are constructed in the same language.
This view has been expressed by, for ex-
ample, Dahl [31].

The feeling about these issues in the
Lisp community is quite different. Local
smoothness of notation is often considered
uninteresting, for example when the S-
expression notation is used for programs,
or when mapping functions are used
rather than a for operator (see the section
on superimposed languages above).

This attitude combines with a nonhier-
archical view of program structure. Many
Lisp programmers seem to have a two-
level model of their programs: on the
higher level, a program is a collection of
procedures, which are related through
their invocation structure (procedure-call
structure); on the lower level, each proce-
dure has a definition. The higher-level
structure is the important one for under-
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standing a program: it is supported by
documentation which specifies the behav-
ior of each procedure on its data, by docu-
mentation tools for automatic extraction
of the invocation structure, by the advice
facility (see below), etc. Questions of con-
trol primitives clearly do not arise on this
level. While they do arise when one de-
scends into the interior of the black box
that is a procedure, one tries to stay away
from this as much as possible, and when
one does work with the definition of a
procedure one fully expects to face difficul-
ties of many kinds, all trivial and uninter-
esting. Incidentally, the same two-level
view of programs seems to be common
among users of APL.

Program structure in Lisp programs’

does not end with the procedure-call
model, however. The following are some
other principles of program structure that
are prevalent in the programming prac-
tices of the community.

Programmable Systems

It is common practice in computer science
to think of “elementary algorithms,” i.e.
subroutines which can be specified, ana-
lyzed, and programmed in closed form,
and then serve as building blocks for
larger programs. This concept may have
been inherited from numerical analysis or
from engineering. Knuth’s works [32] are
a systematic exposition of such algo-
rithms.

In Lisp programming, such algorithms
often serve as mainframes rather than
building-blocks for programs. The algo-
rithm is written in open-ended form, i.e.,
some of its operations are marked as “user-
defined” or as “handles.” When the algo-
rithm is to be used for a specific applica-
tion, appropriate code is attached to each
handle.

From a formal programming-language
point of view, one might argue that such
use of elementary algorithms does not
alter their status as procedures since the
handles may be easily implemented as
procedural arguments. But the real issue
is a different one: the view of the algorithm
in the program structure is changed. In-
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stead of being a small building block,
which for many purposes can be viewed as
a black box, it becomes a major way of
determining the structure of the program.
There are also other consequences. Con-
ventional analyses of mathematical prop-
erties of algorithms become irrelevant, be-
cause of the arbitrary code that is attached
to the handles. Also, in the practice of
Lisp programming, it is often more con-
venient to store the attached procedures
in the database of the programming sys-
tem, and let the general algorithm look
them up as needed, rather than use a
large number of procedural arguments.
This matter is discussed in detail in [21].

A few examples of programmable sys-
tems involve:

Parsing of a programming language
whose syntax can be described by a con-
text-free grammar (if the borderline be-
tween syntax and semantics is chosen so
as to make this possible). This is a classic
problem, and a number of algorithms for
this task have been developed and studied
extensively. In a Lisp-style language, it is
more natural to write a parser which, for
each reserved word and infix operator,
looks up an associated piece of code and
executes it. In practice it is natural to
separate priority degrees as passive pa-
rameters outside the procedures, and let
them determine when and how the opera-
tor-associated procedures are to be called.
Thus handles may contain both passive
data (parameters) and active data (proce-
dures). Systems of this kind have been
proposed independently by Pratt [34] and
Tholerus [33].

Static analysis (“compile-time analysis”}
of conventional programming languages.
Knuth [35] has proposed a scheme for such
analysis that uses attributes associated
with nodes in the syntactic parse tree.
Nordstrom [36] has modified the method
and allowed arbitrary procedures to be
associated with productions and called in
a more selective way, and thereby made
systematic use of the handles on the basic
algorithm. The resulting program struc-
turing method is reminiscent of one pro-
posed by Hoare [37] and results in a very
well-structured program.
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Analysis of natural language. Woods’s
Augmented Transitional Network Parser
[38] is a widely used program that makes
systematic use of programmability. Its
kernel algorithm is that of a finite-state
automaton, which has been made pro-
grammable by allowing handles in every
state transformation. This also eliminates
the restriction on the power of finite-state
acceptors.

The LISP interpreter itself, like other
routines in most modern Lisp systems, is
highly programmable and has a large
number of handles. Thus, for example:

® The three steps in the system’s basic
loop (read—evaluate—print) are just
initial assignments to handles, and
may be changed as the user desires;

® Exception conditions, for example for
undefined variables, cause a call to a
procedure that the user may define;

® Pretty-printers are usually pro-
grammable so that they can be fitted
to the user’s needs.

Procedural Embedding

The classical view of a computer program,
i.e., that a program is composed of a num-
ber of elementary algorithms and operates
on a body of data, has failed in the Lisp-
using community not only through the
emergence of programmable systems, but
also through the doctrine of procedural
embedding of knowledge. A short review
of history may be in order here.

In the middle 1960’s, it was suggested
that certain artificial intelligence systems
should be organized as theorem provers
that would contain most of their knowl-
edge as “data,” i.e., as expressions in a
logical calculus. The system would also
contain a theorem-proving program which
would make deductions from the available
data, answer questions, etc. The advent of
the resolution method in 1965 as well as
some demonstrations of its use increased
the enthusiasm for this view.

Strong objections to this view surfaced
around 1970. It was argued that a logical
calculus was not an appropriate vehicle
for the kind of information that has to

reside in an artificial intelligence system,
and that major parts of the information in
the computing system must be represented
procedurally, i.e. as executable code,
rather than as inert data. While it is not
possible to portray this long controversy
here, let us note that the current fashion
among the remaining theorem-prover en-
thusiasts is to view a theorem-prover as
an interpreter for a very-high-level lan-
guage, which in a sense marks the
triumph of the procedural school.

The rejection of theorem-proving repre-
sents the rejection of an algorithm which
for a while seemed to be of basic impor-
tance, and even a rejection of the use of
closed algorithms as the top level of a
system. With resolution, one could make
a mathematical analysis of variants of the
resolution algorithm and hope to learn
something about the behavior of the sys-
tem being constructed. With the proce-
dural approach, one is encouraged to think
of large systems simply as programs,
where closed algorithms appear only at
the lowest levels. Mathematical analysis
of the algorithms can then at best say
something about the efficiency of the sys-
tem, but not about the limits of its compe-
tence.

One might have expected this develop-
ment to focus attention on issues of pro-
gram structure and programming meth-
odology, but in fact the questions of design
of very-high-level programming languages
came to dominate instead.

Embedded Languages

Another practice of program structuring,
also related to programmable systems, is
to organize the program around a highly
specialized “language” that describes the
application. For example, the INTERLISP
makefile facility, which is used to generate
text-format files of procedure definitions
and initialization data, is organized as an
executive which interprets a file descriptor
for the desired file. The file descriptor
contains information about which proce-
dures are to be printed on the file, in
which format they are to be printed, what
other operations are to be performed when
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the file is generated and when it is loaded,
and so on. This has already been illus-
trated in the example in the section on
Residential and Source-File Systems
above. The descriptor may initially have
been a catalog or a parameter, but as the
makefile package underwent structured
growth, the descriptor acquired all the
characteristics of a programming lan-
guage.

The point lies not in the significance of
this particular example, but in the general
observation that the programming lan-
guage has encouraged the use of such
embedded languages. They are of course
internally represented as data structures
(making them easy to interpret) and exter-
nally as standard printouts of those data
structures (which makes them sufficiently
easy to read, and which makes I/O of
expressions in the embedded language
trivial). Since programs and data are in-
terchangeable, it is possible for an expres-
sion in the embedded language, which of
course is data to its interpreter and there-
fore to the Lisp system, to contain calls to
procedures that are written in Lisp.

The programming method of using em-
bedded languages is very widespread
among Lisp users, although many such
languages are so small that they are not
advertised as such. If one wants to enable
programmers to mold the programming
system to fit their needs, then use of
embedded languages in this sense is prob-
ably a more viable approach than use of
extensible languages.

The use of specialized languages for spe-
cific tasks in a class of applications repre-
sents a nonconventional method of decom-
posing complex problems. Instead of hier-
archical decomposition, where a large
problem is decomposed into small prob-
lems of the same kind as the top-level
problem (for example, all subproblems are
subprograms), we instead decompose the
problem into two parts: 1) design an appro-
priate language for expressing solutions
to problems similar to the given one; and
2) express the solution to the problem in
that language. This method of decomposi-
tion has a definite advantage in situations
where the given task may be redefined at
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a later stage. However, for implementing
such specialized languages in a convenient
fashion, one needs a very-high-level imple-
mentation language. When it allows the
implementation of embedded languages,
Lisp serves exactly this purpose.

Production Systems

Embedded languages that started out as
simple auxiliary devices sometimes grow
into full-fledged systems. The very-high-
level languages, as discussed above, may
have followed this path. Another example
is production systems, which have recently
attracted attention as a nice way of struc-
turing many types of problems (see, for
example, [39]). Production systems have
been used successfully in the MYCIN proj-
ect [40].

Data-Driven Systems

There is one underlying method that
makes possible programmable systems,
embedded languages, and several other
practices, namely what we have called
data-driven programming [20, 21]. It is
similar to indirect jumps in machine lan-
guage, and can be described as follows: in
conventional high-level languages, each
procedure has a name, and one procedure
calls another if the definition of the former
explicitly contains the name of the latter.
A data-driven call is one where the calling
procedure accepts “input” data (for exam-
ple, input from the user, or arguments to
the procedure), looks up a procedure which
in the database of the programming sys-
tem has been associated with these data,
and calls that procedure. This is not possi-
ble in conventional high-level languages,
but is possible in Lisp because of the pro-
gram/data equivalence.

Example. In the domain of the demo program, sup-
pose we want to define a procedure nextweekday
which is a refinement of nextday. Remember that
nextday computes the next day in the calendar after
a given day, e.g., nextday of (FRI JAN 14) will be
(SAT JAN 15). The new procedure nextweekday will
skip Saturdays, Sundays, holidays, etc. Because of
the variety of different reasons why a certain day
may not be a working day (“weekday”), we decide
to associate with each day-of-week (such as SAT) a
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procedure which takes a day as argument, and
returns T if this day is an acceptable weekday as
far as it knows, and NIL otherwise. We proceed
similarly for the names of the months. In both
cases, these procedures that implement local exper-
tise are stored on the property-list of the day-of-
week and the month, under the indicator OK-AS-
WEEKDAY. Then nextweekday can be defined as
shown in Display 3. In this case, using INTERLISP’s
iteration statement, d will range over nextday
(date), nextday (nextday(date)), etc., until a d is
found which satisfies the two criteria. Then the
knowledge that Saturdays are never acceptable
weekdays can be embedded as

(PUTPROP 'SAT 'OK-AS-WEEKDAY
"(LAMBDA (D) NiL))

The knowledge that Mondays are acceptable except
in August is embedded as

(PUTPROP 'MON 'OK-AS-WEEKDAY
"(LAMBDA (D) (NOT (EQ (CADR D) ‘AUG]

The knowledge that Christmas day is the only
nonacceptable day in December except the ones
accounted for by the days of week is represented as

(PUTPROP 'DEC 'OK-AS-WEEKDAY
"(LAMBDA (D) (NOT (EQ (CADDR D) 25|

In general, the method described
through this example makes it possible to
organize knowledge as many small proce-
dural chunks, and to associate these
chunks of knowledge with data items
(namely names of months and names of
days of week) which occur in the applica-
tion and which are therefore automatically
understood by the programmer. This turns
out to be a very common programming
technique in the Lisp community. One
somewhat larger example is analyzed in
detail in [21]. This technique strongly fa-
cilitates the writing of interpreters for
embedded languages, and in programma-

ble systems is an often preferred alterna-
tive to having procedural arguments.
Also, an indirect or data-driven procedure
call is equivalent to a case statement (at
least for single-step indirectness and a
static database), but is much more conven-
ient to work with interactively since it is
particularly easy to add additional case
branches by adding more entries to the
database (see the discussion above about
structured growth), and since the data
base of data-driven procedures may be
presented in different ways to the user at
different times. Nordstréom’s method for
organizing a program according to a syn-
tax for the data structures of its applica-
tion differs from Hoare’s method discussed
above in exactly this respect.

Although the Lisp system kernel makes
data-driven programming possible, the
higher-level mechanisms in current Lisp
systems do not encourage it. One conse-
quence of data-driven programming is
that procedures are often not characterized
by a single mnemonic name, but instead
by the position in the database where they
are located. However, many user-support-
ing programs in the INTERLISP system
which operate on procedures assume that
each procedure has an individual name
(an atom) which is used for storing addi-
tional information about the procedure.
This assumption is used in so many places
that it is probably too late to change it in
the present system.

One way of using data-driven program-
ming is described by Aiello [41].

Low-Level Program Generation

All programmers, in any programming
language, sometimes run into situations

DisPLAY 3.

(DEFINEQ
(NEXTWEEKDAY
[LAMBDA (DATE)
(FOR D__(NEXTDAY DATE) BY (NEXTDAY D)

DO (IF (AND (APPLY* (GETPROP (CAR D) 'OK-AS-WEEKDAY)

D)

(APPLY* (GETPROP (CADR D) 'OK-AS-WEEKDAY)

D))
THEN (RETURN DJ))
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DisPLAY 4.

(DEFINEQ

(OK-MONTH (M L) (PUTPROP M 'OK-AS-WEEKDAY

(FUNCTION (LAMBDA (DATE) (NOT (MEMB (CADDR DATE) L]

DisPLAY 5.

(DEFINEQ

(OK-MONTH (M L) (PUTPROP M 'OK-AS-WEEKDAY
(SUBST L ‘L '(LAMBDA (DATE) (NOT (MEMB (CADDR DATE)
(QUOTE L}

where they have to prepare nontrivial
amounts of program in a routine fashion.
Procedures and macros are well-known
devices for handling such situations. The
program/data equivalence in Lisp makes
possible another and more powerful
method to handle such situations, namely
the use of procedure generators.

Usually, the concept of a program-gen-
erating program is surrounded by a mys-
tique and a feeling that it is something
that may arrive in the distant future. This
is certainly appropriate with respect to
programs that generate a whole program
from its specifications. But a more prag-
matic approach to program generation is
evident in the Lisp community, namely
the approach where the programmer iden-
tifies regularities in the structure of the
program that he/she is writing or going to
write, and immediately writes a small
program generator that handles that reg-
ularity. Winograd mentions this technique
in [42].

Example. In the implementation of nextweekday
described in the previous example, we may wish to
generate the procedure definitions for some of the
months automatically. Suppose many months are
characterized by a number of fixed dates during the
month which are not acceptable weeks, i.e., their
OK-AS-WEEKDAY properties have the form

(LAMBDA (DATE) (NOT (MEMB (CADDR DATE)
.00

where . .. indicates a list of integers. We could
then define a procedure ok-month (m, l) where m is
the name of the month, and [ is the list of integers,
in either of the two ways, shown in Display 4 and
Display 5 respectively.

The first variant is the most elegant one, but as-
sumes that the operator function returns a closure
where the current value of ! is preserved. Such
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closures or “funarg-expressions” were defined in the
original Lisp 1.5, were ignored in some later imple-
mentations, but have gradually found their way
back into the language. The second variant con-
structs the appropriate definition for each case by
performing a substitution in a schema for the defi-
nition.

This procedure may then be called as, for exam-
ple,

(OK-MONTH ‘JAN (1))

assuming that New Year’s day is the only nonstan-
dard holiday in January.

Advising and Insertive Programming

When low-level program generation is per-
formed, one often wants to arrange mat-
ters so that several expressions or com-
mands (usually input by the user) will
make successive amendments to the defi-
nition of a procedure, for example so that
each expression adds one more branch to
a selectq (= case) statement. This is of
course easy if the definitions are so regular
that the program generator can correctly
determine the correct place in which to
make the amendment. This practice of
insertive programming is discussed and
illustrated in {21].

Example. In the data-driven OK-AS-WEEKDAY
procedures used in the previous example, every
such procedure will contain certain criteria for days
that are not allowed. If we standardize the form of
the procedures to be

(LAMBDA (DATE) (NOT(OR . . .. ... .. )

then it is easy to write a procedure holidayrule
(m,x) which takes a month or day-of-week m and
an expression x, where x is supposed to be the
criterion for a holiday, and which adds x to the OK-
AS-WEEKDAY property of m. The definition would
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(DEFINEQ
(HOLIDAYRULE (LAMBDA (M X) (PROG (D)
(SETQ D (GETPROP M ’'OK-AS-WEEKDAY))

DispLAY 6.

(COND [(NULL D) (PUTPROP M 'OK-AS-WEEKDAY
(SUBST X 'X '(LAMBDA (DATE) (NOT (OR X]

(T (NCONC1 (CADR (CADDR D)) X]

go as shown in Display 6. It can then be called as,
for example,

(HOLIDAYRULE 'JAN '(EQ (CADDR DATE) 1))

or (to declare the third Friday in September a
holiday):

(HOLIDAYRULE 'SEP
(AND (EQ (CAR DATE) 'FRI)
(BETWEEN 15 (CADDR DATE) 21)))

Here between is defined so that it is true here when
15 = caddr(date) <21. In this fashion, separate
holiday rules can be input independently, to gradu-
ally build up a procedure.

A similar although more complex facil-
ity is advising, which is meant to allow
the user to make changes to existing pro-
grams without knowing their exact struc-
ture. In the simplest case, the user-pro-
grammers are supposed to know the sys-
tem as a procedure-call structure, i.e.,
they know the names, intended purpose,
and procedure-call structure of the proce-
dures but these remain black boxes, and
the users have no knowledge of the “in-
side” of the procedures. The advise facility
in INTERLISP then allows the user to re-
route outgoing or incoming procedure calls
for a procedure, and to associate additional
(side) effects with them.

In practice, advising is implemented
through insertive programming, since ev-
ery advised procedure is wrapped into an
extra, outermost begin-end block (“PROG
expression”) whose structure is known to
the advising routine. Of course, this ma-
chinery is supposedly invisible to the user.

Example. We wish to “tell” the procedure nextday
in the demo application about the rule for February
29 during leap years and ordinary years. Assuming
that the NRDAYS property of FEB is 29, we can do
this by advising nextday to step to March 1 if its

proposed value is February 29, and the current year
is not a leap year. This is done in INTERLISP as:

(ADVISE 'NEXTDAY 'AFTER
"(IF (AND (EQ (CADR IVALUE) 'FEB)
(EQ (CADDR VALUE) 29)
(NOT (LEAPYEAR)))
THEN (SETQ IVALUE (LIST (CAR IVALUE)
'MAR 1]

Technically, the advising scheme is very
elegant. Jim Goodwin has suggested [43]
that (like data-driven procedures) it is an
example of a machine-code-level facility
that has been made available in a high-
level form: advising is high-level patching.
The crucial question about its usefulness
is whether the user’s actual request, the
thing that really is to be done, can be
translated into the right operation on the
procedure-call structure (or whatever
other model of the program the advising
package supports). This is partly a ques-
tion of how the program has been orga-
nized, and partly of how it has been docu-
mented.

In summary, the Lisp programming cul-
ture offers a variety of unorthodox pro-
gramming methods and program struc-
tures. Some, such as the structured
growth method of program development,
are really consequences of the interactiv-
ity and incrementality in the system. Oth-
ers, such as data-driven programming,
program generation, and the use of em-
bedded languages, are consequences of the
equivalence between programs and data,
which Lisp at present shares with only a
few other research-oriented languages.

6. SESSION SUPPORT

One of the significant improvements in
residential programming systems involves
the possibility of letting the system sup-
port the interactive session, for example
“remember” what the user has done be-
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fore, and enable him/her to redo or undo
those actions by convenient commands.
This line of research has been pioneered
by Teitelman in the INTERLISP system [44].
I shall only add here a few short notes on
some nontrivial issues that arise in this
context.

History — Structure or Text?

The INTERLISP system preserves the recent
session history, i.e., a sequence of input
expressions and corresponding output, in
internal (list-structure) form. Some simple
uses of this history are for scrolling and
for the REDO command, whereby the user
can reexecute a previously entered com-
mand, possibly after having edited it.

An alternative way of approaching the
same objective might be to use a display-
oriented editor in the terminal communi-
cation interface, as described in the section
on alternative editing methods above. In
addition to its previously described uses,
such an editor could also copy previous
input to a later place in the conversation
buffer, edit it, and send it as fresh input
to the programming system. The potential
advantage to the user would be that one
could manage with a smaller repertoire of
commands, since the ordinary editing
commands would also be sufficient for re-
doing and similar operations. On the other
hand, there is the disadvantage, particu-
larly for sophisticated users, that the pres-
ervation and use of history interfaces less
well with the programming system per se.

In choosing between these two ap-
proaches, one must also decide whether
one prefers to regard the session history
as a structure (in which case the INTERLISP
approach is better) or as a text file (in
which case the new approach would seem
more appropriate).

Why choose between structure history
and text history, why not have both? This
suggestion is likely to be resisted by pro-
gramming-language purists, who wish to
have a minimal number of orthogonal fea-
tures in a programming system, and to be
welcomed by systems engineers who wish
to give the user everything that can possi-
bly be of use. The only way to resolve that
issue is to define what operations are to
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be performed by the structure history and
the text history, respectively.

Cancellation of Features

One of the most impressive features in
the INTERLISP system is the DWIM (Do-
What-I-Mean) facility, which is invoked
when the basic system detects an error
and which attempts to guess what the
user might have intended. When this facil-
ity is presented to new users, it is not
uncommon for them to use it for a trivial
typing error that could easily be corrected
using the character-delete key. However,
the user relies on DWIM for the correction,
which at periods of peak computer load
may take considerable time. Moreover, a
user who does not know how the DWIM
facility works might be reluctant to hit an
interrupt key for fear of making things
even worse. For this reason, the actual
DWIM program has been set up so that
supposedly it can be safely interrupted at
any point. The information on how to
interrupt it is an essential part of the
instructions to the user.

Two general morals may be drawn from

this example:

1) When you provide users with luxuri-
ous features, always make sure that
they are able to, and know how to,
cancel them at times when they can-
not afford their use;

2) This affects decisions on the budget
for computer equipment. As com-
puter systems become more and more
heavily loaded, more of the advanced
features in interactive programming
systems are cancelled. If the intended
purpose of the research was to de-
velop and make experimental use of
those facilities, then the real produc-
tivity of the research decreases rap-
idly.

Program Changes

Many of the advanced features in residen-
tial programming systems become possible
because definitions of procedures can be
changed dynamically under program con-
trol, and many different parts of the sys-
tem will want to perform changes, tempor-
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arily or permanently, in the users’ proce-
dures. More often than not, the old defini-
tion has to be stored so that it can be
reinstated if the user so desires.

In this situation, the relationship be-
tween the different changes becomes pre-
carious. If the user first performs opera-
tion A, then performs operation B, and
then undoes A, should then the original
definition (before A was performed) be
reinstated, or should B be performed on it
also? There is no simple answer—what
would be better depends on the choice of
A and B. But in the existing INTERLISP
system, where each program-changing op-
eration has its own recovery mechanism,
there have been amusing examples of un-
intended and counter-intuitive results as
the different recovery operations inter-
acted with each other. Perhaps the conclu-
sion is that a uniform system for mainte-
nance of old versions and updates of pro-
cedures that can be used by all definition-
changing utilities should be introduced
early in the design of the system.

These examples of open issues in the
design of session-support systems show
that, although impressive systems already
exist, there is room for additional work —
not merely to extend or rewrite existing
software, but also to reconsider and ana-
lyze questions that involve principles.

7. POTENTIAL APPLICATIONS

As described in this paper, programming
in Lisp is characterized by the peculiar
architecture of the programming system
and the programming techniques made
possible by that architecture. At present,
Lisp is mostly used for two types of appli-
cations:

1) Experimental programming in artifi-
cial intelligence research, where pro-
grams are developed for the purpose
of better understanding certain com-
plex programming tasks;

2) Implementation of formula manipu-
lation systems.

I believe that the same technology

would also be useful for a number of other
applications, particularly:

® For pilot implementation of data proc-

essing applications. A pilot system
may be used to give the end user a
hands-on impression of possible facili-
ties in a proposed new data processing
system. The pilot implementation
does not need to run efficiently or
handle large volumes of data, but it
requires a programming language in
which it can be implemented quickly
and modified easily to accomodate
changes proposed by the end user
when he tries the system. The inter-
active character and the database fa-
cilities in Lisp systems meet these
requirements.

® For personal databases, i.e., for data-
bases which are used in an office-sys-
tem or word-processing environment,
and which are constructed and used
by one or a few individuals for their
personal use.

® In computer science research on pro-
gramming languages and databases.
Lisp used as a very-high-level imple-
mentation language may make it pos-
sible to experiment with proposed new
concepts in languages and database
systems, instead of just thinking
about them.

In all three cases, the suggestion is that
one should use a programming system
which incorporates the significant proper-
ties of Lisp systems, as discussed in this
paper. It is of course immaterial whether
one uses a dialect of Lisp itself or a newly
invented language.

CONCLUSION

This paper has given an overview of exist-
ing programming methodology in the Lisp
user’s environment, emphasizing methods
for interactive program development. The
major conclusions are:

1) The “residential” design of program-
ming systems, whereby all facilities for
the user are integrated into one system
with which the user communicates during
the entire interactive session, offers great
possibilities for user convenience. At the
same time, a number of basic user de-
mands may conflict with the attempt to
build such a residential system.
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2) The design of a residential interac-
tive programming system is interrelated
with the design of the surrounding run-
time environment in at least two impor-
tant respects: the role of the file system
(especially the requirement for a very
large number of very small files, and a
file directory which can serve as or com-
municate with a database for user-written
programs), and the proper place of text
editing and other terminal support in the
overall system architecture (inside the
programming system, or as a separate
module).

3) A residential interactive program-
ming system will need to contain a large
number of modules that support various
facilities. These modules interact in many
ways, which causes the design of the pro-
gramming system to be a very hard struc-
turing problem. Two modules have been
identified which tend to interact with al-
most everything else, namely the editor
and the surface-language analyzer (the
latter being optional).

4) The observed behavior of Lisp users
indicates that top-down programming can
be done not only using stepwise refine-
ment, but often in a better way through
what has been called here structured
growth, which is a relatively disciplined
way of changing one’s programs.

5) Several programming methods in a
Lisp environment can be summarized as
involving the use of superimposed lan-
guages, be they Arcor-like surface lan-
guages, very-high-level languages, or em-
bedded languages for very specialized pur-
poses. Of these, embedded languages are
believed to be the most viable.

6) A technique which is useful in sev-
eral ways is what we have called here
data-driven procedure calls, which resem-
bles indirect jumps in machine languages;
they are possible in Lisp but are incom-
pletely supported by higher-level facilities
in current Lisp systems. Nevertheless, the
technique is frequently used in practice
and has become accepted habit because of
its power.

The experience and practices of the Lisp
programming community may contribute
new and unorthodox input to the general
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discussion about programming systems
and programming methodology.
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