14

Some Observations on Conceptual
Programming

Erik Sandewall

Informatics Laboratory
Linkoeping University, Sweden

One fairly large LISP program is analyzed carefully with respect to data
structures, program structure, and implications on programming methodology.
The program does a fairly conventional data-base management job, and was
originally written for its practical purpose, rather than as a methodology
experiment. The analysis is performed in the framework of conceptual pro-
gramming, which says, e.g., that information about program structure and
about data structures (for example the information commonly found in de-
clarations) should be stored in the user-accessible data base of the program-
ming system, and be usable in multiple ways. The long-range goal is to enable
the programming system to ‘‘understand” the program, and to communicate
with the programmer on his natural conceptual level. The analysis of the
sample program results in suggestions for a number of programming methods,
for example to use a second-order declaration structure as the top-level struc-
ture of the program, and then associate pieces of code with entities in the
declarations, or structures formed from them. Another suggestion is to distin-
guish between an ‘‘execution” model and an “initialization” model of the
system. The former is basically a combined data-flow and procedure-call struc-
ture; the latter is an idealized “program” for the conduct of an interactive
session, plus a collection of inserts into or updates of that program.

INTRODUCTORY REMARKS

The work reported here consisted in a detailed analysis of an existing program

of non-trivial size, resulting in a number of suggestions for program structure and
program development methods. Since they are only based on observations in one
program, the suggestions have the status of hypotheses rather than proven facts,

and additional verification or falsification is desirable (and intended).
A study of this kind could probably not have been performed without a

certain “ideological” background. One cannot observe merely by looking; one
needs a conceptual framework in order to select what to look for, and to
interpret what one sees. In the present study, my framework was the long-range
ideal of computer-supported program development. I envisage a situation, at

least in the limit, where the primary representation of the computer program is

223

PROGRAMMING TOOLS FOR KNOWLEDGE-REPR' ; ‘kNTATION

as a structure in the computer. The user would only in exceptional cases see the
whole program, i.e., a dump of the whole structure. Usually he would build it up
piecewise, and inspect it piecewise by requesting that specific sections or projec-
tions of the structure be printed out. The programming system should “under-
stand” the program structure well enough that it can communicate with the user
about the program in a mature way, using the same conceptual level (although
not necessarily the language) that two programmers would use between them-

selves.
This ideal is sufficiently vague and remote that it should be considered as a

direction of movement, rather than a specific goal that one will reach and prove
that he has reached. I adopted it as an ideal for two reasons:

® It is the only possible way to make the computer support the program-
ming activity. There is a clear need for very-high-level programming
systems, which help the programmer (or a team of programmers) keep
track of large and complex programs. Winograd (Winograd, 1974) has
successfully argued this point. At the same time, since a program is a
richly connected structure of goals, decisions, conventions, solutions to
sub-problems, and compromises, one cannot expect a programming
system to understand one part of that structure if it does not have access
to the other part. The system must have a full understanding of the
program, or it will not have any useful understanding of it at all. Also, it
seems to me that the only possible way of entering that structure into
the computer is either to let the computer generate it itself (i.e., fully
autonomous automatic programming) or to let the programming system
participate in the program development under the guidance of the pro-
grammer. The first alternative is very remote, and the latter alternative is
somewhat more realistic. The second alternative might also be a good
subgoal for the first one, although that is not part of my motivation.

® The second reason is that, by developing an appropriate structure for the
representation of a program in the above mentioned type of program-
ming system, one is forced to make a precise analysis of structures which
would otherwise just be intuitively understood. In designing such a “con-
ceptual program structure,” one is encouraged to ignore all the many
trivial aspects of textual representations and syntactic sugaring, and
focus on what are the essential structures in programs.

The term conceptual programming is chosen for the proposed programming
style, where the program is represented as a “conceptual structure” in the pro-
gramming system with which the programmer interacts for program develop-
ment. This “ideal” programming style is not taken entirely out of the blue. First,
the LISP programming language (and its cousin, the Vienna definition language)
may be viewed as first steps towards that ideal. More important, several wide-
spread although previously undocumented practices of LISP programming take
additional steps in the same direction. Similar development can and does take

224

SANDEWALL

place in the framework of other languages, although more slowly and with much
greater difficulty.

The conceptual programming ideal has been used as the framework for the
program analysis that is reported here. Conversely, the present case analysis
resulted in concrete suggestions for program organization and programming
methodology, which make the conceptual programming idea(l) more specific in
at least some ways.The sample program, written by Dave McDonald at MIT, uses
those current programming practices which I view as steps in the direction of
conceptual programming. The study resulted in some results regarding the extent
and limitations of present practices, but more important, it generated a number
of concrete suggestions about how these methods could be extended and
improved.

This work was done in the context of the programming language LISP, a
language that is used intensively among some groups of researchers, but rejected
or shrugged off by many others. I believe that this is largely because all available
textbooks on LISP are bad, and describe the language from an uninteresting and
irrelevant point of view. Part I tries to make up for that by presenting what in
my view are the significant properties of modern LISP system, for the benefit of
readers who are not immersed in the LISP culture. Part Il describes and discusses
the inspiration of this work, that is it describes the current programming prac-
tices, and extrapolates to the long-range ideal. Part III reports on the detailed
study of McDonald’s program, and is the main section of the paper. Part IV is
short, and attempts to summarize the results as a list of specific findings.

PART |

LISP AS A BASIS FOR CONCEPTUAL PROGRAMMING

LISP systems have certain properties which make them suitable as an environ-
ment for conceptual programming, which explains why the conceptual-
programming trend has developed in the LISP-using community. Other languages
such as SNOBOL or APL have the same properties and could presumably also be
used for conceptual programming, Languages such as PL/1, Pascal, or Simula 67
lack the combination of those properties, and could not be used except after
non-trivial modification. The purpose of the present section is to describe those
properties which are essential for conceptual programming,

I think of LISP as determined by three basic design decisions. The first two
are:

(a) for ease of debugging, the system shall be incremental, meaning that
the programming system performs a read-evaluate-print loop, where
in each cycle the user enters an expression, has it evaluated, and sees
the result. The expressions may serve to define a procedure, store
something in the data base, evaluate an expression in order to test a
procedure, or edit a procedure or the data base. The user communi-

225

PROGRAMMING TOOLS FOR KNOWLEDGE-REPREE TATION

cates all the time with one single programming system, and does not
have to switch between “edit”, “compile”, and “execute” modes.

(b) because of the intended applications, the language shall contain facil-
ities for handling data structures and maintaining a data base.

Neither of these criteria is unique: APL and many implementations of BASIC
satisfy the first criterium, and PL/1, Algol 68, Pascal, etc. satisfy the second
criterium. However, the combination of these two purposes is not trivial to
achieve. The reason is that the read-evaluate-print loop assumes that one can
type in arguments of procedures to the programming system, and obtain their
values typed out on the console. In order to also satisfy the second requirement
input and output of data structures must then be defined—which it is not, in
conventional programming languages.

In order to account for input and output, LISP encourages a different meth-
od of data structuring than record-oriented languages. Consider the traditional
example of family relationships: suppose one wants to design a data base that
maintains information about persons, and in particular, information about par-
ent-child and brother-sister relationships. In record-oriented languages, the fol-
lowing structure is natural: each person is represented as a record, with pointers
to other records, for example a “father” pointer and a “mother” pointer. Also,
the circumstance that one person may have several children is handled by letting
each person point to its “oldest child”, and also to let each person (namely each
child) point to its “next younger sibling”. This is illustrated in Figure 1.

oldest
child

?

next
father sibling

SANDEWALL

In LISP, one is encouraged to use a built-in data type called an atom, i.e.,a
special kind of record which stands in a one-to-one relation with a character
string. Thus each time the standard read routine encounters that character string,
the same record is retrieved. In the present example, if JOHN’s children are
called BOB, DICK and MARY, and ignoring the problem that several persons
may have the same name, one would have one atom for each of these names.
Furthermore, the system contains two primitive operations, which we shall here
call get and put, and which serve the following purposes: put is called with three
arguments, and stores a property assignment in the data base, for example

put(BOB,FATHER,JOHN)

with the obvious intended meaning (John is Bob’s father). Similarly, the func-
tion get retrieves a property from the data base, for example

get(BOB,FATHER)

which should return the value JOHN (i.e., the atom = the record which stands in
a one-to-one relationship with the character string “JOHN").

So far there is no,conceptual difference from the structure in Figure 1. The
difference comes when handling the set of children of a person, where the
LISP-oriented structure is to form the sequence of the children,

<BOB, DICK, MARY>
and to assign that sequence as a property:

put(JOHN,CHILDREN,<BOB,DICK MARY>)

This sequence has traditionally been implemented using binary pairs of pointers,
as shown in Figure 2. (More storage-efficient representations are presently being
developed.) Thus the conventional record structure encourages one to represent
sets and sequences of objects by threading through them, giving the structure of
shark’s teeth on a necklace, whereas the LISP-oriented structure looks like a
comb with pointers down to the objects involved.

JOHN

FIG. 1 ?

226

CHILDREN

" @ *’ ®

Y
@

BOB DICK MARY

FIG. 2

227

I

PROGRAMMING TOOLS FOR KNOWLEDGE-REPRESE * ‘ATION

It is not my purpose here to argue for one or the other of these representation
models; they both have their merits and demerits. Let me point out, however,
that it is not trivial to use the LISP data structure in conventional record-
oriented languages. The structure of pairs of pointers can of course easily be
implemented, and one can also write a program which converts a character-string
to a corresponding atom, or uniquized record, by going through a symbol-table.
However, that only accounts for atoms that appear in input data to the system,
but not for atoms that appear as constants in the program itself. In many cases it
is important to be able to use the same atom in the program as a constant, and in
input data.t

The third design consideration for LISP is that there should be a standard
convention for representing programs as data structures in the language, in order
to facilitate generation and manipulation of programs.

The appropriate representation for a program is of course that of a tree. Thus
the expression a + b x ¢ + d is viewed as the tree in Figure 3:

+

FIG. 3
which is encoded as the following data structure in Figure 4.

The boxes in Figure 4 that contain character strings are realized as atoms in
the executing programming system, and in general, all atomic components of a
program (procedure names, entities in declarations, variables, etc.) are repre-
sented as atoms. The atoms PLUS and TIMES stand of course for + and x.

For purposes of program analysis and generation, the data structure repre-
sentation of the program is more convenient than the conventional represent-
ation as a character string, since the components of the programs (identifiers,
and sub-expressions on different levels) have already been extracted, and are
available as entities. The internal data-structure representation of the program is
similar to an intermediate representation in a conventional compiler.

This program representation goes well with the first two design decisions.
Since procedures are defined and edited by evaluating expressions in the lan-

T The situation is analogous to the handling of numbers in algebraic programming lan-
guages. A Fortran system allows input data to contain characters strings such as “4.65”, and
converts such a string to the internal representation in the computer, usually as the floating-
point contents of a cell. It also allows such expressions to appear in the program, and if so,
internizes them at compile time and saves them in such a fashion that they are accessible
when the program is executed. An analogous mechanism for atoms is necessary in order to
incorporate them into a compilation-oriented programming system.

228

7N

SANDEWALL
[[> Ps > o—| >
y Y y
PLUS A D

1r L > ¢ ° > >

y Y Y

TIMES ‘ B ’ C

FIG. 4

guage, it follows that these operations do not have fo be performed on the top
level of interaction with the system; they may also be performed during the
execution of a program. Experienced LISP programmers very often use that
possibility for low-key program generation. Also, since all entities in the program
are atoms, it becomes possible to associate information with program entities,
for example to store descriptions of the data structure (the declarations in the
program) in the data base. It becomes possible to write programs that inspect
their own declarations, and each user can store arbitarary information (for
example, for documentation purposes) with the declarative information.

The question of input of programs in LISP is often misunderstood, and shall
therefore be discussed here. The data-structure representation of the program is
the preferred internal representation, meaning that the interpreter and the com-
piler are defined to operate on it. There is, however, no commitment as to how
the structure is to be entered. One possibility is to have an Algol-like language
which is translated to that structure, and which may then have declarations,
infix operators, for statements, and so forth. Translators for several such input
languages have been developed. However, since input and output are defined for
arbitrary data structures, one may also use that facility for entering and printing
out programs. Using standard data-structure 1/0O, the above expression would be
represented on paper as

<PLUS A <TIMES B C> D>

Many users prefer that notation, since it provides a more direct contact with the
internal representation of the program, but the question of external program

229

PROGRAMMING TOOLS FOR KNOWLEDGE-REPR. NTATION

notation is a matter of personal taste, not basic system design.

The two data types of atoms and binary pairs of pointers, are basic for the
language, but they are not the only allowed types. The two basic types have a
special status since the internal representation of programs uses them, and since
input/output for them is predefined, but modern LISP systems such as INTER-
LISP (Teitelman, 1974) and LISP derivatives such as EPL (Wegbreit, 1972)
contain facilities which enable the programmer to use other data types as well,
and also to define rules for input, output, and évaluation of his own data types.

The basic operations get and put that were described above can easily be
generalized. In essence, put associates an arbitrary expression with a pair of
atoms, for example associates JOHN with the bituple <BOB, FATHER>, It is
trivial to write a more general function put* which associates expressions with
arbitrary nested tuples, and not just with pairs of atoms. Modern LISP systems
contain a number of such functions, implemented using either a tree or a hashing
technique (or a combination of those) for storage of the associations.

The put operation first appears to be analogous to the assignment of terms in
arecord, when a conventional record structure is used. There are however several
important differences. First, both the first and the second argument of pur are
arbitrary atoms, and the program may variablize with respect to either of them,
or both, In a conventional language, if one has an assignment statement of the
form

x.father := readstring();

then x is a variable (and may be a whole expression), but father is a constant. In
the corresponding situation using the put function, one may have a variable that
happens to be bound to father, or an expression that evaluates to it, or a loop of
the type

for p in list-of-property-names do
begin
print(p);
X.p := readvalue()
end

Another difference is that the put operation is dynamic, i.e., the basic pro-
gramming system does not maintain declarations that specify which properties
are allowed for which objects. This is significant in an incremental environment.
Suppose one is interacting with the programming system, and he has loaded a
large program, and a data base which is being used when testing the program. He
now decides to add one more property to a type of objects, With a LISP-style
put function, he just goes ahead and stores those properties. If instead the
properties had been frozen by declarations, he would have to:

. dump the data base (since the data base has probably been input
interactively and incrementally during the testing of the program);

230

SANDEWALL

L edit the program;
. recompile the program;
. load the data base.

The same advantage is evident if another program performs the change of struc-
ture.

Thus the basic programming system does not maintain or use declarations,
but at the same time, the properties of the system encourage the development of
higher-level systems that use declarations. In the above example with family
relationships, one might store in the data base

put(JOHN, TYPE,PERSON)
put(PERSON PROPERTIES, <FATHER MOTHER CHILDREN>)

indicating that JOHN has type PERSON, and which properties are expected for
that type. One may also store

put(FATHER,STRUCTURE,PERSON)
put(CHILDREN,STRUCTURE, <SEQUENCE PERSON>)

to specify the desired structures of such properties. Even in these very simple
examples, one makes use of the fact that program entitites, such as type names
and property names, can also be used as data. The fact that programs are repre-
sented as data structures facilitate the task of writing programs that check a
program’s consistency with its declarations. (Nordstrém, forthcoming, is doing
that with Simula 67 as the input language).

More fancy declaration systems are possible and worthwhile, such as declar-
ations which specify how other declarations are stored. A major theme of the
present paper is how such declarative structures should be developed.

PART I

CONDENSED IDEAS ABOUT CONCEPTUAL PROGRAMMING

The ideas of coneptual programming are very much “in the air” in the artifi-
cial intelligence community. This section represents an attempt to ‘“condense”
some of those ideas, in order to set the stage for the report on actual work in the
next section. The methods and ideas that are described here largely represent my
own experience from working with programs such as PCDB (Sandewall,
1971,1973) and REDFUN (Beckman, ef a,, 1975), but that experience closely
parallels the ideas and experience of many others. It is hoped that many readers
will experience a sense of déjir vue when reading this section.

Data-driven programs

A classical model of a program is that it is a collection of procedures which
call each other. Each procedure has a name, and another procedure can call it by
explicitly mentioning its name. The calling structure is statically available, so for

231

PROGRAMMING TOOLS FOR KNOWLEDGE-REPRE: *. 'TATION

example it is possible to write programs which take a set of procedures and

produce a graphical representation of the calling structure.

In data-driven programs, on the other hand, the procedure calls are indirect
via the data base. One (“executive’) procedure or program accepts input data,
either from user input or as arguments, retrieves procedures which have been
associated in the data base with data items that appeared in input, and executes
those procedures. This indirect calling structure is illustrated in Figure 5.

executive

0

/ \ data base with

embedded

procedures

FIG. 5

There is an abundance of examples of this technique. The PCDB system
(Sandewall, 1971,1973), maintains a data base of assertions in predicate calculus,
and assumes that each relation symbol is associated with a storage procedure (for
storing the relationship in the data base), a retrieval procedure (for looking it
up), a search procedure (which uses deduction to look it up), procedures for
answering open questions, etc. In order to assert a relationship such as

COMPONENTS(finger,hand,5)
to the system, one calls a general-purpose procedure store with the arguments
store(COMPONENTS, FINGER, HAND, 5)

where store(r,x,y . . .) is defined to look up get(r,STOREFN) and execute it with
(x,y ...) as its arument list. Thus sfore makes an indirect call, or dispatches to
procedures associated with relation names.

Programs that operate on LISP programs provide several examples of data-
driven-ness. The REDFUN program (Beckman, et al, 1975) performs partial
evaluation and other simplification of LISP procedure definitions. It allows that
procedure names in the program that is to be simplified, may be associated with
specialized procedures which know how to simplify expressions with that proce-
dure as its leading operand. Thus for a trivial example, the simplification proce-
dure for PLUS would embed the knowledge that a + 0 = a. Prettyprinting pro-
grams (i.e., programs which produce nicely indented presentations of programs)

232

1 . SANDEWALL

such as the one in MACLISP (Moon, 1974) are data-driven with respect to
procedure names in a similar fashion. Risch (Risch, 1975) discusses a number of
program-manipulating programs that dispatch on procedure names, and proposes
a way of systematizing their conventions so that they can dispatch to the same
set of procedures.

In the continued discussion we shall repeatedly use the same example, namely
a program system written by Dave McDonald at the M.L.T. Artificial Intelligence
Laboratory. The program maintains a data base of document descriptions, such
as author, title, year of publication, and so on for several types of documents
(books, articles in journals, internal research memoranda, etc.). The major pur-
pose of the system is to take a list of document identifiers, and to print out the
list of the author, title, etc. of those documents, in a format which is suitable for
the list of references at the end of an intended new paper. In particular, the
printout program can be instructed to conform with any of the idiosyncratic sets
of rules that different journals impose on authors (first name of author before or
after last name; names of journals must or must not be abbreviated; and so on).
The system is called the bibliography system.

The system maintains an active data base of document descriptions, as a data
structure in the LISP system. The printout program draws on that data base in
preparing the printout. The system also includes a number of other programs: a
data entry program that prompts the user for contributions to the data base, a
saving program that transfers the active data base to a “passive” representation
as a text file, and a re-creation program that reloads the active data base from
one or more such text files. Finally, the data entry program continuously adds
the user’s input to another text file as a safeguard against the eventuality of
system breakdown, and a recovery program reloads the text file in that event.

Thus the topmost structure of the system is that there are a number of “data
pools”, and a number of programs which transfer data between these data pools.
(That is of course a third way of program-to-program communication, besides
direct calls and data-driven calls). The data flow structure is illustrated in Figure
6.

In the active data base, each document is represented as an atom, with associ-
ated properties for author, title, etc. The atom which serves as document i.d.
actually looks like B135, i.e., it is essentially a number. Also, each document id
has a property which specifies its exact type, which can be either of (presently)
six atoms such as BOOK, JOURNAL-ARTICLE, REPORT, etc. Finally, the type
name is associated with information as to what properties objects of that type
can have: all documents have an AUTHOR and a TITLE property, but only
articles in journals and collection volumes have an associated page number.

The major programs in the bibliography system are organized approximately

+ as follows: on the top level there is a loop over a number of document descrip-

tions. In each cycle of the loop, the program determines the type of the docu-
ment, by prompting the user (in the case of the data entry program), by looking
up its TYPE property, or by having it available in the computational context. It
then makes a loop over the names of properties that objects of that type can

233

PROGRAMMING TOOLS FOR KNOWLEDGE-REPRESEN "' :ION

backup | recover

data active

—> entry data I printout —3
base

save re-create

passive
data
base

FIG. 6

have, and for each property-name, calls a procedure which is associated with it.
Thus a property-name such as AUTHOR is associated with one READFN for
prompting the user about that property, one PRINTFN for printing it out, and
so on.

I have here idealized the structure for the purpose of simplicity. In actual
fact, the *“procedure” is often a structure which contains both a procedure name
and a number of flags or parameters which have a special significance in the
performance of the task. Also, not all programs proceed through the type name
to get to the property names: it is sometimes possible to go directly from the
document name to the set of properties that it has, make a loop over the existing
properties, and call the appropriate procedure for each of them. Such variations
to the theme will be further discussed in Part III of this paper, but they indicate
that there is a lot of freedom in how data-drivenness is implemented. Data-
driven-ness is a style of programming, not one primitive operation (although
certain primitive facilities are necessary for doing it). The data-driving or dis-
patching mechanism is very similar to indirect addressing in machine language.
The case construction in higher-level languages serves some of the same purpose,
but the dispatching mechanism has the advantage that additional cases can be
added dynamically during an interactive session with the programming system,
or by another program.

Just as the LISP function get can be generalized from the case where a pair of
atoms is associated with an expression, to the case where the argument is an
arbitrary atom or nested tuple, so also the data-driven procedures can be associ-
ated with arbitrary expressions, and not just pairs such as <AUTHOR,
READFN>,

234

SANDEWALL

The method of data-driven programs is a sound programming practice for a
number of reasons. Most of them have been discussed in a previous paper
(Sandewall, 1975), but I shall shortly reiterate them here.

Sound naming. Conventional procedures are given names which are “mne-
monic” in the sense that when one sees the name, he may get some feeling for
what the procedure does. The reverse is however usually not true: if one looks
for a procedure that does a certain thing, he is probably not able to guess its
exact name. Data-driven procedures are characterized by expressions which are
combinations of two or more “names”, for example the just discussed
<AUTHOR,READFN>. Given some conventions which hold throughout the
user’s program, such a combination can uniquely specify the purpose of the
procedure.

The following example illustrates the point. A few years ago, | wrote a
semantic-data-base program, which performs deductive storage and retrieval of
typical naturallanguage expressions (kernel sentences, property assignments,
time and space information, etc.) in a data base. The program was data-driven
and organized around a number of predicate-calculus relations and functions,
about 30 altogether. It used the PCDB structure described above, so for each
relation and function, there were a number of procedures for storage of the
relationship in the data base, retrieval if the relationship is explicitly stored,
retrieval by deduction for open and closed questions, etc. There were altogether
about 150 procedures with an almost arbitrary calling structure—one procedure
called several others, and there was no visible clustering in the calling structure.

Normally a collection of 150 arbitrary procedures would be fairly difficult to
keep track of and update. In this case however, each procedure was charac-
terized by its relation name, its purpose (storage, retrieval, etc.), and in the case
of open questions, which argument position(s) were being asked for. As a result
it is trivial to find the procedure which performs a given task, and when the
program is to be modified there is rarely any question as to where the change is
to go, and whether the change may obstruct other parts of the program. And
most important, this is achieved without separate documentation of all those
procedures—one concise description of the naming conventions is sufficient.
Another reason for the clarity of the organization in that program, is that the
underlying predicate-calculus representation provided a structure around which
the program could be built. One may view it as a relatively problem-oriented
description of the task (more problem-oriented than the actual program, that is),
and pieces of program were then associated with items in the task description,
namely relation and function names.

If the only purpose is to assign structured procedure names, then that may of
course also be achieved by “hyphenated” names. Thus the procedure which for a
given x determines the y for which SUBPART(x,y) holds, could be called
SUBPART_SEARCH_2(x). But it is preferable to let the components of the
name be separate entities, so that one can associate information with each con-
stituent (for example with relation names), and also so that driving procedures

235

PROGRAMMING TOOLS FOR KNOWLEDGE-REPRESf. _ ‘ATION

can keep one part constant and let the other be variable. This is used in the
aforementioned definition of store as

store(r,x,y . . .) = get(r,STOREFN)(x,y, . . .)
and of course in many cases in the bibliography system.

Provides an extensible input language. When a program is data-driven using
input from the user, the name of each data-driven procedure uses terms which
appear in the input language. Thus the agreement between the terminology of
the application and the naming in the program, is maximized. This is a desirable
practice just for the purpose of manual program maintenance, but it offers the
additional possibility of associating both a description of the task environment,
and the program for performing a part of that task, with the same atom or
“node” in the data base, which makes it easier to check them against each other,
or to generate the program from the description. It also makes it maximally easy
to extend the input language: new terms are added by adding to the data base a
procedure which accounts for that term (of course within the limits and the
framework of the executive level of the data-driven program).

Embedded, specialized programming languages. Interpreters, which inspect a
program and execute procedures associated with operators in the language, are a
special case of dispatching programs. It is common practice in LISP to set up
specialized “languages” for specific purposes. For example, the INTERLISP
system (Teitelman, 1974) enables the user to choose names for groups of pro-
cedures, global variables, and other global data that constitute a module, and
which are to be printed out together as a text file. Each “file name” (module
name) is then associated with a data structure which specifies how to print the
file, for example which procedures shall go on it. In looking at such examples,
one finds a spectrum from mere sets of parameters, to expressions in full-fledged
programming languages, and the distinction is not particularly interesting. The
point is that in order to keep such specialized programming languages small and
simple, one wants to be able to call back to the host programming system from
them, i.e., to reference procedures or code in the host language from the special-
ized language. Thus the specialized language can rely on the host system for the
assortment of facilities that are always needed, such as file handling and inter-
action. Embedded languages in this sense seem as the best way to achieve the
goal of “extensible programming languages”, i.e., to enable each user to tailor
the system to fit his needs.

The interpreters that implement such languages must make data-driven proce-
dure calls. A number of programming-language mechanisms which have been
proposed in recent years, such as pattern-directed invocation and demons, also
rely for their implementation on the method of data-driven programs. Maybe the
relative success of such systems is because they made the benefits of data-driven
programming available to people who would otherwise not have used it. But it
must be better to encourage the user to use the general method, than just
provide him with specialized packages for a few operations.

236

L SANDEWALL

Advising

The following practice is often used by LISP programmers, but may be less
obvious to the user of another language. Suppose one wants to organize his
program as a set of rules, each of which contains at least a criterium for when it
is to be applied, and what one is to do then. Suppose in particular that the
criterium for application can be characterized as a piece of data, for example a
pattern. One wants to be able to associate several procedures with the same
triggering datum, or invocation condition. Therefore, one lets the system create
a program skeleton which is the default assignment to each triggering datum, and
which may be for example an empty begin - end block (orin LISP terms, progn
form). When the user enters a rule, usually during his interaction with the
system, he uses a procedure which inserts the body of the rule in the appropriate
place in that structure. In general, the skeleton provides the “glue” or the
control structure which keeps the rules together. Thus several rules that trigger
from the same datum can be entered at different times, and will be gradually
assembled into a procedure.

Another advantage (besides the incrementality) is that the structure of the
system as viewed by the user, may be different from the structure as viewed by
the executing programming system. Several rules that trigger off the same datum
must be kept together during execution, for obvious reasons, but when the user
works with his program = set of rules, he may want to group them differently.
Advising enables him to do exactly that.

Insertive programming

Both data-driven programming and advising serve the fundamental purpose of
modularity: the program is split up into modules which are well named, which
can be located in logically appropriate places, and whose interrelationships with
their execution environment are well defined and understood. If the modules
satisfy these requirements and if they are sufficiently small, such as one or few
pages, then one does not have to be much concerned about their insides. Any
competent programmer can go into such a small independent program, under-
stand it, and modify it to his needs.

But it may not always be possible to reduce the problem to such small
modules while retaining control of the relationships between modules, which
raises the problem of program structure within a module, in order to allow larger
modules. An obvious candidate is then the hierarchical program structure, as
argued for example by (Dahl, 1972, p. 176 ff).1 have some reservations about
organizing an entire program system in a uniformly hierarchical fashion (for
example, when every level is a sequence of “steps” which are decomposed as the
next lower level), but it is clear that a uniform hierarchy in that sense is some-
times a powerful way of organizing a program.

The purpose of this section is to describe an extended program model which I
shall call insertive programs (as compared to hierarchical programs), and which
may be viewed as the generalization of advising to operate in the context of a

237

PROGRAMMING TOOLS FOR KNOWLEDGE-REPRE, ,,"TAT!ON

hierarchical program. Insertive programs can best be introduced by means of the
programming method that goes with them. This is natural since the hierarchical
program structure is also associated with programming methods; they can be
composed using a top-down method (successive decomposition) or a bottom-up
method (successive agglomeration). Wirth (Wirth, 1973, p. 126), says about this.
“In practice, the development of a program can never be performed either in a
strictly top-down or a pure-bottom-up direction. In general, however, the top-
down approach is dominant, when a new algorithm is conceived. . .”” But if one
studies programs which are developed in this fashion, there appears to be yet
another operation, which I shall call amendment, where one modifies code
within one level of the hierarchy.

Consider the following example: we are designing a program that does a
certain numerical computation repeatedly for a certain set of values. We have
therefore decided to make a loop whose body performs the computation for one
value. At the present level of decomposition, we have specified “do the computa-
tion” as one operation in the loop, but we have not written out the details of
that computation.

We now decide to handle an additional requirement on the program, namely
that the sum of the results from all the computations is to be obtained. We
therefore decide on a variable to hold the accumulated sum, we declare it at the
beginning of the program or block, we initialize it to zero before the loop,
update it within the loop, and finally use the sum (for example print it out, or
send it to the next computation), after the end of the loop. All of these are of
course abstract steps, which may have to be further decomposed. These changes
in the program to achieve one single goal, together constitute one amendment.

Other examples of alternating decomposition and amendment (in this sense)
are easily found. For example, example 15.2 in Wirth’s Systematic Programming
(p. 133) combines these two operations. The shift from version 3 to version 4 is
one example of amendment rather than decomposition.

The purpose of amendments is not to correct errors that have been commit-
ted earlier in the design process, but instead to satisfy one additional require-
ment on the program (as in the summation example), or to improve the effi-
ciency of the program (as in the quoted example by Wirth). Each amendment is
conceptually one single thing that one wants to do, but it may result in changes
in several different places in the program. It is desirable that amendments are
done at the “right” time in the decomposition process: if they are attempted too
early, it may be impossible to do them, or one is tempted to put the inserts in
the wrong places; if they are attempted too late, it may be hard to see where the
inserts are best located.

Consider now the obvious environment for this programming process, where
the programmer sits at a console and specifies first the top-level structure, and
then the successive decompositions and amendments to the programming sys-
tem. The simplest implementation is to consider this as a case of text editing,
and actually perform the substitutions during decomposition, and the inserts

238

SANDEWALL

during amendments. In this case the history of the program development is lost.
There are however advantages to the alternative scheme where the system retains
the development history, i.e., during decomposition it retains both the name of
each step in the algorithm, and its decomposition; and when one amendment
causes several inserts into the program, it retains the amendment as a separate
entity, with pointers between it and the places in the program where the inserts
are to go.

In the ideal decomposition case, where several consecutive steps in the algo-
rithm are decomposed independently and in arbitrary order, this scheme allows
one to do each decomposition in the textual framework of the surrounding
higher-level steps, but without the tedious details of the decompositions of other
steps on the same level. Also, this scheme allows printouts or other presentations
of the algorithm where different branches in the hierarchy are represented to
different depth.

In the simple amendment case (without regard to decomposition) one advan-
tage with this scheme is for modification. If we later want to remove an amend-
ment in the program, all the data that pertain to that amendment are referenced
from one single place. Another advantage is for presentation. Suppose a program
has been developed in this fashion, and there are a considerable number of
inserts into the skeleton. It then becomes possible to just print out the skeleton
and one or two sets of inserts, in order to focus one’s attention on them.

A further advantage is for defaulting. If we have a “node” or conceptual
entity in the system for this summation operation, then that node should clearly
contain a reference to the general concept of summation. The general concept
may then provide default information about which inserts are necessary, and
what their form is likely to be—for example, that the summation variable is
usually initialized to zero.

Finally, for cases of combined decomposition and amendment, this scheme
allows one to perform the amendment on the appropriate decomposition level of
the program, so one does not have to see the lower levels of decomposition that
may be irrelevant to the amendment.

The essence of the argument is that it is sometimes useful to consider a
program as a combination of a “skeleton” which has been obtained by successive
decomposition, and a set of “amendments”. Each amendment is thought about
by the user as “one thing the program has to do for the user” or “one trick done
by the program”, but from the point of view of the actual program, an amend-
ment is a set of inserts into the skeleton, each insert being a statement or “step”
in the final program. We use the term insertive program for a program with that
structure.

Unlike data-driven programming and advising, the proposed method of inser-
tive programming does not seem to be in current use. It is also not trivial to start
experimenting with it, since it is hard to administrate an insertive program
without the support of a suitable programming system. By consequence, it is
also hard to evaluate the method except by asserting its intuitive appeal. But the

239

PROGRAMMING TOOLS FOR KNOWLEDGE-REPR’ HTATION

method is “in the air” in the sense that some current work on automatic pro-
gramming (see e.g., Rich and Shrobe, 1975) analyze a user-written program and
extract this kind of structure. The proposal here represents a change of approach
since I think the skeleton/insert structure can best be obtained as a side-effect of
interaction with the user, but the internal representation may be partly similar in
both cases.

The idea to “factor out” amendments and represent them outside the main
program structure, rather than immerse them in the program, immediately gener-
alizes to a number of other situations. A trivial example is for declarations,
which should be associated with a block as an entity, and not be thought of as
textually located at the beginning of the block.

Data flow between statements. Still another, and less trivial candidate for
factoring-out is for data flow. Consider again an example from the bibliography
system. When the data entry program prompts a user for the description of a
document, it performs basically the following operations:

. generate an internal name for the document (a “gensym’ atom)

L] prompt the user for the properties of that document (which involves
a loop over its desired properties)

L] perform cross-referencing (involving inversion of some of the prop-
erties, i.e., the creation of back-pointers from the property to the
document name, and also some other construction of new proper-
ties)

L save the description of the document on the back-up file

The most natural description of the successive steps have that form, saying
“do A, and do B, and do C,...”. When the steps are implemented in the
program, one important thing has to be added, namely provisions for data flow
between the steps. In the present program, the atom that is generated in the first
step is provided as an argument to the following steps. The second step attaches
properties to that atom, and the third and fourth step use those properties.

This data flow can be realized as a program in several different ways. One
method is

v := generate__name()

prompt(v)
cross_index(v)
save_backup(v)

Another method, which assumes that the middle two procedures return their
argument as their value, is

save_backup(cross_index(prompt(generate_name())))

In more complex cases one may want to let one procedure send several values
to one or more other procedures, which must be accomplished by packing

240

SANDEWALL

several values into a list, or by assigning some or all of them to relatively global
variables. Different methods have one thing in common: they clobber up the
nice and understandable structure that one had before. Therefore it is here again
natural to factor out the data-flow information {rom the program itself, and
specify it in a separate place. At least in routine cases, the programming system
should be able to take the responsibility for choosing the appropriate realization
of the flow in terms of procedure calls, auxiliary variables, and so. on.

The two program fragments above contain only an incomplete description of
the real data flow that takes place, since they do not explain that certain prop-
erties are assigned (i.e., facts are stored in the data base) in one statement, and
accessed in later statements. If the data flow is anyway explicitly represented by
statements outside the program, then it would be desirable to describe such data
flow via the data base as well (at least) for the purpose of documentation.

Terry Winograd has suggested one more reason for separate specification of
data flow (in a private discussion): many common algorithms potentially provide
several outputs, but often only some of them are needed. An algorithm to
compute the standard deviation may also provide the mean. An iterative compu-
tation may return both a result and an estimate of its error. A hashing algorithm
may return both the desired result, and an indication that it is time to extend
the hash table. The integer “divide” operation returns both a remainder and a
quotient. In such cases, one would like to write a general call to the algorithm,
and to specify through separate data flow statements which of the outputs are
desired, and where they are to be sent.

Direction: conceptual program structure

The original view of a program (for example in machine language) is a coher-
ent document or text whose structure directly reflects the order in which it is
executed. Declarations and procedures relax that structure. The methods and
ideas described here continue the trend towards the distintegration of that pro-
gram structure. In data-driven programs, pieces of code are associated with data
items that may be part of the description of the data structure (type names and
property names in the bibliography system), or of a formalized description of
the problem (the PCDB example). In advising, the program is organized as a
number of modules which the user may group in any way he pleases. In the
proposed insertive programs, major parts of the program body are primarily
attached to task-oriented or data-oriented entities,

The logical extension of this trend has been characterized by Charles Rich at
M.LT. as a “raisin-in-the-cake” system. The executable program consists of a
number of fragments (the raisins) which are embedded in a structure of declar-
ative or problem-descriptive information (the cake). A part of the system’s

~knowledge is represented through the code in the “raisins”, but a considerable

part is also represented as the “cake”, the threads that lead to a piece of code
and cause the system to execute it at appropriate times.

Terry Winograd (Winograd, 1974), in the fifth of his “lectures on artificial
intelligence™, describes a similar ideal, and uses the term conceptual program-

241

PROGRAMMING TOOLS FOR KNOWLEDGE-REPRF. ' :- 'TATION

ming. This is a well chosen term: it suggests both that the program is organized
around concepts used in a model of the application, and that pieces of coherent
code are represented in terms of underlying program concepts (such as the
proposed inserts in insertive programming), rather than the conventional surface-
structure program. I have therefore used the same term for the title of this
paper.

Conceptual programs might not be appropriate for all purposes. If one legis-
lates that important programs must be checked and authorized by a “data om-
budsman” or a board of data processing, for example to safeguard the privacy of
data, then one certainly wants a closed form of a program which can be in-
spected, authorized and locked up in a safe for reference purposes. The represen-
tation of the program as a document will then be the most appropriate for the
foreseeable future. Conceptual programming would probably be used first in
experimental-programming and pilot-system situations, where a program is
developed in order to improve the understanding of a problem, rather than for
actually being used.

In one particular case it is already common practice to use several different
“projections” of the same program structure, namely when we use cross-
reference list generators. The situation is then that we have a representation of
the program (namely the listing) in which some items which we want to see
together (namely all occurrences of the same symbol) do not stand close to-
gether. The purpose of the cross-reference generator is to transfer the program to
another projection, where the logical proximity is physically apparent. The point
with conceptual programming is that one should instead attempt to create the
underlying conceptual structure, of which both the conventional listing and the
cross-reference table are projections (Fig. 7).

—

conceptual
program ———————> listing
structure

cross-reference table

FIG. 7

PART Il
A STUDY OF THE BIBLIOGRAPHY SYSTEM

“Conceptual programming” as described in the preceding chapter is an ideal
242

SANDEWALL

rather than a method: it represents a plausible direction of research, but not a
definite method that can be tried and evaluated. One purpose of the present
study was to make the proposal more specific, with regard to the programming
methodology and also the supporting programming system.

One way of achieving that purpose might have been to start building a system
and see where it would lead, in the tradition of experimental programming. That
method was rejected since the resulting system could easily become overloaded
with features which were introduced on grounds of generality, aesthetics, or
accidence, but which were not really needed. I wanted to know which facilities
would really be useful. Two alternative methods were, either to do paper experi-
ments with program development while pretending to have a suitable program-
ming system, or to take an actual program, already written by someone else, and
try to learn something from it.

Of those two alternatives I preferred the latter, mostly because it offered an
opportunity to work with a program of realistic size. A paper experiment could
probably not be pushed beyond the level of a toy program of one or a few pages,
and I am not convinced that what one can learn from such small programs has an
application on programs of more realistic size and complexity. Also, if a paper
experiment was to be conducted, it seemed appropriate to first work with an
actual program, and then redevelop a program for the same purpose, using the
proposed techniques, as the paper experiment.

Dave McDonald’s bibliography system, which was described in the last sec-
tion, was chosen as the object of study. It is highly parametrized and uses
data-driven procedures in several ways. and I believe that data-driven-ness is a
good first step in the direction of conceptual programming. The present section
reports on the observations that were made in the program, and the suggestions
that the program implied for how the simple idea of data-driven-ness can be
extended, and how a conceptual programming system should be designed and
used.

Although the material in this section orginates from the study of one con-
crete program, it is not intended as an empirical study. Observations made on
one single program can of course not really be used as empirical evidence for
anything. It is rather a set of suggestions that are claimed to have not merely
intuitive appeal, but also a certain concreteness and applicability derived from a
contact with a practical program.

Most of the phenomena that will here ve described as “observations made in
the bibliography program” are fairly standard programming techniques in the
LISP-based artificial intelligence community. I believe that roughly the same
observations could have been made in another program, or in a program for the
same purpose written by another person. However, usually these techniques are
implicit: they are used, but never explicitly described or discussed. It was only
when I forced myself to study one particular program in depth, that I was able
to articulate the methods that are actually being used. When the present paper
repeatedly talks about “observations made in the study of the bibliography

243

PROGRAMMING TOOLS FOR KNOWLEDGE-REPRES' - }:ATION

program”, one should realize that these observations did not involve much sur-
prise.

The order of presentation of the observations and conclusions will be mostly
historical, particularly since some observations build on others. As a conse-
quence there is at the time a progression from the fairly obvious to the more
significant. Experienced LISP programmers may want to skim lightly over the
next few pages and start reading more carefully at the data-structure model
(page 248).

The first step was to study the dispatching mechanisms that the bibliography
system used, ie., the chains of references which would lead a calling program
through data items to procedures to be executed.

In some cases, the dispatching mechanism was simple and straight-forward,
and fit perfectly to the preconceptions presented in Part II. For example, each
type name (for types of documents) is associated with a procedure which is
executed each time a document description of that type has been entered.

Aggregates

In two interesting cases, the driving data had a non-trivial structure, and
seemed to require a dual description, namely both as a program in a specialized
programming language (in the sense discussed on page 236), and as an aggregated
structure that contains a number of data entries. That dual description seemed
like it would be a concrete problem for a conceptual programming system.

Let us first describe an example of this, which appears in the printout pro-
gram, that is the program that produces a nice-looking printout of the properties
of a sequence of documents (for use as the “references” section at the end of a
paper). The choice of which properties to print out is determined by the type of
document (book, article in journal, etc.), and the format is to be variable to
allow for different conventions. The bibliography system does that as follows:
each set of conventions is assigned a name, which of course is an atom, and
which is called a recipe-name. The recipe-name has a property under the proper-
ty-name OUTPUT-RECIPE; whose structure is

((pn params pnct)
(pn params pnct)

(pn params pnct)

((type (pn params pnct) (pn params pnct) . . .)
(type (pn params pnct) (pn params pnct)...)
)

Here each pn is a property-name for document id’s, for example AUTHOR and
TITLE; params is a sequence of flags which signal specific conventions (for
example whether the authors’ first names go before or after the last names); pnct
specifies how to terminate the current property (with a comma, full stop, car-
riage return, etc.), and zype is a document sub-type such as BOOK. The printout

244

N
- |

) SANDEWALL
program interprets output-recipes as follows: it scans the top-level list, and for
each triple of the form <pn params pnet>, it looks up and executes a procedure
stored as get(pn, PRINT-UP-FN). That procedure has access to the current docu-
ment id (so that it can look up its property under the property-name pn), and to
params and pnct which specify some details of its operation. When the scan
arrives to the sub-lists marked with type names, it chooses the sub-list marked by
the type of the present document, and proceeds to scan down its list of triples,
but ignores the other branches. Thus the end of the structure serves as an
implicit case statement.

There are two ways of thinking about such output recipes, namely as a
program or as a location structure (a structure that contains locations that the
user can put things in). First, consider the person who has received the instruc-
tions for authors in a certain journal, and wants to encode them for the biblio-
graphy system in its present operating environment (source code on text files,
etc.). That user will want to write up one recipe for that journal, and will be
inclined to think of the recipe as a program, which in each step “does” a
printout of one item in the document description. For example, he would be
inclined to welcome a facility for insertion of arbitrary LISP code in the middle
of a recipe which enables him to do “what he wants”.

On the other hand, suppose the bibliography system is embedded in a concep-
tual programming system which “understands” some of its structure, and sup-
pose the user has just told the system that he wants documents to have one more
property, namely an NTIS number. The system should then lead the user by the
hand and ask him for additional information that the system needs to know, for
example how such numbers are to be prompted, and printed out. The system
must therefore have a model that enables it to tell what information has to be
added where.

It seems to me that such a model could best start with saying that the actual
data structure implements a number of mappings, namely

PROPS: type-name -> sequence of property-names
TOPRINT: recipe-name * property-name - <params, interpunction>
PRINTFN: property-name ~ procedure

It should also know how those mappings are implemented: the last one is stored
in the trivial way as a property; the first two are stored together in a somewhat
non-trivial manner in the output-recipes. But the mappings would be useful as a
backbone structure to which one can attach additional information e.g., about
how the mappings interrelate, and the first mapping could be shared with other
parts of the system, since it is really an ordinary declaration.

This was one of two examples in the bibliography system, and an additional
very similar example is provided by the file description mechanism in the
INTERLISP system. Let us use the term aggregate for a structure which one
sometimes wants to treat as a program in a specialized sub-language, and some-
times as a data structure that contains a number of data items which the user

245

PROGRAMMING TOOLS FOR KNOWLEDGE-REPRESF" . : .TION

»

will want to address and modify individually.

The problem that aggregates pose for a conceptual programming system is
that both views of the aggregate must be “sugared” or explained to the user, and
the system must therefore be able to move freely between the two views. If the
user is to think of the aggregate as a program (for example to input an input-re-
cipe), then the syntax and semantics of the program must be explained to him.
If he wants to think of it as a composite data structure, then he wants to
communicate with the system in terms of underlying structures such as the
mappings shown above. If the user is working with one representation and wants
to change it, the system should be able to implement that change in the user
interface to the other projection, or at least ask the user the right questions
about it. This means in particular that the system must know for each projection
both how to talk to the user in its terms, and to understand the user when he
uses the terms of that projection.

With the data-structure view of aggregates, one would hypothesize a “pure”
representation which more directly corresponds to the mappings, and an “aggre-
gation” operation where the composite structure is constructed. At least two
reasons for aggregation can be seen in the bibliography program: execution
speed (if one knows that the contents of a number of locations will be inspected
together, then it makes sense to form a composite structure such as the output-
recipes and store them all in there), and presentation for the user (who some-
times may want to see them together, and- therefore may be inclined to group
them together on the listing of the system).

Another example of aggregation. The bibliography system contains one more
example of aggregation, which will be described shortly for the completeness of
the record. The data entry program (which prompts the user for the properties
of successive documents) assumes that each type name (for sub-types of docu-
ments, for example BOOK) is associated with a list of triples of the form

<<prompt-word, explanatory-phrase, property-name> . . .>

In prompting the user for one document, it first asks about its type and looks up
the corresponding list, and then for each triple in the list it prints out the
prompt-word, uses the explanatory-phrase if the user requests help, stores the
input as the property of the document associated with the property-name, and
also executes a data entry procedure which may be associated with the property-
name. The following abstract underlying structure is natural:

PROPS: type-name — sequence of property-names
TOREAD: property-name — <procedure, prompt-word, explanatory-phrase>

Again the aggregation chosen in the bibliography system is convenient when the
user reads and edits a text file of the program, and allows fast execution, but a
conceptual programming system should also know the underlying structure.

246

SANDEWALL

Dynamic modification of aggregates; self-modifying programs

A second observation was the usefulness of dynamic modification of aggrega-
tes. If the aggregate is viewed as a data structure that one makes a loop over,
then this is just dynamic looping, where the body of a for-loop changes the value
of the loop counter. If the aggregate is viewed as a program, it instead amounts
to having self-modifying programs. The latter view is interesting considering the
present apparently universal belief that self-modifying programs represented a
primitive stage in the development of machine language, and that they are anti-
thetical to well structured programs. The observations here provide a counter-
example.

Consider the feature whereby the reading program may default some proper-
ties. The properties for “reports” (technical reports, internal memoranda) in-
clude INSTITUTE (where issued) and LOCATION (the city where the document
was published, which usually is the city where the issuing institute is located).
Sometimes the system may already know the location of the institute, and it
then does not have to prompt the user for it. Several similar defaults are pos-
sible. Such defaulting is handled by the bibliography system as follows: each
time a document description is entered, a fresh copy of the “prompt-list” aggre-
gate is created. It may contain

<...<INSTITUTE...> <LOCATION .. >...>

A counter steps down that list as successive properties are prompted, and exe-
cutes the procedures associated with property-names as described above. The
procedure associated with the INSTITUTE property tries to default the LOCA-
TION property, and if it is successful, it deletes the triple that would ask for
LOCATION, from the current aggregate. (If that is the next triple, it can simply
step the counter, otherwise it has to edit the current aggregate). The same
method is also used for choosing the right prompt-list for each type: the fresh
copy of the aggregate that each document obtains initially starts as

<<ZTYPE...>,...>

and only contains those properties which are common for all types. Thus the
first prompt asks for the type of the current document, and the procedure
associated with the TYPE prompt adds the specific prompts for the current
type, to the current aggregate.

This method is not just a hack! The initial “program” is very readable, since it
just says what the system is to ask the user about, and the program modification
operations are also very easy to understand, since they can say almost literaily,
e.g., “remove the question about the LOCATION property”. They manage with
existing primitives, and do not need to introduce additional symbols or con-
structs. By comparison, if the same defaulting process is to be performed by a
conventional “structured” program, one would have to have a loop over the
possible properties, plus a mechanism with boolean flags or other similar devices
in order to remember from one cycle to the following which properties are to be

247

PROGRAMMING TOOLS FOR KNOWLEDGE-REPR' ©~ NTATION

suppressed. In the reverse case where one sometimes wants to add prompts
chosen from a large number of possible properties, or modify later prompt-
words, or the order of the prompts, it is almost impossible to avoid making use
of a structure which in some sense is a program, and which is dynamically
modified.

Dynamic modification of aggregates adds one more criterium for aggregation:
besides improving readability (by clustering the right things together) and im-
proving execution speed, an aggregate of properties which may be used as a
self-modifying program, should be designed to contain those things which will
change dynamically. For example, if one wants the result of one interaction to
be able to modify the prompt-words for subsequent interactions (Higglund,
personal communication, has described a case where that was desirable), then it
is necessary to locate promptwords directly in the aggregate, rather than store
them as properties of items that appear in the aggregate.

Criteria for the model of the program

Conceptual programming is characterized by the disintegration of the conven-
tional programstructure. The obvious question is then “what structure comes
instead”. That question was sometimes acute when studying the listings of the
bibliography system. When data-driven procedures were involved, one often had
to work hard to understand what goes on, and there were also places in the
program where a data-driven call would have been natural but had actually been
avoided, probably because it would have scattered the information too much (in
the listing and/or for the execution of the program). The case construct in the
cross-indexing program (described below) is an example.

In the conceptual programming system there should therefore be a structure
which keeps track of the miscellaneous data-driven procedures, and is able to
explain their location and their purpose to the user. That structure will be a
model of the entire system from one particular viewpoint, namely the data-
driven calls. There are four major requirements on the model: it should be
sufficiently precise that it can be stored in the programming system; sufficiently
palatable that the user can read it and enjoy it; sufficient, i.e., contain enough
information for its purpose; and minimal, i.e., it should not contain things that it
and the user do not need to know. I attempted to extract such a model from the
listings of the given bibliography system.

Second-order data-structure models

The first hypothesis was that a second-order data-structure model would be
appropriate. The model can best be explained as a generalization of ordinary
declarations (in languages which have such). Ordinary declarations for the biblio-

graphy systems might say for example “objects of the type JOURNAL shall have
the following properties:

248

SANDEWALL

structure of
property -name property

FIRST_YEAR integer

purpose

year of issue of first volume in present
series of the journal

SOCIETY atom name of the organization which issues
the journal
LANGUAGES list of atoms official languages of the journal

Such information may be specified formally in a declaration, or informally to
the user, and it is sufficiently palatable to be appropriate for the conceptual
structure. But if that information is stored in a data base, there must also be
specifications about how it is to be stored. What has just been given is then a
first-order data-structure model, and one needs a second-order model which says

things like: “all objects shall have a type. Type names are represented as atoms
with the following properties:

structure of

property -name

property

purpose

ISA
PROPS

other type name

list of atoms that

type of which this is a specialization

properties that objects of this type may

are used as prop- | carry
erty -names

Each object may have properties, with the names specified by the PROPS prop-
erty of the type of the object. Property-names are represented as atoms with the
following properties:

structure of
property-name property purpose

PROPSTRUC one of the atoms: | specify the allowable structure of prop-

INTEGER erties with this name

ATOM

LIST-OF-
ATOMS

For example, if JOURNAL is a type-name, one may have:

get(JOURNAL,PROPS)=<FIRST-YEAR,SOCIETY',LANGUAGES, >
get(FIRST-YEAR, PROPSTRUC) = INTEGER
get(LANGUAGES, PROPSTRUC) = LIST-OF-ATOMS
The above is only given by way of example, and in actual use one would
certainly want to improve on the description. For example “type-name” should
itself be made into a type, and so should “structure descriptor” (ATOM, INTE-
GER, etc.). Also, ISA links must sometimes be handled in a less simple-minded
way. The second-order description clearly allows a formal representation. When
presented to a human, it tends to be less palatable than the first-order model

249

PROGRAMMING TOOLS FOR KNOWLEDGE-REPRESEN : = ION

because it is more abstract, but that may be compensated with the use of
examples.

The conjecture was now that data-driven procedures could be explained to
the user by making them part of the data-structure model. The second-order
model would then say that there are such things as types, property-names, and
structure descriptors. Among the properties of type names one would find
PROPS and as given above, but also a CORELATION-FN property which is a
procedure, executed each time a document of that type has been entered.
Among the properties of property-names, besides PROPSTRUC above, one may
find a READFN property, executed each time a property with that name has
been prompted for, a PRINT-UP-FN property used by the printout program, etc.
For aggregates, the second-order model would account both for the idealized
underlying data structure, and its actual implementation.

Some of the data-driven procedures in the system could actually be ac-
counted for even in a first-order model, namely procedures associated with data
items which may appear in input, such as abbreviations. Most of them however
required the second-order model.

An immediate observation was that data-driven procedures should not be
modeled alone, but together with parametric information which the user could
communicate to the system by storing it in the data base, for example prompt
words, lists of properties to be written out on files, etc. The distinction between
data-driven procedures and parameters is vague anyway, and more important,
parameters appeared in the access paths to procedures, for example in the above-
mentioned aggregates. The purpose of the model should therefore be character-
ized as describing the user-filled locations in the system, where a location is a
place which the user can characterize by an atom or combination of atoms, and
fill with a parameter or a procedure.

Work on the model was carried fairly far but was not completed. On informal
evaluation, the model seemed to satisfy the minimality and the precision require-
ments fairly well, but it was hard to make it sufficient and palatable. The reason
seemed to be that it could not live alone. It is clear that the data-structure model
must contain at least informal references to the program structure: in describing
the purpose of a data-driven procedure, one would specify which program or
procedure it is called by. But it turned out that short informal references were
not sufficient; one really had to say fairly much about the program structure

expecially in order to explain how to write procedures to put into the data
driven-locations.

Program-structure models

The next step was therefore to also develop a program-structure model, which
should describe the programs and program parts in the system with respect to
their means of communication (data flow, direct calls, and data-driven calls). The
top level of the model was a data flow model similar to Figure 6 although
somewhat more detailed. Each “program” compartment was then subdivided

250

AT
AR SANDEWALL

into procedures with a procedure-call structure.

Predictably enough, this model required some references to a data-structure
model, but it turned out that fairly few references were necessary. When written
out as a natural-language text (i.e., candidate program documentation) it speci-
fied first the top-level data flow model, then the first-order data-structure model
in the major “data pools”, and then described each constituent program box.
The resulting description turned out to be a good framework for describing the
user-filled locations. Essentially each location was described in the context of
the program which used it. Only one location was used by more than one
program, namely the TYPE property of documents, and it was documented in
the introductory data-structure chapter. '

Data-structure-based programming

A possible interpretation of these two modelling attempts might be that the
program-structure model is in general the “natural” and “primary” one. There is
however another possible interpretation, namely that the system kad been writ-
ten with a program-structure model literally in the mind of the programmer, and
that that is the reason why the formal program-structure model seemed to fit the
system better. The discussions with McDonald confirms this: he had thought of
the system as a number of programs with handles on them, which would enable
the skilled user to modify the behaviour of each program, i.e, his model of the
system was mostly a program structure.

The data-structure model of the system might then be more appropriate if the
system had been designed with a data-structure model in mind. Concretely, one
would start out by designing the second-order data-structure model, and the top
level of the program-structure model. One would then organize the programs
around the data-structure model by working downwards to write data-driven
procedures that should be associated with the model, and “upwards” to write
the procedures that use the data-structure model and call the data-driven proce-
dures. I shall refer to this method as data-structure-based programming,.

Evidence that gives tentative support to data-structure-based programming

There are in fact some designs in the bibliography system that probably
would have been done differently and better if that method had been used. On
balance, other things might of course have come out worse then, but it is still of
some interest to discuss the designs that point in the direction of data-structure-
based system development.

Consider the following example. The saving program (for transferring data
from the “active” to the “‘passive” data base) makes a loop over all the proper-
ties of each document to be saved, and prints them out. Each property-name, for
example AUTHOR, has a dumping procedure associated with it. (These proce-
dures are designed to improve the appearance of the files, in order to facilitate
text editing on them). However, since several property-names may use the same
procedure, an extra level of indirectness is inserted: the property-name is associ-
ated with an atom, which in its turn has a dumping procedure, and several

251

PROGRAMMING TOOLS FOR KNOWLEDGE-REPRES * . "ATION

property-names may share the same such atom.

This common-sense arrangement is easily explained in a program-structure
model. But it is interesting to see the names of the intermediate atoms. They
are: PNATOM (a term used in the system to characterize an atom in which the
distinction between capital and small letters is significant), LIST-OF-PNATOMS,
TEXT, and CODE. In other words, one dumping procedure is needed for proper-
ties whose structure is to be a list (denoting a set) of atoms, another for proper-
ties which are procedures etc. The names of the procedure indicates the struc-
ture of the property.

If the second-level data structure model had been developed first, then such
structure describing entities would already exist and be ready for attaching
procedures to. That design method would then encourage economy of concepts
through multiple usage of the same symbol, since the data-structure model is
useful in itself (for description and documentation of the system), and also since
several different procedures may sometimes be attached to the same symbol.

Another example. The bibliography system offers additional examples that
point in the same direction. Here is one: for the purpose of the same saving
program, the system maintains a catalogue for each type of document. Since
BOOK is a document subtype, there is a global variable BOOKS whose value is a
linear list of all document id’s of subtype BOOK. That linear list is updated as
follows: the data entry program prompts the user for all properties of the
current document, and then executes the procedure get(t, CORELATION-FN),
where tis the type of the document (for example, BOOK). That procedure adds
the current document to the appropriate global list. Thus get(BOOK,
CORELATION-FN) is

(LAMBDA () (ADDL 'BOOKS REF))

where ref is a free variable bound to the current document id, and addl does the
right thing. Thus again the catalogue names are used only as arbitrary global
variables, but they happen to contain information that duplicates the informa-
tion in the type name. In a data-structure-based system development, one would
exploit that correspondence more systematically by making it part of the sec-
ond-order data-structure model that each subtype of documents shall have a
catalogue as its (say) CATALOGUE property. (The property might be the actual
list of document id’s or the global variable whose value is the list of document
id’s). Such a decision would make the system more self-documenting. In reading
the bibliography program, non-trivial effort was required to find out that there is
a correspondence between type names and catalogues, as given by the following

table: type name catalogue name
BOOK BOOKS
THESIS THESISES
REPORT MEMOS
JOURNAL* JOURNAL-ARTICLES

COLLECTED COLLECTED-ARTICLES
*) meaning a paper which was published in a journal.
252

SANDEWALL

Finally, with a data-structure-oriented design, one could do away with the
CORELATION-FN handle, since its only use in the present system is to incre-
ment the catalogue, i.e., to contain the knowledge of the above table.

Dynamic use of locations. The latest mentioned example, about catalogues
for document types, also suggests another observation. Our description of “data-
driven programming” and the “raisin-in-the-cake” approach in the previous
section centered around the procedure as the essential component of the system.
In forming the data-structure model, it became at once necessary to also include
parameters in the model. The latest example indicates that one should also
include global variables, or in general, storage locations whose contents are modi-
fied during the execution of the program, and which are accessed from such
widely different parts of the program that they are considered as global. There-
fore, the updated description of data-structure-based system design is that one
would start out with a (usually second-order) description of the desired data
structure, and when in the course of program development one needs a location
to store something in, be it a procedure, a parameter, or global intermediate
data, one attempts to choose the name of the location as an entity or a combin-
ation of entities that already exist in the data-structure model.

An obvious question is obtained by extrapolation: what about local variables
or storage locations? There are several obvious reasons for not storing local data
in the global data base, and it seems that in most cases one would not gain much
with it. If anything, one might let the conceptual system contain definitions of
the purpose of some local variables in terms of the global data structure, but
other definitions of local variables (in terms of local program structure, data
flow, or purposes of code) may often be more useful.

A possible objection to data-structure-based system development is that the
suggested ordering is not feasible: one cannot in general define the whole data-
structure model first, before one even starts thinking about the program. In our
latest example, one might not realize that the catalogue is needed until while one
is writing the program. The observation is correct, and the proposal is certainly
not that the data-structure model should be designed and frozen before the
actual programming starts. The proposal is instead that one tentative data-
structure model shall be designed at an early stage, and that the program shall be
designed “around” it (in the sense described above), but it is evident that if in
the course of writing the program one wants to modify the data-structure model,
in order to satisfy the needs of the program, he should be able to do s0. One
obtains the right perspective by thinking of a first-order model as equivalent to
the declarations at the beginning of a program in a programming language that
uses such, and of a second-order model as a generalization thereof. One tends to
write declarations before the body of the program, but one also feels free to
modify them when needed.

A third example. The bibliography system did not of course provide any
conclusive evidence for or against the utility of data-structure oriented system
development. Separate experiments on that issue seem worthwhile, and can be

253

PROGRAMMING TOOLS FOR KNOWLEDGE-REPPR” “NTATION

performed without first developing an advanced conceptual-style programming
system. The system did provide one additional example where a data-structure
model would have been useful, and that example shall be shortly reviewed here
for the completeness of the record, although it does not enable any additional
observations. One part of the data entry program has as its major purpose to do
“cross-referencing” or property inversion. Thus if the J-NAME property (for
journal name, namely the journal in which the paper was published) of the
entered document was JACM, then the MEMBERS property of JACM should be
augmented with the current document id. That operation is implemented by
dispatching on the property name (actually through a construct similar to a case
statement, rather than through an actual data-driven procedure call, but that is
not essential here), and looks as follows for almost all property-names:

(COND . ..
((EQ TAG 'T-NAME)
(ADDL 'JOURNALS VALUE)
(BACKREF))

or in an Algol-like notation:

elseif tag = J-NAME

then begin
addl(JOURNALS, value);
backref()
end ...

Here the procedure backref performs the property inversion as just described.
But the block also serves a second purpose, namely the call to add! which adds
the current property value (in this case, JACM) to the global value of the
variable JOURNALS, if it was not already a member. Thus an atom which
appears as a property under the property-name J-NAME is implicitly defined to
have the type journal (implying that it can have certain properties), and should
be included in its catalogue JOURNALS. Again there is a correspondence table
of the form

property-name catalogue name
J-NAME JOURNALS
AUTHOR AUTHORS

UNIVERSITY UNIVERSITIES

which is implicitly represented in the code associated with the property-names,
as arguments to add!. In a data-structure-based design one would be inclined to
maintain the catalogues (or catalogue names) as properties of the property-
names in the left-hand column. Furthermore, in the actual system the accumu-

254

SANDEWALL

lated catalogues are used by a call in the saving program of the form
(FREEZE-DRY '(AUTHORS TITLES JOURNALS . ..))

It would be natural anyway to maintain that argument list in a global location,
which then in a data-structure-based design would be just the union of the sets
of property-names for all document types. Finally, the procedure freeze-dry is
actually parametrized with respect to a DUMPPROPS property of catalogues
such as JOURNALS; that property is the list of property-names for properties
that are to be saved. That item again is a natural part of the second-order
data-structure model.

Description of program generation in the program-structure model

Switching back to the program-structure model, it became necessary to de-
scribe there not only communication between programs (by data flow and
through invocation), but also generation of programs. This was necessary both
for the obvious reason that the system assists in the generation of some of its
data-driven procedures, but also in order to describe the dynamics of generating
and re-loading data files. These points will now be discussed in more detail.

In a conventional data-flow model, one would have two kinds of nodes or
boxes, one for “programs” and one for “data”. That distinction was not appro-
priate in the present case, for two reasons. First, there were instances of low-key
program generation, where one program would take input from the user and
generate appropriate, executable code, which would be called from other parts
of the system later during the run. Instead of the program/data dichotomy, it
was appropriate to have one single kind of box, but two kinds of arrows that go
to a box: an “input” arrow and a “create” arrow. If program box P uses data
from box D as input, then there is an arrow from D to P with an “input”
attachment to P. If P then generates data in the box D', there is an arrow from P
to D' with a “create” attachment to D', In the program-generation case, one box
may have both an incoming “create” arrow, incoming “input” arrows, and of
course both types of outgoing arrows.

A philosophical problem arises in the representation of procedure calls, for
example when generated procedures are called from elsewhere. One would like
to consider procedures as special cases of data, and use the same notation both
when a program calls a (possibly data-driven) procedure, and when it uses more
declarative parametric information provided by the user, particularly since there
is a continuum of ways in which the program may “interpret” those parameters.
One approach is to define an “inspect” arrow which is used both for procedure
calls and for inspection of parameters, and which runs from the caller to the

-~ callee, or from a procedure to the parameters it inspects. But then the latter case

may be considered as a special case of “input”, and could equally well be
represented by a data-flow arrow with an “input” attachment—except that the
latter was supposed to point in the other direction. One may therefore decide to
have just one kind of arrow, for data-flow, and to represent procedure calls as

255

PROGRAMMING TOOLS FOR KNOWLEDGE-REPRES . "ATION

data flow from the callee to the caller, or one may attempt to distinguish
between object-level data flow and inspection of parameters. The former conven-
tion is cleaner but takes a while to get used to.

There was also another reason why the program/data dichotomy was inappro-
priate for the modules in the data-flow model, namely that it was often natural
to clump together some kinds of declarative information (“parameters”, “data”)
and some groups of procedures into one entity, and consider the whole module
as “parametric”. The fact that different parts of the information contained
therein related somewhat differently to the LISP interpreter (or compiler) was
very irrelevant for the logical clustering,

Files as a special case of programs

The bibliography system also used a less obvious kind of “program genera-
tion”, namely the generation and subsequent loading of files. Here an explana-
tory detour is necessary for the reader who is not used to incremental languages.
In a conventional language, it is commonplace to have one program which prints
out data on a file, for example the current values of some variables, and a
corresponding program which reads the file and recreates the same state. The
programs must be coordinated: if the printing program produces variable values
in a certain order, then the reading program must set them to input data in the
same order. In an incremental programming system which performs a read-evalu-
ate-print loop, one usually prefers to let the printing program generate a series of
expressions on the file, in such a fashion that the file can be read by the top-level
read-evaluate-print loop, and then produces the desired result. Thus if the cur-
rent value of the variable A is 3, the printing program will print out

A:=3

or whichever representation of that assignment is used in the programming lan-
guage. The advantage with that design is that no special reading program is
needed, and therefore most of the coordination problem goes away, making it
easier to modify the printing program. Also, flexibility can be achieved without
loss of transparency. In the conventional print-read pair of programs, one soon
gets to the point where the printing program must print out signals or flags
which tell the reading program how to handle the subsequent data. Such signals
must then be decoded by the reading program, and continued coordination
during program changes requires that they must be documented. In the incre-
mental programming system, groups of data are never made to appear “free”,
but only as arguments to procedures which know what to do with them. If at
some time the printing program is extended so that it will print out additional
expressions that call a not previously used procedure, then no other code need
to be affected.

In a conventional programming environment, with strict distinction between
“programs” and “data”, an output file should be represented in the program-
structure model as a “data” module, which may be the output of one program

256

SANDEWALL

and the input of some others. But when the file consists of a sequence of
expressions which are to be evaluated, and which contain calls to procedures
defined in other program modules then one must consider the file producing
program as a program generator, and the program that causes the file to be read,
as doing a call to that file-program. The latter observation also gives additional
support to the idea of considering any procedure call as a data flow from the
callee to the caller.

Summary of program-structure model

The program-structure model of the system was not completely finished, but
it proceeded sufficiently far that I was convinced I had seen most of the inter-
esting problems. The design of the model was the obvious one, given what has
been said above, and can be summarized as follows: on the top level, there is a
data-flow structure between a number of blocks or modules. Each module may
contain procedure definitions, data, or both. Arrows represent flow of object-
level data, but also generation of and calls to procedures (or groups of proce-
dures). For data-driven procedures, all procedures stored in the same location
(for example all procedures stored as getp(p, READFN) for some property-name
p) would be in one block, and data-driven calls to them are described like any
other calls.

The modules in the top-level model are crudely divided into three groups:

o program modules, which could be explained to the user-reader as for
example “this is the program that inputs contributions to the data
base by prompting the user”;

° parametric modules, which contain parametric data and data-driven
procedures;

L] object-data modules, which contain actual descriptions of docu-
ments in one or another representation (for example property-lists,
or as a text file).

As assumed at the outset, the purpose of the program model was to explain
not only what the system “does”, but also how the user can change the contents
of the parametric modules in order to modify the system’s behaviour. It there-
fore referred to a declaration-like description of the object-data modules, and
then for each program module described what handles are on it, and how they
are used.

In a more exhaustive description of the program, one would also document
each procedure in at least the program blocks, specify its purpose, and describe
the calling structure within the module. For the limited purpose of documenting
the use of parameters, it was found unnecessary in most cases to make such an
analysis; in a few cases a limited breakdown of program modules was useful for

explaining when the handles would be accessed, and thereby, for explaining how
they should be used.

The need for an initialization model
Both the program-structure model and the data-structure model had to be

257

PROGRAMMING TOOLS FOR KNOWLEDGE-REPRESE. . .TION

painstakingly extracted from the listings of the program. The considerable and
somewhat unforeseen difficulty of that process raised another question: how do
these models relate to the program listing? By what mechanism can one relate
items in the description, to items in the listing?

One might have expected this problem to be trivial, on the following grounds:
the purpose of the listing is that when it is loaded into the system, it should fill
the locations which will be needed when the system is run. Here “location” is
used in the sense defined above, i.e., a procedure name, or a property or other
place where one item (a parameter, a data-driven procedure) is stored. The listing
should therefore consist of a set of expressions, each of which fills one location,
and it should be divided into modules that correspond to the modules given in
the program-structure model.

Unfortunately things are not that easy. Both in the bibliography system and
in many other cases, the programmer organizes his files and the process of
assigning locations in a more sophisticated way, for example as follows:

° For some types of parameters and data-driven procedures, one wants
to define auxiliary entry procedures, and then use them for input of
parameters or procedures. The auxiliary procedures may serve to
provide a more compact input (by eliminating repetitions of the
same items), and/or to improve the legibility of the text file. When
such auxiliary procedures are used, they must of course be input to
the system before the expressions that call them.

L] Sometimes a group of parameters and/or procedure definitions are
separated into their own file, for example in order to variablize over
users, or to facilitate restart after certain kinds of crashes, where
only some of the locations need to be re-initialized.

° Sometimes locations are not filled when the files are read, but in-
stead the files contain the definition of specific initialization proce-
dures, which are to be called by the user after the files have been
loaded. This arrangement is another way to facilitate restart after
crashes, but may also be used in order to arrange that all initializa-
tions happen in the right order, although they are given in the
“wrong” order on the file (in order to make the file easier to work
with).

° Sometimes the initialization procedure is defined in one file, and
later called from the same or another file, but it may be recalled by
the user after a crash.

L] Sometimes one location or group of locations may be initialized in
several different ways, from several procedures or files.

® Sometimes the main program that the user has to relate to (for
example the prompting program) performs its own initializations
when it is first called, before it goes into the interactive loop. Some-

258

SANDEWALL

times it behaves differently the second time it is called, so the first
time it must make a note that it has been called, to be seen the
second time; but then if a more thorough restart has been done
inbetween (for example by reloading certain files) then that note
must be overwritten. And so forth.

In summary, the listings of the system cannot be viewed simply as a set of
assignments of contents to locations. A better approximation is to say that the
files are together a program whose purpose it is to fill those locations. But even
that description is insufficient because of the initializations that take place after
the files have been loaded.

Proposal for an initialization model. A sufficient model must start out by
separating two questions: first, how is the system loaded, meaning how are
locations initialized with their contents, and second, how is the system run,
using the contents of the locations. (The distinction may not be aboslute but I
believe it is sufficiently clear to be useful). Both questions assume of course a
model of what locations there are, i.e., the second-order data-structure model
that was proposed earlier. For describing how the system is loaded, one must
start with a description of an interactive session, for example as

a. load files containing procedures and parameters
b. call initialization procedures
c. call the top level procedure of the system

where the names of the files and procedures must be explicitly. stated for each
system. Either or both of steps b and ¢ may sometimes be omitted, and addi-
tional steps may sometimes be necessary to complete the picture, for example,
the execution of the user’s entry file which is done when the LISP system is
entered.

The description of the interactive session is in fact a program, although it may
not be fully specific about the relative order or number of repetitions of certain
steps. It may even be data-driven, for example if an initialization procedure
wants to load a file, but asks the user for the name of the file, or asks the
operating system for the current user id in order to load the correct file. But
more important, the session description is similar to declarations in the sense
that it is assumed to be relatively constant while the program is debugged and
extended. The contents of a file may change, but the name of the file as found
in the session description does not need to change except very occasionally.

The purpose of such a session model or loading model wold be to describe
how locations are loaded with contents. In order to do that, the loading model
must be related to the data-structure model and the program-structure model.
The latter relationship is easily done just by extension downwards: the session
model contains statements to load a file or call a procedure, and each file and
each procedure can again load a file or call a procedure. Thus an ordinary
calling-structure diagram is appropriate. Notice however that some parts of the

259

PROGRAMMING TOOLS FOR KNOWLEDGE-REPRESENT. »VLDN

model may be “less variable” than others, For example, assume in some system
that the file INIT is to be loaded first, and that INIT shall contain commands to
load certain files, so that the system can be extended by adding more file calls to
INIT without telling the user. Then the statement that INIT shall be loaded
during the interactive session is “less variable” than the loading commands con-
tained in one generation of INIT. The combination of the initialization model
and the program-structure model must account for such distinctions.

Relationships between the initialization mode! and the data-structure model.
At a certain level in the program-structure model for initialization, one will find
procedure calls or other similar operations which serve to initialize one or a few
locations, and where the arguments in the procedure calls are often constants (or
“quoted”, to use LISP jargon), namely they are the intended contents of the
location, or data which are to be transformed in order to generate those contents.
(Complications are of course possible, for example when data are first stored in
one location and later retrieved, rearranged, and stored in another location.) Let
us call these the elementary initialization operations. Above them in the calling
structure, one finds procedure calls which mostly serve the purpose of grouping
the elementary initialization operations into natural groups; below that level one
finds miscellaneous auxiliary or system-level procedures.

Each elementary initialization operation is then characterized in three ways:
in which group (procedure or file) does it occur; which procedure is called there;
and which location(s) are filled by this operation.

When describing a system, it seems natural at first to maintain the references
in that direction, and in particular, to specify for each elementary operation
which locations it fills. But it may be advantageous to maintain the system in the
opposite way, i.e., to restrict the initialization model to a “skeleton” (in the
sense of the term used in the section on advising, page 237) which extends down
to but not including the level of elementary initialization operations, and then for
each location maintain a reference to the point in the initialization skeleton where
an elementary initialization operation for it is to be located. This would be a
special case of advising: if the user decides to establish another location in the
system, he specifies not only the ordinary declarative information, but also a
pointer to the place in the skeleton where the location is to be initialized. This
information is retained and may be used both for specific questions (““This
location does not seem to have been initialized. Where was that supposed to have
been done?”) and general questions (“Has initialization of all locations been

accounted for?”).
A possible objection is that the same purpose may be achieved with simpler

means, for example a conventional cross-index of the text file of the system. But
maintaining the pointer from the location name to the initializing operation in
the system has the advantage that it enables more informative answers. If the user
wonders why a certain location has not been initialized, then the listing of the
system plus the cross-reference list will at best provide the information whether
the listing contains a statement that is intended to do the initialization. A

260

SANDEWALL

»rogramming system that has access to the reference may instead potentially
sive the answer “that location is supposed to be initialized by file FIE, which is
oaded by file FOO, but this time FIE has not been loaded because FOO
sombed out before it got that far”. For another example, suppose the procedure
storesym has been defined as

storesym(a,r,b) = begin
addprop(a,r,b);
addprop(b, rev(r), a)
end

and suppose the user has by oversight arranged his files so that storesym(BOY,
SUBSET-OF ,MALE) is executed before put(SUBSET-OF,REV,SUPERSET-OF)
has been performed. When the user later wonders why get(MALE,SUPERSET-
OF) is not defined, the system should be able to explain that to him, if it
maintains an initialization model and the knowledge where in the model each
location is supposed to be initialized. Clearly these are pointers from the second-
order data-structure model, to the session description and its expansion into an
initialization model.

It may also be remarked that cross-reference listings are not so appropriate
when locations are named by combinations of two or more items, which we have
argued is a desirable practice. If one has achieved an économy of names, and if
the combination of names is significant, then the crossreference will tend to
generate a bigger “fanout” than if single names had been used, and therefore it
will assign an immediate relationship to items which may not be at all related.

We assumed above that a distinction could be made between the process
whereby the system is loaded and locations filled, and the process wherein the
system is run and the contents of the locations are used. One can of course not
expect these two aspects of the program to be physically separated in the code:
some initialization may be performed when the execution has already progressed
far, for example by default the first time the information is needed. The assump-
tion is merely that at a certain level in the program-structure model, one can
make a reasonably .clear distinction between initialization operations and execu-
tion operations.

In summary, we have now arrived at three interlocked projections or partial
models that seem to be useful to have, namely (1) a second-order data-structure
model, which describes the system as a location structure; (2) a program-struc-
ture model which describes the system as data-flow between top-level modules,
and a procedure-call structure that extends downward from there; and finally (3)
an initialization model that describes how locations are filled with their con-
tents. Additional projections or models have been proposed (for example the
idea of a “purpose flow”, due to Richand Shrobe) but would extend the
discussion too far for the present report.

Data base management
Before the paper ends, we should add two short remarks. One concerns the

261

PROGRAMMING TOOLS FOR KNOWLEDGE-REPRESE ":TION

management of the integrated program/data structure. The proposals in the
present section imply that the programming system should contain not only
programs and data, but also descriptions of data, descriptions of programs, de-
scriptions of their relationships, and so on. In order to use these proposals in
practice, one must generalize conventional program management systems into
data base management systems which treat procedures in the data base as a
special case. (Sandewall, 1975) describes a first shot at such a data base manage-
ment system,

The structure of the programming system

A LISP programming system itself takes some steps in the direction of con-
ceptual programming. First, like any other interpreter it is data-driven with
respect to names of elementary functions or procedures. But a modern LISP
system also contains a large number of “handles” where the user can attach his
own code or parameters to modify the system. It would be interesting to
attempt to design a programming system using the methods proposed in this
paper. Hopefully one would obtain a more consistently organized and more
self-documenting system than is usually the case. Moreover, the models of the
programming system might be useful for example when the user has to describe
an initialization process where certain handles on the system are set in order to
prepare ground for the continued initialization, for example when the status of
certain characters (such as break characters) is changed.

PART IV

SUMMARY AND CONCLUSIONS

The present work has a strongly inductive character. Given a set of ideas
about how one ought to think about a program and about programming, here
characterized as “‘conceptual programming”, I have studied one particular pro-
gram in depth, partly in order to obtain suggestions for how the proposed
“conceptual programming” method is to be realized. These are suggestions
rather than empirically proven facts, since the study of one particular program
would not provide sufficient evidence for the latter. They are also highly inter-
dependent but I shall still venture to make a list of the conclusions.

Conceptual programming is an approach which contains two programming
methods which are commonplace among users of LISP and similar languages
already today, namely

. data-driven procedures (= dispatching), where procedures are called
indirectly via data items;

L automatic advising, where the programmer first writes or generates a
“skeleton” code, and then lets other procedures insert pieces of code
into the skeleton.

262

SANDEWALL

It also contains a style of programming which is not in current use today,
since it requires its own kind of programming system, but which seems suffi-
ciently concrete that one could make some experiments with using it, namely

] insertive programming, where the program is represented by a hierar-

chical structure, plus a number of inserts of various kinds (additional
pieces of code, information about data flow, etc.) which are located

elsewhere but point into the structure to indicate where they belong
at execution time.

In the very long range, conceptual programming is the ideal situation where
the program is truly represented as a belief structure in the computer, and the
programmer or tutor normally does not work with exhaustive listings of this
structure, but only with specific extracts or projections which have been ob-
tained for specific purposes.

The major conclusions which were obtained from the study of the simple
program were:

] the location concept, where a location is a globally defined position
which is described by a combination of identifiers that are under-
stood by the user, and which may contain parameters, or a proce-
dure, or certain dynamically changed data (for example catalogues).

. the importance of aggregates, i.e., structures which allow a dual
description either as programs in very specialized languages, or as
composite data structures that contain several locations.

L] the usefulness of dynamic modification of aggregates, which may be
thought of as self-modification in a program.

[the usefulness of second-order data-structure descriptions, where the
information contained in conventional declarations, as well as other
information about the same entities, is stored in the data base itself.

(] a programming style, here called data-structure-based programming,
where one specifies a tentative second-order data-structure model
early in the design process, and then attempts to use combinations
of entities in that model as names for locations as the program is
developed. The purpose of this process is to obtain a system with a
clear and self-documenting structure for both data and programs,
and also to achieve economy of concepts and minimize the prolifera-
tion of “mnemonic” names. The support for this suggestion, besides
its possible intuitive attraction, consists of a number of constructs in
the sample program which would very likely have been designed in a
more systematic way if the proposed programming style had been
used.

L] the second-order data-structure model is palatable only if it co-exists
with a program-structure model, which on the top level (at least for

263

PROGRAMMING TOOLS FOR KNOWLEDGE-REPRESEN' . \‘V,JON
the present example) describes the data flow between a number of
“data pools”, and below that level, a calling-structure model.

] the data-flow model at the top of the program-structure model
should not distinguish between “programs” and “data”, since low-
level program generation is common; since the distinction is irrele-
vant for the natural grouping of procedures and parameters into
aggregates and into modules; and since files in this kind of program-
ming system are most appropriately viewed as a kind of program.

° instead of the program/data distinction, there is a signficant distinc-
tion between “input” and “create” arrows. A procedure call may be
considered as data input from the callee to the caller.

® besides the data-structure and the program-structure models, one
also needs an initialization model. This model consists of two parts.
The first part is a description of an interactive session, which is a
kind of program which may call procedures and/or files (those two
are entirely equivalent for this purpose). The session model is a
skeleton in the sense of automatic advising. The second part of the
initialization model is a set of inserts which for each location in the
data-structure model specifies where in the initialization model there
should be an operation that initializes this location.

ACKNOWLEDGEMENTS

It should be clear from the foregoing that many thanks are due to Dave McDonald,
who let his program be subjected to this exercise, and also took a lot of time to discuss the
program as well as the issues addressed in this paper. Several other researchers contributed
with comments and ideas, particularly Anders Beckman (Uppsala), Carl Hewitt (MIT), Mats
Nordstr6m (Uppsala), Charles Rich, Howard Shrobe and Jerry Sussman (all MIT), and Terry
Winograd (Stanford). The work reported here was mainly conducted at the MIT Artificial
Intelligence Laboratory and the Stanford Artificial Intelligence Laboratory, both supported
in part by the Advanced Research Projects Agency of the U.S. Department of Defense.

REFERENCES

Beckman, L., A. Haraldson, O. Oskarsson, and E. Sandewall (1975) A partial evaluator, and
its uses as a programming tool. Internal report DLU 74/34, Department of Computer
Science, Uppsala University, Sweden.

Dahl, O.-J. (1972) Hierarchical program structures, in O.-J. Dahl et al., Structured Pro-
gramming, Academic Press.

Rich, Ch. and H. Shrobe (1974) Understanding LISP programs: Towards a programming
apprentice. Working paper 82, MIT Artificial Intelligence Lab.

Sandewall, E. (1971) PCDB, a programming tool for management of a predicate-calculus-
oriented data base. Proc IJCAI2, Computer Society, London.

Sandewall, E. (1973) Conversion of predicate-calculus axioms, viewed as non-deterministic
programs, to corresponding deterministic programs. Proc IJCAI3, Stanford Research
Institute.

Sandewall, E. (1975) Ideas about management of LISP data bases. Proc [JCAI4 , MIT.

Teitelman, W. (1974) INTERLISP Reference Manual. Xerox Palo Alto Research Center,

264

SANDEWALL

Palo Alto, California.

Wegbreit, B. (1974) The treatment of data types in EL1. CACM 17.

Winograd, T. (1974) Five lectures on Artificial Intelligence. Memo No. 246, Stanford A.L
Laboratory. :

Winograd, T. (1974) Breaking the complexity barrier, Stanford A.L Laboratory.

Wirth, N. (1973) Systematic Programming, an Introduction. Prentice-Hall,

265

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

