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Abstract--The problem of converting axioms in predicate cal-
culus to deterministic programs, which are to be used as “rules”
bv a general problem solver (GPS)-type supervisor is consid-
ered. It is shown that this can be done, but that the “objects”
must then contain procedure closures or “FUNARG-expres-
sions” which are later applied.

Index Terms—Closure, deduction, FUNARG-expression, non-
deterministic, retrieval, theorem proving.

BACKGROUND

ETRIEVAL of implicit information in a semantic

data base is a kind of deduction. One approach to
doing such retrieval has been resolution-style theorem
proving; a later approach has been high-level program-
ming languages such as Planner {1} and QA4 [2], where
nondeterministic programs and pattern-directed invo-
cation of procedures are available. The use of uniform
proof procedures for this purpose has been repeatedly
criticized, e.g., in [3]. Users of the high-level languages
have also been worried because their systems are very
expensive to use [2], [4] and because the nondetermin-
ism is difficult to control [4].

There is another approach, which has roots in artifi-
cial intelligence (Al) research back to the general prob-
lem solver (GPS) [5], where one has a supervisor which
administrates a (relatively) fixed set of operators, and a
working set of active objects. In each cycle, the supervi-
sor picks an object and an operator (using any heuristic
information that it may have), applies the operator to
the object, and obtains back a number of new objects
{none, one or more) which are put into the working set.
This process is continued until some goal is achieved
(e.g., an object in a given target set appears in the work-
ing set).

This approach has certain advantages from an effi-
ciency standpoint. The operators are fixed programs,
which can be compiled or otherwise transformed all the
way to machine code level. The nondeterminism is con-
centrated to the supervisor. Still, there is room for pat-
tern-directed invocation, by letting the supervisor clas-
sify objects into a number of classes and by associating a
subset of the operators with each class. There is also the
nondeterminism implied by the search.

The major disadvantage, of course, is that this
scheme is more rigid. For example, since everything
happens on one level, there is little room for recursion.
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If one operator calls a procedure, which calls another,
which wants to be nondeterministic, then there is no
trivial way to map that nondeterminism back up to the
“search level” of the supervisor, while retaining the en-
vironment of function calls, variable bindings, etc., that
must be kept available in all branches.

An interesting question is therefore: How harmful is
this rigidity? Is it very awkward to “program around”
the limitations of such a system, or is it easy?

In this paper, we try to answer that question by
studying those operators which correspond to axioms in
predicate calculus. We assume that we have a data base,
which is like a large number of ground unit clauses, plus
a number of operators, which should correspond to the
nonground axioms. We show that there are certain
problems in phrasing the latter as operators but that
there is a systematic way to handle those problems. We
conclude that the search supervisor approach should be
considered as a serious candidate for the deductive sys-
tem associated with a data base.

BASIC IDEA

For the reader who might not want to read the whole
paper, we disclose that the idea is to permit the
“objects” to contain procedure closures [6], [7], also
called FUNARG-expressions, i.e.,, lambda-expressions
together with an environment of bindings for its free
variables. The lambda-expression is as fixed as the set
of operators and can therefore be compiled, etc., but the
environment is new for each object.

After thus having sketched the background and the
general idea, let us go into the details of the predicate-
calculus environment.

SIMPLEST CASE

Let us take a common-place axiom and convert it into
a program-like operator. We choose the transitivity
axiom,

R(x,y) A R(y,z) D R(x,z)
which goes into a rule of the form

On a subquestion with the relation R, use
lambda(x,z) begin local y;

determine y from R(x,y);

return subquestion R(y,z)

end

Here, “deterniine y from R(y,z)” calls for a look-up in
the data base and usually acts as a nondeterministic as-
signment to y. “Return subquestion” specifies the infor-
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mation which is given back to the supervisor, consisting
ol a relation (R) and an argument list. The latter is a het
oi the current values of x and v it does not need to con
tain the names x and v, or their bindings to their cur
rent vahues. The supervisor will then look up all opera-
tors (lambda-expressions) which are associated with K
and apply them to the given argument list, of course at
whatever time it chooses.

This rule describes what has to be done when any
data base search routine continues search according o
the transitivity property of the relations. It does not
matter if the search is executed by a uniform theorem
prover. a Planner-type system, or by a hand-tailored
program such as the Lisp functions in the semantic in-
formation retrieval (SIR) system [38]. However, in a
higher level system, the system has to “interpret” the
axioms or rules, i.e., find out at run-time what is to be
done. A resolution theorem prover is extreme in this re-
spect. Our concern in this paper is to find out before ex-
ccution (with information only about the axiom or rule,
not about the actual subquestion} what operations will
be necessary, so that we can write out the code for doing
exactly that. In programming systems terms, we want to
compile the axioms, and do as many decisions as possi-
ble at compile time.

If a resolution theorem prover contains the above
transitivity axiom and the axiom

R{a,b)

and if it asked the “question” ~R(b,c), it will generate
the subqguestion ~R(a,c). This step can be clearly illus-
trated if the transitivity axiom is rewritten as

R(x,v) A ~R(xz) ) ~R{(y,z).

Jf the same effect is to be obtained in a Planner sys-
tem or a hand-tailored program, it must be programmed
separatelv. In analogy to the rule above, we would write

One on a subguestion with the relation R, use
lambda (y,z) begin local x;

determine x from R(x,y)

return subquestion ~R(x,z)

end

Thus, one clause (in the resolution sense) usually cor-
responds to several rules like the lambda-expressions
above. The number of rules that correspond to a clause
1s finite. If some rules are omitted, then the resulting
system is not in general complete, but inclusion of all
rules is still not sufficient to ensure completeness. We
shall not be concerned about this. Going back to the
first rule above, the reader should imagine that the su-
pervisor contains one queue of subquestions for each
relation symbol, and that every subquestion contains an
argument list. Every relation symbol is associated with
a set of operators, written as lamhda-expressions like
the one above, which can be applied to the objects that
queue for ihat relation symbol. The operator above re-
turns a subquestion, and tells what object = argument
Hat it shonld contain, and which relation it should at-
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tend. The operators can be thought about as “demons,”
clustered in groups with a common point of interest,
which is named by the relation symbol.

List of Problems: This organization raises 2 number
of questions. One problem is how one should integrate
heuristic information into the system. We shall not go
into that question here. Another question is how the
local nondeterminism in the rule is to be handled. The
answer is simple. We map the linear (ie., loop-free),
nondeterministic program into a looping, deterministic
program. Kach branch point starts a new loop inside the
loops of the previous branch points. All loops end at the
end of the rule. This is quite straightforward.

If the predicate calculus (PC) axioms contain func-
tion symbols (not merely relations), we obtain “unifica-
tion,” or in programming language terms: pattern-
matching and pattern-reconstruction. Then the conver-
ston to remove the local nondeterminism involves some
additional problems, which however will be the topic of
a later extension of this paper. Suffice to sav that every
PC function should be associated with one construction
procedure and one or more matching procedures, and
that the compiled version of the axiom must contain a
call to one of these procedures. It can be determined at
“compilation time” which procedure shall be called.
The matching procedure for “plus” may for example
match 47 against “plus(x,1)” and assign to “x” the
value 3.

Let us turn instead to the question of how open ques-
tions are handled. (*Closed questions™ are questions
which can be answered with a truth-value, i.e.. ves/no
questions; “open questions’ are questions which have
an individual, or n-tuple of individuals as possible an-
swer.) We decide immediately that ‘“‘closed questions
with the relation R shall be one class of object and in-
terest point for operators, and “open questions with the
relation K and an asked-for second argument, R(x,?)"
shall be another class of objects, treated with another
set of operators. We shall provisionally denote it as
Ro(x). For example, the same transitivity axiom for R
also calls for the following operator:

On a subquestion with Ry, use

lambda (x) begin local y;
determine y from R(x,y);
return subquestion Ry(y) end

Examples of Nontrivial Cases: Consider the PC
axiom

Plx,y) A Q(x,y) D R(x,y).
This should be represented hy the following rule:

On a subquestion with R,, use
lambda (x} begin
return subquestion Po(x), but check that
any answer to that subquestion satisfies
lambda (y) Q(xy)
before accepting it
end

Here the rule returns to the supervisor a relation sym-
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bol. s argument list, and o remainder procedure which
s to be used later. In this case, the remainder procedure
i~ larhda (V) Q(x,v). Notice also that the current bind-
ing of the variable x must be available to that proce-
durc. when it is later used. The variable x is a transfer
variable in the sense of reference [9]. In other words,
the remainder procedure is a procedure closure as de-
fined under the section Basic Idea above and x must be
bound in its environment part.

1 we have PC functions in the axiom, a similar situa-
tion may arise. Consider

Plx,y} A @(y,2) D R(x,f(x,2))
which would go into

On i subguestion with R, use
lamhda (x) begin local v,z;
determine v from P(x, v}
return subguestion (u(v), and for every
answer to the subquestion, apply
lambda (2) f(x,2)
and return the result end

Here we again return a subquestion which contains a re-
mainder procedure with a transfer variable (x).

So iy both of these examples there was an unexpected
complication: a need for objects which “contain’ refer-
ences to procedures. Because of the increased complexi-
tv, the mapping from PC axiom to corresponding rule is
far from trivial in such examples. We shall now specify
how 1t can be done. The method will be developed
through “refinement,” i.e., we first describe the general
idea and then modify it until it becomes sufficiently
precise.

New Formulation of Operators: Let us first rewrite
the operators without reference to what subquestion is
being returned. For the three axioms that we have al-
readv used as examples. we obtain the following.

Axiom I- (Transtiivity of R):
On a subguestion with R, use
lambda (x) begin local y,z,
determine v fr()r_n-ﬁ(x,y),‘
determine z from R(y,z);
return answer 2
end

Axiom 2—P(x v) A @(x,v) D R{x,y):
On a subquestion with R, use
lambda (x) begin local y;

determine y from P(x,y);

determine that Q(x.y) [is in the data base;]

return answer y

end
Axiom 3—Pi{x,v) A Q(v,z) D Rlx,f(x,2)):
On a subquestion with R, use
lambda (x) begin local vz,

determine v from P(x v);

deiermine = from Q(v.2),

return danswer flx. o)

('ll(i

Foach of these operators contains a main block, where
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each statement except the last one makes an access to
the data base, for either a closed or an open question.
(Every such statement corresponds to a literal in the
original axiom.) We have tacitly assumed that those ref-
erences should be “immediate,” i.e., only use facts that
are explicitly in the data base. However, it is also possi-
ble to let such intermediate statements make their own
search. If we maintain the idea that the operators
should be deterministic programs, and all search should
be managed by the supervisor, then the search in the in-
termediate statement must be brought to an end before
the execution of the operator can continue. It follows
that in an intermediate statement we can only make a
search which is “short” compared to the main search
done by the supervisor.

Is it possible to use the latest formulation of the oper-
ator as it 1s? All search would then be done in the inter-
mediate statements (both “look up v’ and “look up z”
in the transitivity axiom, etc.) and the operator can re-
turn a final answer, rather than a subquestion for fur-
ther search. This is correct, but clearly the supervisor is
not used at all in this case.

However, given the last formulation of the operators,
we can come back to the previous formulation by pick-
ing out one intermediate statement and decide that that
is where the main search shall be done. In the first
axiom, the main search i1s most naturally done for “de-
termine z.” In the second axiom, our previous formula-
tion does the main search for “‘determine v,” although
in principle it would also be possible to determine y in
the shallow search of an intermediate statement, and
then ask the supervisor to do main search in order to
prove Q(x,v) for the selected y. In the third axiom, our
previous formulation does main search to determine z,
although it would also be possible to do main search for
y, and to determine 2z and f(x,z) in the remainder proce-
dure.

CONCLUSION FROM THE DISCUSSION

We conclude that the general method to convert a
predicate-calculus axiom to an operator should be as
follows:

1) Assign a suitable order to the literals to the left of
the implication sign. (“Suitable” will not be discussed in
this paper.) Change each literal | into the phrase “deter-
mine vy, Uy, - -+, U; from |, where the v; are variables
which occur in 1 but not in previous literals, or (if j = 0)
“determine that 1.

2) Add a final statement, such as ‘“‘return success”
(for closed questions) or “return answer y” (for open
questions). Also enclose the block by a lambda-expres-
sion. The information for this is taken from the literal
to the right of the implication sign, in the obvious way
as exemplified for the above axioms.

3) Decide which of the statements in the operator
shall be handled by the extensive top-level search which
1s managed by the supervisor. This is called a controlled
statement. Let the statements in the operator be sy, sy,
where s;, 1s the controlled

St Skt Sk Skkds o, Sh

statement.
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4) Construct a new operator where the statements
ATE S|, Su, -+ -, Sk—1, Sk*, where s * is the following state-
ment. Return the subquestion sg, with the provision
that any answer to this subquestion shall be further
processed by the following remainder procedure:

lambda (v, vy, - - -, vj) begin sx4y, -+ -, s, end

where the v; are the variables mentioned in step 1)
which oceur in sg.

THE SAME EXAMPLES AGAIN

Let us check this method on the three axioms that we
have used above. In all cases, we'give rules which are to
be used on an open subquestion with Ro.

Axiom I (Transitivity of R):
lambda (x) begin local y;

determine y from R(x,y);

return subquestion
determine z from R(v,z), with the
remainder procedure
lambda (z) return answer 2z

end

’”

The phrase “determine z from R(y,z)" [11] can be more
concisely expressed as Rao(y). We use that in the next
two examples.

Axtom 2-——P(x,y) A Q(x,y) D R(x,y):
lambda(x) begin
return subquestion Pa(x), with the
remainder procedure
lambda (3') begin
determine that Q(x,v);
return answer vy
end
end
Axiom 3—P(x,y) A Q(v,z) D R(x,f(x,2)):
lambda (x) begin local y;
determine y from P(x,y);
return the subquestion Q2(y), with
the remainder procedure
lambda (z) begin
return answer f(x,z)
end
end

We see that this third formulation is equivalent to the
first formulation of the rules, although it contains more
strict formulations. In Axiom 2, the statement “deter-
mine that Q(x,y)” will “fail” if the relation cannot be
retrieved or proved in the data base, and then control
will never be passed on to the next statement, where the
answer y is returned to the supervisor. The formula-
tions above use both the primitives “return subques-
tion” and “return answer” with the obvious meaning.

We notice also that the formulations are still locally
nondeterministic, and that they must undergo the trivi-
al transformation to a deterministic program with loops.
We write this out for the first example; the others are

analogous:

lambda {x) begin local v,
for every v in set of answers to B.u(x) do
begin
return subquestion R.(yv) with
remainder procedure
lambda (2) return answer z
end
end

Multiple Controlled Statements: 1t is easily seen that
the above rule in four steps can be generalized to the
cases where there are several controlled statements, and
top-level search 1s performed for each of them. For ex-
ample, in Axiom 2 we might wish to make extensive
search both in order to determine y from P(x,v), and in
order to prove (J(x v). We must then have two nested
remainder procedures. The resulting operator should
have the form:

On a subquestion with R, use
lambda (x) begin
return subquestion Py(x), with remainder proce-
dure
lambda (v) begin
return subquestion @(x,y)
/a closed subquestion/with the remainder
procedure
lambda ( ) return answer y
end

end

We realize that “every answer™ to a closed subquestion
must be affirmative, i.e., as soon as it has proved @(x,y),
the above operator returns y.

Chains of Subquestions: The operators as formulated
above return subquestions consisting of a relation sym-
bol, an argument list, and a remainder function, but
they only accept the first two items. This means that
the supervisor is responsible for administrating the re-
mainder procedures. However, in a programming sys-
tem where procedures are permitted as arguments (to
other procedures), the responsibility can easily be taken
by the operators and the programming system. We shall
now describe how this can be done.

In closed and open questions, we add one more argu-
ment g, which is the remainder procedure. The resulting
argument lists (x,y,g) for R, (x,g) for R, etc., are the
objects which our supervisor shall handle.

We then modify the examples so that g is introduced
as an argument and applied to the returned answer.
Thus, the definite version of the rule for Axiom 3 is:

On a subquestion with Ry, use
lambda (x,g) begin local y;
determine y from P(x,y);
return subquestion
Q. (v, function (lambda (2) g(f(x 2))
))

end

The other rules are modified similarly. We notice that
the subquestions that this rule returns, contain two
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transfer variables: x and g. The bindings of these must
be saved in the closure, and retained until the remain-
der procedure is used.

Let ¢’ be the second argument of @, in one particular
use of the above operator. Clearly g’ ~ontains a refer-
ence to ¢, which itself presumably is a procedure clo-
sure, which was set up by a previous subquestion. As
one subquestion generates another, a chain of closures is
generated, where each one refers to its predecessor.
When finally an answer is found to the last subquestion,
the last procedure closure is applied in a return-answer
statement,; it calls its predecessor by using a procedure
variable, as seen in the example, the predecessor calls
its predecessor, and so on up the chain. In the original
(top level) question, g is given as “return answer.”

Duscussion of Applicability of the Method: This pro-
cedure works in all cases where the nondeterministic in-
terrupt points (where another, parallel branch is per-
mitied to attract attention) can be brought to the top-
level block of the “operators,” and not be hidden deeper
down in recursion. In principle, the trick is that the con-
trol stack (the stack of function calls) is only one ele-
ment deep at the interrupt points (containing the call
from the supervisor to the operator), and then the con-
trol stack information, plus the information of how far
we have gotten, can be put in one additional transfer
variable. With this method, we have no control stack
environment, but merely a variable-binding environ-
ment at the interrupt points, and this is exactly what
FUNARG (or procedure closures) can handle.

We believe that this method is sufficiently powerful
to handle, e.g., all cases which may occur when PC ax-
ioms are mapped into rules, and probably also a broader
application.

A questionable feature of this method is that one
must in principle decide at ‘“compile-time” which re-
trievals are to be done by “big” search, and which are to
be done by “short” intermediate statement (=noncon-
trolled statement) search. In sgme applications this is
alright, since some relations are only stored explicitly or
almost explicitly; in others it may not be acceptable.

Requirements on the Programming Language: If the
conversion from PC axiom to operator is to be done au-
tomatically, then the selected programming language
must of course be able to generate and manipulate pro-
grams in the same language. Lisp is then an obvious
choice. However, during the execution of the search, our
requirement is instead that we must be able to create a
procedure closure, and send it around as data. Some
simulation languages, notably Simula 67 [10] have this
facility, as well as POP-2 [11] and ECL [12]. Lisp 1.5
systems (a-list systems) provide it through the
FUNARG feature. Later Lisp systems (Lisp 1.6, original
BBN-Lisp) do not provide it [7]. A method for provid-
ing FUNARG in BBN-Lisp-type systems without
undue loss of efficiency has been proposed in [9].

It has been suggested that the notion of a “remainder
procedure,” as used in this paper, is rather closely con-
nected with the notion of continuation, which has re-
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cently proved helpful in discussing the denotational se-
mantics of programming languages [13].

Implementation: The author has participated in the
development of a program, called (predicate calculus
data base (PCDB), which is organized according to the
search supervisor principle. This program was described
in reference [14], and contains a compiler which accepts
PC axioms and generates corresponding Lisp programs.
It also contains a simple supervisor, elaborate data base
handling facilities, etc., which are needed. The present
(1972) version of PCDB lets the supervisor administrate
the remainder procedures in an ad hoc and not com-
pletely general way. A new compiler is being written,
which will administrate them with FUNARG expres-
sions as indicated in this paper. We hope to have it
working at the time of the conference.
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