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ABSTRACT

Programs which perform partial evaluation, beta-expansion, and certain optimizations on programs,
are studied with respect to implementation and application. Two implementations are described, one
“interpretive” partial evaluator, which operates directly on the program to be partially evaluated,
and a “‘compiling™ system, where the program to be partially evaluated is used to generate a spec-
ialized program, which in its turn is executed to do the partial evaluation. Three applications with
different requirements on these programs are described. Proofs are given for the equivalence of the
use of the interpretive system and the compiling system in two of the three cases. The general use of
the partial evaluator as a tool Sor the programmer in conjunction with certain programming tech-
niques is discussed.

1. Introduction

Partial evaluation has traditionally been considered as a toy, to be used only as a
subroutine in very experimental research programs. The present paper argues that
if properly developed and utilized, partial evaluation can also be very useful as a
practical working tool for the serious programmer.

The paper describes a set of programs for partial evaluation (Sections 3 and 8),
and experiments which have been done with them (Sections 4-6), as well as of
how such programs can be put to use (the remaining sections). Some figures from
the experiments are to be found in the appendix.

In the simplest case, a partial evaluation program is a program which takes a
procedure P of some arguments (x, x,, . . ., X,) together with values (¢4, . . ., ¢,,)
for the first m of these n arguments, and which generates a new procedure P’
such that P'(X,p15 - - s Xp) = P(C15 . « 5 Copp X1 « - » %) fOr all x. In doing so, it

"1 This research was sponsored by the Swedish Board for Technical Development (contract 4732)
and by the Swedish Natural Science Research Council (contract Dnr 2654).
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should of course insert the constants c; for the variables x; in the definition of P,
and apply functions for which all arguments are constants (as long as the functions
do not have or depend on side effects).

Various other operations should also be included in the partial evaluator in
order to make it practically useful. However, we can immediately make one
observation, namely that the partial evaluator is a tool for increasing the efficiency
of programs. In a sense which will be further articulated, it is thereby a tool for
generating programs.

Being a program which operates on other programs, partial evaluators are more
easily written in programming languages that have program/data equivalence,
such as Lisp. In what follows, we shall only be concerned with their use as a tool
for a LISP programmer, for example in Artificial Intelligence research. Most of the
discussion does carry over to more conventional programming languages, although
implementing a partial evaluator is not as easy there.

In order to go into how a LisP programmer can make use of a partial evaluator,
let us back up one step and consider a few of the problems that he has to face and
will have to face in his daily work.

1.1. Many small pregrams

One significant problem is the increasing requirement for non-trivial data bases.
Programs for language understanding, problem solving etc. have traditionally
been run with minimal data bases, in the precise sense of minimal; only such data
were loaded, as were deemed necessary to run one particular test or set of tests.
Restrictions on memory size was one of several reasons for this practice. However,
it is clear that coming systems must accommodate larger data bases for dictionaries
and (other) sets of knowledge.

The larger data bases will still be small compared to their namesakes in the field
of administrative data processing (ADP), but some of the attitudes that have
developed for ADP data bases should carry over. In particular, the maintenance
and care of the data base will no longer be a trivial activity, but instead an activity
that is analogous in many ways to programming. The programmer will have to
take up a second role as data base hacker.

“Hacking” a LisP data base is in many ways similar to hacking a LISP program.
Both have to be edited, which can be done either with a text editor, or with a LiSP
editor which operates immediately on the list structures. But as with programs,
there are various other utility operations on the data base which it is only reason-
able to program in LISP (or whatever language is being used for the application),
such as:

(a) printing; present a prescribed subset of a data base in an easily readable form,
(b) checking; check a prescribed subset of a data base for compliance with a
certain structure specification (e.g. the specification of what structure a given
program assumes of the data base),
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(c) reorganization; scan a part of a data base and change its structure to fit a
new application, or to conform to changes in the program that uses the data base.

The list could be continued, and it is not the topic of this paper to develop it
further. The point we want to make is that the programmer’s activity will not only
consist of building and maintaining one large program; it will to an increasing
extent also involve running miscellaneous small programs which operate on his
data base.

An important consideration is then that there should be reasonable utility
programs around, so that he does not have to write a new, specialized program
each time he wants to make a routine operation on the data base. There are
certainly situations where only a hand-tailored program will do the job, but there
should also be considerable use for a relatively general utility program. Such
program must then be parameter-driven, i.e. some of their arguments would specify
the application (e.g. the structure of the data base segment that is to be processed),
while other arguments would specify what segment of the data base is to be
processed.

The claim we make is not merely that general procedures are good, and that
data base operations is one of the places where they should be used. We claim
in addition that a fairly small number of structuring methods (such as recursive
property lists and internalization of lists) are sufficient for describing on low level
most of the data base structures that people use in practice, and that the typical
utility operations are fairly stereotype. This together implies that, unlike many
other parts of Lisp-type programming, data base hacking is an area where general
procedures have a good chance of being truly useful.

The role of the partial evaluator is then straightforward; if he has a fairly general
utility program U and a specification of an application, a programmer uses the
partial evaluator to produce a tailored version of U that can be used repeatedly
within that application.

1.2. One big program

Of course the programmer will not only be a data base hacker. Like in previous
years, his primary concern will be one large LisP program which grinds his favorite
axe. As his ambition increases and A.I. methodology develops he will want to
develop even larger and more complex programs.

Methods for maintaining and extending large and complex programs are then of
crucial importance. The currently fashionable structured programming approach
is of no great help, because usually it is not possible, in the type of programming
that we are concerned with here, to make a detailed plan of the program before
embarking on the actual programming. In fact, the major purpose of the research
is to develop the techniques that are needed for making such plans.
~ If the structured programming technique has little to say about that experimental
programming situation, it is equally true that experimental programmers have said
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little about how they structure their programs. In some cases, this may reflect a
lack of structure, but more often the existing structure has been disregarded for
being subjective, or a matter of “style”; “I will program in my own way, but I
will not force it on you”. Attention has centred on other issues, such as very-high-
level languages, and more recently on programmer’s-assistant-type systems which
support the programmer in his work.

The fact that little has been written about programming methods in Artificial
Intelligence research does not mean that there has been little progress. On the
contrary, the technique has developed considerably during the last few years, as a
result of both the work on very-high-level languages, and the various large programs
that have been written. A discussion and a synthesis of the techniques that have
actually been used, would now be instrumental both for developing the technique
further, and as a basis for the design of appropriate tools and assistants for the
programmer. ; ,

Such a discussion .of techniques is- of course beyond the scope of this paper.
However, since the use and usefulness of a partial evaluater depends on the
programming, style or programming technique, we will outline one expected
environment as an introduction to the proposed tool. -

. Experimental programs often start outas quite small, and then grow continuously
to become many times their original size. After some time, they grow old and fat,
and have to be re-written. Of course one wants to delay the aging, or in other words,
make it maximally easy to add code while retaining the structure of the program.
One wide-spread method for accomplishing this is to organize the program in a
“data-driven” or “‘programmable” fashion. It is divided into two parts: a small
although not trivially small structure part S, which contains schedules, interpreters
and other executives, and a larger procedure part P, which consists of .a set of
procedures. These procedures are not called from S.in the trivial way (which is to
give each procedure a name and to use that name in S for writing calls to the
procedure). Instead, the procedures are associated in a data base with various
entities which may appear as data to the whole program. S reads (or accepts,
in some manner) input data; does some work of its own but also looks up the code
that is associated with input data, and executes that code (by interpretation or by
calling eval). v

We shall refer to this well-known programming technique as programming
with procedures referenced from data items (PRD). We will mainly use the term
“procedure” for such data-driven procedures. The abbreviations “P” and *“S”
that were introduced above will refer to a set of PRD’s, and to a program that
utilizes a set of PRD’s, respectively.

Interpreters for high-level languages are of course organized using PRD’s, with
S as-the interpreter and P as the interpreted program. Several aspects of high-
level A I languages, such as new control structures and pattern-directed invocation,
can. be characterized as new mechanisms in the S part. Another straightforward
example of this method is offered by programmable pretty-printers, which allow
Artificial Intelligence T (1976), 319-357
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the user to define how certain classes of expressions shall be pretty-printed. The
user may for example associate a printing procedure with some function names,
and the procedure would be called whenever a form with that name as the leading
function is to be printed. In this case of course the argument for the printing
program is a new program, and the fact that the procedure is associated with a
function (=procedure) name should not obscure the observation that the pro-
cedure name is a data entity.

A final simple example is offered by a part of the SHRDLU program [15] where
English text is read, and each English word may have a piece of code, a “semantic
definition” for that word, associated with it.

The simple scheme of having exactly one procedure associated with each “word”
in input is often extended in several ways. A system can be data-driven in several
layers. For example, in language analysis, a top-level parser may go through
names of syntactic classes to specialized procedures for each class, which again if
necessary may go through individual words in the language to procedures that
characterize that word. Also, it is sometimes useful to associate procedures with
pairs, tuples or other composite structures, and not merely with single “words”.
For example, consider a relation-oriented data base system which for each relation
maintains a number of procedures which shall be used when the relation is stored,
looked up, deleted or updated. Such a system associates programs with pairs such
as (r, STORE?}, {r, RETRIEVE), where r is the name of the relation. Finally, as
this last example suggests, one will often want to.associate several semi-independent
procedures with a single tuple (or other structure), for example to specify several
IF-NEEDED methods for retrieving the relation.

The intention of the PRD technique is of course that it should be possible to
extend a program simply by adding more procedures to its P part, without changing
its S part. The degree to which this is possible depends of course on how judiciously
the S part was designed. But we believe that the use of this technique implies an
alternative way of looking at highlevel languages.

Auxiliary A.I. languages have traditionally been implemented like all other high-
level languages, i.e. as black-box systems. The user is supposed to believe that he is
executing on a PLANNER machine, or a QA4 machine. Since he is not supposed to
know about the inside of the black box, it is difficult for him to modify it, or com-
bine several systems. This is no problem if the high-level language is considered as
a panacea that will satisfy all programming needs, but is otherwise a serious
disadvantage. However, if the interpreter for the programming system is viewed as
a candidate program for the S part of various applications, then a number of
interesting things follow:

(a) The programming system appears as modular. In some applications one
might choose to use only some of the modules, e.g. the subsystem for data base
management. In another application one might choose to exchange the pattern
matcher for another one that fits the application.

(b) This in turn enables us to separate two purposes of a high-level language,
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namely to provide useful control structures, and to support a human notation in
the program (sometimes referred to as syntactic sugar). A control structure is
implemented as a program for use on the S level, and supports certain structures
on the P level. For each application, one can choose whatever S level tools are
needed. A notation is implemented as a translator which accepts the notation, and
deposits the appropriate code in a P level structure. Again, for each application,
one can choose one or several translators that seem appropriate, or choose to
program the data-driven procedures directly in the host language (e.g. LISP
S-notation).

A third purpose of some high-level languages is not served if this viewpoint is
taken, namely, the purpose to restrict the programmer’s freedom so that he can
not perform certain types of errors. That kind of support for the programmer may
be appropriate for routine programming in well-known domains, but certainly
not for experimental programming, where new methods are being developed.
PRD programming emphasizes another purpose of high-level languages, namely
to provide an application-oriented framework for the program. High-level control
structures are of course one aspect of the application-oriented framework, and
another aspect is the possibility to associate procedures with concepts that arise
naturally in the application, or in its description.

In programs that perform a complex task such as language understanding in
some domain, it is often appropriate to use several sub-systems for various aspects
of the problem, e.g. a grammar sub-system, a deduction sub-system, a sub-system
for psychological modelling, etc. Traditionally, each such sub-system has been a
language system, i.e. a set of programs that support a special-purpose language.
We prefer to view it as a PRD program system, consisting of conventions for the
P level, one or more S level executives, and one or more translators. The alternative
viewpoint should make it easier to modify existing sub-systems, to integrate several
sub-systems, and to gradually extend the translators that generate code into the
P part of sub-system. Such extensions could gradually take more and more
application knowledge into account (from a data base of such knowledge).

Some of the difficulties with PRD programming should also be mentioned. The
requirement to maintain the data-driven program structure while meeting demands
for extending the program, may be a burden. New ideas for how to organize S,
and for communication between procedures (e.g. message-sending between actor-
like processes) can be expected to resolve that problem. The work of developing
and maintaining several sub-systems, and the effort to remember their respective
idiosyncracies may be very great. This probably has to be solved by a combination
of several methods; on the one hand, an AI laboratory should maintain a library
of such tools which have been developed so that they are truly user-friendly and
easy to work with; and on the other hand, one should make it as easy as possible
forthe programmerto design his own high-level languages and the interpreters for
them.

Since procedures in a PRD system may come from a variety of sources, (hand-
Artificial Intelligence 7 (1976), 319-357
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written or generated from one of several high-level languages, or from declarative
information), code entry requires a program which can put pieces of code in the
right position in a fairly complex structure. This calls for an “advising” technique
which should be reminiscent of the one used in INTERLISP [13]. However, the
INTERLISP advise has to edit arbitrary user code, whereas the advising into a PRD
system could have a substantial knowledge about the program structure that it
advises into.

Finally, if procedures are explicitly associated with entities in a description of
the application, one simplifies the task of setting up a semantic description of the
program, which specifies how the program is related to the application. Such
semantic descriptions will be a necessary part of future programmer’s-apprentice-
type systems.

In summary, there are plenty of concrete and fairly short-term actions which
can be taken to support the programmer who uses PRD methods, and also some
interesting longer-term lines of development.

Programs for generating programs and for increasing their efficiency, can be
useful in several ways in the context of data-driven procedures. The work of
writing translators for specialized languages, can be significantly reduced if the
programmer merely has to write a simple translator, which generates crude and
inefficient code, and if he can draw on an existing program optimizer for cleaning
up the code. Sometimes the desired high-level language consists partly or wholly of
declarative information about the concepts in the chosen domain. Such declarative
information would then be used by an interpreter. A partial evaluator operating
on the interpreter and the declarative information may speed up execution
considerably.

Finally, the efficiency of the entire PRD system might be improved by an
operation which at least in principle is fairly simple. Namely, the idea to reference
all code in P, and thus most code in the system, from high-level concepts, is very
useful while the program is being developed and extended. It does however have a
price in performance; operations which are in themselves fairly simple, may invoke
several levels of referencing in order to find the pertinent code. It would then be
worthwhile to open up the calls, i.e. insert the code in P into these places in S
where that code may be called from. We shall refer to this operation as consolida-
tion of the program. Consolidation is not altogether trivial in practice, and some
simplifications of the resulting code will be needed. This again is an application of a
partial evaluation program.

In summary, we have suggested that a partial evaluator can be a useful tool for a
programmer, both as a way of making utility programs more economical and
therefore useful, and as a tool in working on a large program using several sub-
systems. Utility programs, interpreters, translators, etc. are of course a set of tools
for the programmer; he uses them to develop his program. The partial evaluator
is a tool for maintaining the tools, or in other words a second-order tool.
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2. Principles and Problems of Partial Evaluation

Partial evaluation has been used by several researchers and for a variety of
purposes. We have identified the following applications (in an attempted chrono-
logical order):

Lombardi and Raphael used it as a modified LIsP evaluation which attempted
to do as much as it could with incomplete data [9].

Futamura studied such programs for the purpose of defining compilers from
interpreters [6]. -

Dixon wrote such a program and used it to speed up resolution [2, 5].

Sandewall reports the use of such a program for code generation in [10].

Deutsch uses partial evaluation in his thesis [4], but had written a partial
evaluation program much earlier (personal communication, December 1969).
His idea at that time was to use it as an alternative to the ordinary eval, in order to
speed up some computations. . :

Boyer and Strother Moore use it in a specialized prover for theorems about Lisp
functions [1]. Somewhat strangely, they call it an “eval” function.

Hardy uses it in a system for automatic induction of LisP functions [8].

Darlington and Burstall use it in a system for optimization of procedures,
including transformations on list-processing procedures that reduce the amount
of generated garbage [3].

Finally, the language ECL [14] can evaluate, during compilation, a procedure
call only containing “frozen” or constant arguments. Most of these authors seem
to have arrived at the idea independently of each other, and at least numbers 2
through 5 at roughly the same time.

Partial evaluation is a simple and powerful concept, and it is not surprising that
so many authors have used it. It is perhaps somewhat more surprising that so few
of the above-mentioned works contain references to each other. The basic partial
evaluation idea is of course quite trivial, but the possibility of combining it with
other optimizing operations on programs, the variety of applications, and the
prospect of using it as a fairly practical tool constitute good reasons for studying
it in detail.

There is one relatively abstract formulation of partial evaluation which is
useful for describing some of its properties in a concise way, for example the
possibility to use it to speed up itself. We simplify the description without loss of
generality by considering functions of two arguments only. Let P(Q,A) be a program
or procedure of two arguments, where the first argument Q is relatively fixed, and
characterizes the user’s present application, and A is more variable. Thus typically
the user will run P repeatedly with the same Q but different A.

The “arguments” Q and A might occur as ordinary arguments or vectors of
arguments to a procedure, but Q might also be stored globally in the data base and
A might be read from some input medium. Such choices are not essential.
Artificial Intelligence 7 (1976), 319-357



A PARTIAL EVALUATOR ' 327

The purpose of P could also be served by a hand-tailored program for the

particular application characterized by Q, i,e., a program S which satisfies.
S(A) = P(Q,A)
for all A. The potential efficiency of S and the generality of P can be simultaneously
achieved by a compiler C which satisfies
CQ=5=8, S(A)=PQA),
where the symbol 2 is used for strong program equivalence, ie., P = P’ iff
P(X) = P'(X) for all X,
, C(Q)(A) = P(Q.A).

Writing the compiler C has one disadvantage compared to writing the generatl

program P; it is in most cases easier to write P. The purpose of the partial evaluator
is to generate S’ from P and Q, i.e., it should satisfy

R(P,Q)(A) = P(Q,A). ()
A program equivalent to R, called REDFUN, is described in a succeeding section
of this paper. Such a program has a drawback compared to C. The computation
of R(P,Q) could be expected to take longer time than C(Q). This does not matter
if P is only used once, but if it is used very often (as happened in some of our
applications) it can be a problem. We are then computing R(P,Q) repeatedly with
the same first argument and varying second arguments. This is exactly the situation
that R was designed for, so it is natural to apply it to itself, computing

R(R,P).

From (*) it follows by simple substitution

R(R,PY(Q) = R(P,0),
and therefore

R(R,P)Q)(A) = R(P,Q)(A) = P(Q,A) = C(Q)(A),
RR,P)(Q) = C(Q),
which means that in a weaker sense R(R,P) is equivalent to C. We write this as
, RR,P) ~ C,
where ~ has the obvious definition
PA) 2 P(A)<P~P.

The partial evaluation with respect to R can also be carried one step further:
if several P are to be treated, one might consider computing

R(R,R)(P)(Q)(A) = P(Q,A),

where R(R,R) need only be computed once, and the continued expressions
(i.e., R(R,R)(P), etc.) are computed with increasing frequency.

There is a catch with this argument: it is difficult to achieve a program R which
accepts arbitrary programs as its first argument, and some restrictions on the
program must be assumed. In order to do R(R,P), R must be sufficiently powerful
to accept itself as first argument, and at the same time R must be written in the
restricted programming language so that it is an acceptable first argument to itself.
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It is not obvious that this double restriction can be satisfied. In our case with the
program REDFUN it was not. Rather than revise REDFUN, we decided to use
the straightforward compiler method on the meta-level, i.e., to write a second
program K for which

K(P)Q)(A) = P(Q,A),
which means that

R(R,R)(P) = R(R,P) ~ K(P) (i.e., K can be considered as a handcoded
version of R(R,R))

Such a partial evaluation compiler, REDCOMPILE, is described in Sections
7-8 of this paper.

There are some interesting problems in the context of the partial evaluator R,
namely:

(a) the choice of operations that are to be performed on the argument-program
P. The operations need to be both theoretically correct and practically useful.

(b) the proper ordering and interplay between these operations. They can be
organized in various ways which give the same final result from R(P,Q) but with
widely differing execution times in that computation.

Efficiency considerations make it very desirable in practice to have a compiler
like K above. This however raises some new problems. The program R and the
program generated by K (or the form K(P)) have to be able to call each other:
some simplifications cannot be handled when K(P) is computed, so K has to put
code into K(P) which will attempt to make that simplification when K(P)(Q) is
later computed. That code can be a call to the general-purpose optimizer R.
On the other hand, since R may call itself recursively, it may sometimes find itself
wanting to compute R(P’,Q"), where K(P’) already exists and can be used. It is
then important that the information the user provides about this program (declara-
tions about functions, procedures for simplifying special forms, etc.) can be
used by both R and K, so that the user does not have to duplicate them. In this
section, we shall therefore describe how the user-provided informationin REDFUN
is organized.

The call to the program R has to be made slightly differently in different applica-
tions, as will become apparent from the examples in later sections. However, it is
usually easy to establish the correctness of a proposed call to R. Often the user sets
up a function or form, and then turns loose an optimizer which improves it. When
the compiler K is used, the situation is quite different. The two-step generation
process makes it much more difficult to think clearly about what operation happens
-when, and what information is needed when. One way to handle this problem is to
first program the application using R, where one can easily convince oneself of the
correctness, then re-write it using K and finally prove that the new program is
equivalent to the old one, using equations which relate R and K. We shall therefore
give attention to the formal characterization of R and of K.
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3. The REDFUN Program

The view of the partial evaluator as a function of two arguments characterizes its
overall effect, but leaves out some important details. In the actual implementation,
the partial evaluator consists of a set of functions which call each other recursively,
and which are similar to LISP’s eval, apply, etc. Thus the first argument is a form
(=evaluable piece of program), or a part of a form, the second argument is an
association list of variable bindings. The central functions we call redform (for
“reduce form™), and it is characterized by

evallredform{ form,1,ll] = eval[ form,append[LIl]].
If each binding on / is also a binding on //, which is the typical usage, we obtain
eval[redform[ form,|L,II] = evall form,Il].
The complementary operation on functions come in a number of different
versions. Sometimes it is desirable to let the association list be a partial description

of the expected binding environment of the function, i.e., contain bindings of free
variables. This is done by the function redfun, characterized by?

redfun[{LAMBDA, vl, form>,l] =
= (LAMBDA, vl, redform[ form,rebind[vLI]}>,

where rebind[vl,]] returns a modified version of / where all bindings of values to
variables in v/, have been deleted. Another version allows the second argument to
contain information about the values of some of the lambda variables. In its very
simplest version it is characterized by

redapply[(LAMBDA, v, form>l,] =
= (LAMBDA, vl, redform[form,l]>,

where the known values of some of the arguments can be used to simplify form, but
the opportunity to reduce the number of lambda variables is not used. Modifications
which do reduce the number of arguments are trivial to implement, and the-function
R discussed in the previous section is one of them.

The function redform is the central one in the following sense; applications
tend to call operations on functions, such as redfun or redapply. These functions
call redform, and redform calls itself recursively. When it sees a non-atomic form,
it usually applies itself to each argument in the form. In rare circumstances, such
as when it encounters a free lambda expression, redform will call back on redfun-
type function. Thus while redform is the core of the program, redfun-like functions
are mostly used as interfaces to the applications.

The value returned from redform is trivial if the first argument form is an atom;
if form is bound to a value v on the second argument, then a form which evaluates
to v shall be returned. Usually this is (QUOTE, v) with exceptions made for
special atoms such as NIL, and for numbers. If form is not bound in the second
argument it is returned unchanged.

24x,¥, ...y is synonymous with the Lisp expression list[x, y, .. .].
Artificial Intelligence 7 (1976), 319-357
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If the first argument to redform is a non-atomic form

fn, argy, args, . . ., arg,»,
then a variety of operations may be contemplated.

(i) Application of function: If the values of all arguments arg; and all free variables
in fn are known (constants, or known by virtue of the second argument to redform),
then the function fi could be applied to the arguments, and a constant returned as
value. This assumes that the function does not have and does not depend on side-
effects during execution. For example, the property-list access function getp is not
in general free of side-effects, but if some properties are fixed during execution,
e.g. properties which describe the application area, then for such arguments it can
be considered as free of side-effects. This is important for consolidation of PRD
programs. Side-effects also include input/output.

(ii) Beta-expansion: Suppose fn has a definition {LAMBDA, (v, 0,,...),
form>, let redform evaluate to form’, where form' has been obtained from form by
replacing v; with arg; for all i. Here arg, is the argument expression, not the value
of the argument.

This operation is always safe if the arguments arg; are free of side-effects. It
might still be safe if they have side-effects, for example if each argument is only
used once in the definition of fn, and they occur in the right order, and there is no
interaction with side-effects in the body of fi’s definition. On the other hand, even
if there are no side-effects, there might be efficiency problems if the same, expensive
computation has to be re-done several times after beta-expansion. Thus the beta-
expansion has to be preceded by a non-trivial analysis and/or controlled by the
user. Beta-expansion may enable simplifications of the program which would not
otherwise be possible, and it is therefore sometimes important that it is done.

(iii) Specialization of function: Suppose some but not all arguments are constants,
so that application of the function is not possible, and that considerations of
side-effects or of efficiency prevent beta-expansion. It might then still be worth-
while to create a specialized version of fi where the available knowledge about the
arguments has been incorporated. The specialized version must sometimes be
given its own name, namely if it is called recursively, or if the same specialized
code will be used repeatedly. Otherwise it can be inserted in the surrounding code,
for example, as a free lambda expression. We shall distinguish these as closed and
open specialization, respectively. Open specialization is in practice implemented
to return a prog-expression with initialized variables.

(iv) Functions with non-standard argument structure: FEXPR or FSUBR functions
which do not follow normal evaluation rules must be treated individually, so that
redform is recursively applied exactly to the sub-forms, and so that variable
bindings are handled properly, etc., COND, PROG, QUOTE, SETQ and

SELECTQ need such special treatment, as well as user functions with non-standard
argument structure.

(v) Simplifications: The operations performed during partial evaluation may
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often result in expressions which are non-optimal in crude ways, and need to be
tidied up. Two types of simplifications are easy to handle:

(a) function/argument interactions, e.g.,
(APPEND NIL X) - X
(OR X (QUOTE 4) Y) — (OR X (QUOTE 4))
(PLUS 3 (TIMES X Y)4) —» (PLUS 7 (TIMES X Y))
(b) function/function interactions, e.g.,
(CAR (LIST X Y(QUOTE B))) - X
(CONS X (LIST YZ) > (LISTX Y 2)
(EVAL (QUOTE form) AL) — form if AL is appropriate

Although it is easy to write a simplifier which just performs these operations,
such a simplifier would not be of interest in itself, since no programmer would
write the code that it knows to simplify. However, such expressions do result from
partial evaluation operations, and the simplifier is therefore desirable as an integral
part of the partial evaluation system.

These are the basic operations. The intricacies of side-effects make it desirable
to have some additional options, such as,

(vi) Incomplete application of functions: If fn has side-effects, it may still be
possible to determine the value of the form from a knowledge of some of the
arguments. For example, the form

(PRINT (QUOTE (4 B ©)))
certainly could not be simplified to
(QUOTE (4 B C))

but the environment of the form might still make use of the information that the
value of the form will be (4 B C). This could be handled by a separate case in the
partial evaluator, or by letting such a form “simplify” into

(PROG2 (PRINT (QUOTE (4 B C)))
(QUOTE (4 B C)))

where then the procedure, which checks whether all arguments to a function are
“known” will be generous enought to admit even such an argument. Incomplete
application is desirable not only for system functions like print, but also for user
functions.

It is important to realize that the operations that have been mentioned are
closely inter-dependent. Each of them would be fairly useless in isolation, but
together they can make fairly complex operations on a program. One reason is
that some of them tend to *“grow” the program that is operated upon (notably
beta-expansion), some others tend to “shrink” the program (notably application
of functions, and some of the operations on functions with special argument
structure, such as COND); and some of them rearrange the program so that other
operations can apply.
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A comprehensive partial evaluation program has to make decisions about which
of these operations to perform, and several of the operations require additional
information about the function fi, in procedural or declarative form. This means
that the PRD programming technique that was described in the preceding section,
is appropriate here. The domain of the partial evaluator is LISP programs, and it
therefore sometimes assumes that some of its code is associated with entities which
occur in LISP programs, such as function names and perhaps variable names.

The REDFUN program is written in this way. It assumes that function names
carry a declaration about what operations shall be performed on it. Each function
shall be declared to belong to either of a number of classes (although defaults are

of course available):

PURE Basic functions without side-effects. Application of function
performed if possible.

OPEN User-defined functions (usually) for which beta-expansion is
performed if arguments look good enough, and open specialization
if they look less good.

REDUCED Functions for which specialization will be performed if some
argument or free variable is known. The specialization is made
closed or open, depending on the circumstances.

SPECIAL  Functions with special argument structure. Such functions should
have associated with them a property under the indicator
REDUCER which describes how that function shall be processed
by REDFUN.

LAMBDA Functions on which no operation is performed. Functions with
side-effects such as put and rplaca, and functions which depend
on side-effects, such as getp, would typically fall in this group.

When redform encounters a form {fn, arg,, arg,, ...> and the class of fi is
anything else than SPECIAL, redform will first recursively operate on each arg;,
and then operate on the whole form according to the classification. If the class of
the function is SPECIAL, then the unmodified argument list will be given to the
REDUCER property of the function. These five classes correspond to the first
four operations mentioned above, plus the no-op case. Simplifications are handled
in a second step; after beta-expansion, specialization, etc., has taken place, the
resulting expression

{fn, argy, args, . . ., arg,>
is checked for possible simplifications. In principle, this is a pattern match, but
for efficiency reasons it is implemented as
applygetp[f, COLLAPSER], {arg,, . . ., arg,)],

where the COLLAPSER property is a procedure (lambda-expression) which
attempts the various simplifications. We have here an opportunity to grind our
favorite thesis about PRD program organization; COLLAPSER properties are
Artificial Intelligence 7 (1976), 319-357



A PARTIAL EVALUATOR 333

organized in a stereotype manner, so that additional simplification rules can be
stated independently to the system, and can be inserted into the correct place by
a function which knows about this pre-determined structure.

Thus the user can control the operation of the REDFUN package by adequate
declarations of function classes, and by writing or generating REDUCER and
COLLAPSER properties for his function names. The need for interaction between
the various operations performed by the program, causes some non-trivial
efficiency problems. These problems also have a bearing on how the user’s pro-
cedural information (such as REDUCER and COLLAPSER properties) should
best be organized.

The result of beta-expansion or simplification is often a form which again may
be submitted to redform. It might contain new calls to functions which have been
declared OPEN, or forms that can be partially evaluated or simplified. Let us first
consider the interaction between beta-expansion and immediate application
(including the simplification of conditional expressions when the value of the
if-clause is known). There are several ways of interrelating them, each of which
has its drawbacks:

(a) First make a simple substitution, and then apply redform to the result. This
has the disadvantage that code in the arguments of the expanded function, which
has already been simplified as far as possible, will be repeatedly overhauled by
redform. The problem is aggravated when we have several OPEN declared functions
which call each other.

(b) First do beta-expansion as far as we can get, i.e., if one OPEN function calls
another, open up all of them and then partially evaluate the resulting expression.
This has the disadvantage that the opened-up expression may be very large, so
that large chunks of code are generated by beta-expansion and then thrown away
by the recursive call to redform. This happens particularly when several of the
OPEN functions contain conditional expressions, where all but one of the branches
are supposed to go away because the variables in the if clause have known values.

The obvious solution is to combine substitution and partial evaluation into one
procedure, i.e., to do the substitution involved in beta-expansion together with
immediate application, in one single scan through the form. With this method,
we would need a super-redform function which takes three arguments: a form to
be simplified, an association list which binds variables to known values, and an
association list which binds variables to forms which shall be substituted for
them. (One could of course incorporate the second argument in the third, at the
cost of some extra processings.)

We preferred another method, which is a slight modification of alternative (b),
namely to have a beta-expander which scans a function definition and does the
following operations: '

(i) substitutes argument forms (“actual parameters”) for variables (“formal
parameters”);
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(ii) calls itself recursively when it encounters functions which have been declared
OPEN;

(iii) remembers which variables have which known values on entry to the beta-
expansion, and which of these bindings are hidden further down because the variable
has been re-bound;

(iv) whenever it encounters a conditional expression, calls redform recursively on
the if~clauses, in an attempt to throw away either the then-clause or the else-clause
already during beta-expansion.

This was considerably easier to implement, and eliminated most of the waste
that occurred when method (b) was used.

Consider next the values returned by the user-provided COLLAPSER properties,
which do some simplifications. Sometimes the returned value can be further
simplified. For example, in order to simplify

(APPEND (APPEND X Y) (APPEND V W))
into

(APPEND X Y V W)
the COLLAPSER of APPEND may have to act twice. Also, after the transforma-
tion

(APPLY* (FUNCTION FOO) X Y Z) —» (FOO X Y Z),

redform should check what function class foo is in, and what operations may be
appropriate on the new form. In both of these examples, the desired result could
be achieved by re-applying redform to the value of the COLLAPSER function,
whenever it has done some simplification. However, this solution is very expensive,
since the arguments (X, Y, etc.) would then recursively be given to redform, and
they may be big expressions. In fact, if redform is systematically re-applied to the
values from all COLLAPSER’S and REDUCER’s (where the problem is similar),
then the execution time will grow very quickly with the depth of form, in the
manner which is characteristic of double recursion. What is needed, of course, is a
way to apply some but not all of the operations of redform to the values from
REDUCER’s and COLLAPSER’s.

One immediate problem then is to what extent the REDFUN program can
determine which operations have to be done in what situations, and to what
extent the user has to specify this (e.g. by including explicit requests for post-
processing in the simplification procedures he provides). Regardless of how that
problem is solved, the problem remains of how the right subset of operations can
be accessed, if they are integrated and buried in procedures. In particular, it is
possible that the present user procedures in REDFUN, i.e., REDUCER’s and
COLLAPSER’s, are too big units, and that they should be broken down into
several smaller procedures for each function name, where each procedure performs
one specific operation, or else that these user procedures shall be parametrized with
respect to which operations they shall perform in each call. However, such
mechanisms also cost a substantial overhead.
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There is another solution tg the problem which at first seems wasteful, but which
in fact has some advantages. One can leave the values from REDUCER’s and
COLLAPSER’s as they are, which means that sometimes the simplification is not
finished, but instead make a loop on the top level of redfun, of the form

i := redfun{fn,l]

and iterate until fz converges. This method is guaranteed not to miss any simplifica-
tions, if it converges; it avoids the double recursion, and it also avoids the need for
and cost of complex control of the various operations. This is the method we have
used. We typically needed about three cycles for fully optimizing the compiled
PCDB axioms (as described in Section 5), and less in the other experiments.

Another place where the efficiency of redform could be increased was in partial
evaluation of conditional expressions. Given an expression

(COND (py e) .. .).

redform should of course first partially evaluate p,, and if it comes back as a
constant, decide to partially evaluate only e, or only the rest of the expression,
depending on what the constant is. Actually, it is the REDUCER property of
COND which does this. Suppose now that each of the p, are well-sized expressions,
and that all the variables in them are known. Redform will then be doing an
operation which eval could have done just as well, and much quicker.

One way to tip redform about this is to modify the conditional expression to
read

(CONDVAR (v, v, .. )p1ey) ...,

where the first “argument” to CONDVAR is a list of all the variables which
occur in any of the p;. The REDUCER property of CONDVAR first checks if all
the variables in the first “argument™ have known values. If so, it runs down the
list of conditions doing ordinary eval’s, if not, it calls the REDUCER of COND
with the appropriate arguments. The transformation from a COND-expression
to a CONDVAR-expression could be done by the programmer who wants to put
in some work in order to speed up his program, but it would be easy to write a
program which makes the transformation automatically when it is safe to do so
(i.e., when it can understand all auxiliary functions called from the p;). The beta-
expander that was described above also knows how to handle CONDVAR
expressions efficiently. This simple trick speeded up execution times considerably.

A minor observation was that performances improved significantly when
expressions of the form

(QUOTE xxx)

which of course shall not be changed, were checked for directly in the body of
redform rather than treated by a REDUCER property for QUOTE.

In one of the experiments, the one with the GIP/GUP program, some problems
occurred, which were of a more general nature. They will be discussed here,
although the solutions to the problems were not made general, but were made to
handle the difficulties, which arose in the GIP/GUP program.
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3.1. Assignments to variables N

Sometimes one argument to a procedure is a list or other structure of several
parameters. It is then tempting for the programmer to write something like

(LAMBDA (X Y) (PROG (P1 P2 P3)

(SETQ P1 (CAR X))

(SETQ P2 (CADR X))

(SETQ P3 (CADDR X))

)]
where the Pi should be mnemonic names for the various parameters. If the first
argument X is known by virtue of the call, then of course the Pi shall be known
also. This case is not covered by other rules about when variables are considered
as “known”.

If the assignment appears inside some conditional expression as COND, OR,

AND, SELECTQ, there arises some problems. Consider for example

(AND Y (SETQ L (REVERSE Y)) (FOO L)).

If the value of Y is unknown to REDFUN, it cannot be sure of the value of L
after encountering this expression. Inside the expression the value of L would
still be known. So the essential problem is to keep track of entries and exits in
conditional expressions. Of course, if the assignment occurs in the first condition
in a conditional expression (or if there are conditionals inside conditionals with
assignments on different levels) the task of keeping track of assignments becomes
quite complicated.

One way to solve this problem would be to let REDFUN generate code for
every branch. Since there are usually several branches in ordinary code, this
solution was dropped because of the growth of the code.

We have therefore chosen to let REDFUN always consider the value of L as
unknown gffer a conditional expression. Inside an and-expression, however, the
value is known after the assignment, i.e., the call to foo could be replaced by either
a simplified definition of foo or by a call to a generated function with this definition.
This partial solution was sufficient for the experiments.-

The implementation of these additional facilities involved updating the second
argument in redform, i.e., the association-list of bindings of known variables.
This was no problem. There did arise a problem, however, as to where the
knowledge about setq’s in the argument of and (or other conditionals) should be
located. It would seem natural to put this information in the REDUCER procedure
of the function setq. (The REDUCER procedure if it exists, suppresses all actions
normally taken by redform, and specifies how a form is to be treated by redform.)
However, this is not possible, since a REDUCER procedure only has access to the
local form that is to be simplified, not to its environment in the program. The
alternative would be to put this operation into the REDUCER of the function and.
However, this would force that REDUCER (and those of other conditionals) to
make an extra search through their arguments on all levels, looking for assign-
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ments. What we really need, of course, is a way for the setg-reducer to send a
message to the reducer of any conditional function which appears earlier in the
recursion. In the present experiment, this was done with a fix involving : free
variables, but in revised versions of REDFUN a more systematic method should
be found.

3.2. Prog-expressions

The trivial way to partially evaluate a prog-expression is to partially evaluate the
forms in the expression separately. If there are labels and goto’s in the prog, then
one might desire to optimize the goto-structure. Also, the analysis of situations
where variables become known by virtue of assignments, as discussed above, are
fairly simple in straight code, but much more difficult to analyze when goto’s. are
involved. In the present experiment, it was sufficient to partially evaluate each form
in the prog-expression separately, and to restrict the part of the prog-expression
which preceded the first label or goto.

The REDFUN program is quite straightforward and does only fairly simple
operations on its argument program. It is certainly possible with todays A.L
methodology to write more sophisticated programs, which can optimize more, and
are less dependent on control information from the user. However, smarter
programs will not necessarily be more useful, namely if they take longer to run.
REDFUN is already almost too slow to be used, and it was only after RED-
COMPILE was implemented (see Sections 7-8) that the running time became
acceptable to the user. The intelligence that can be incorporated in a program of
this type, does not seem to be worth its cost yet.

4. Generating Code From Parameters in the PCDB Application

PCDB [7, 10, 12] is a program generator which uses first-order predicate calculus
(with some procedure-oriented extensions) as its high-level language. The generated
code consists mainly of storage and retrieval procedures for relations and functions
in predicate calculus. When the generated code is executed, it is located in the
“P” part of an PRD-type system, so the PCDB code generator knows where to
store the code. The structure of the whole system is characterized by Fig. 1. Single
arrows indicate procedure calls; double arrows data flow.

The REDFUN program, described in the previous section, was developed in
conjunction with PCDB. We found that the problem of specializing and optimizing
code was a general problem, so instead of including this part in PCDB it was
separated as the REDFUN package.

The data base in PCDB consists of assertions, represented as ground-unit
clauses in PC, for example

OLDER (JOHN, FATHER(MARY))

PRIME (5)

DISTANCE (STOCKHOLM, NEW-YORK, 2000*KILOMETERS)
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Every relation will now have a number of procedures associated with it. They
fall into two groups, based on how they were generated. The direct storage and
retrieval procedures are procedures which can store a relation explicitly in the data
base, or look up a relation which has been thus stored. They implement conventions
about where and how each relation shall be stored, and can be generated from
declarative formulations of those conventions. The deductive procedures, on the
other hand, perform deduction when a relation is stored in the data base, searched
for in the data base, etc. The deductive procedures typically consist of a collection
of “methods”, each of which has been generated from one axiom provided by the
user. The supervisor for the search implied by these methods resides in the “S”
part of the system. Functions in predicate calculus are handled in much the same
way as relations.

“S” part (control procedures
called by the user)

¥
info PCDB generator (takes “p” part (procedures associated
from | => | information about PC |===>| relations and functions in
user relations and functions predicate calculus, and typically
in the form of declara- stored on their property lists)
tions and axioms, and
corresponding code) l

run-time system (auxiliary

functions which may be called

from procedures in the “P” part,

and which the generator knows
about)

Fic. 1.

The partial evaluation programs are used both for generating the direct pro-
cedures from declarative information, and for compiling axioms, but in fairly
different ways for the two purposes. We shall devote one section to each.

Each relation R is associated with a number of features d;(R), d>(R), . . ., where
the possible d; include the number of arguments, number of proper arguments,>
the datatype(s) of the argument, the “one-manyness” between the arguments etc.
If this information is not given by the user, it is calculated by default from some
of the other d; and/or from axioms that the user has provided.

At run-time, each relation R must be associated with a number of direct pro-
cedures f;(R), f5(R) for immediate storage, retrieval, etc. The program generation
task is then to generate the f; from the d;’s. In principle there is one generation
function F; for each f;. These generators make use of a technique which seems to be
generally applicable when parameters are to be mapped into code, namely to go
through FUNARG-expressions.

3To be able to answer an open question at least one proper argument must be given. For
example, if the relation Age(x,y) has x as a proper argument, the system can answer Age(x, ),
but not Age(?,y).
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Let us take a very trivial example. Suppose we want to write a program
(LAMBDA (R)...) which generates the appropriate search procedure for the
binary relation R, where R might or might not be transitive, depending on the
presence of a flag on the relation’s property list. (In PCDB, a direct retrieval
routine would not normally do a search on transitivity, but that is not important
for the example.) If R has been labelled as transitive, then the function definition
for some R e.g., PARTOF should be

(LAMBDA (4 B)
(SOME (GETP 4 'PARTOF)
(FUNCTION (LAMBDA (X) (PARTOF X B]

which will continue the search according to the transitivity; otherwise it should be
(LAMBDA (4 B) NIL1.

The functions some and getp, are used as in INTERLISP [13]. The generator could
then bs written in a straightforward way as follows:
(LAMBDA (R)
(PUTD R (COND [(GETP R 'TRANSITIVE)
(LIST 'LAMBDA
(LIST ‘4 'B)
(LIST 'SOME
(LIST 'GETP ‘4 (KWOTE R))
(LIST ‘FUNCTION
(LIST 'LAMBDA

(LIST 'X)
(LIST R "X 'B]
(T (LIST 'LAMBDA
(LIST ’4 'B)
NIL]

This is not very legible, and nobody would use this method for long. One way
out is to use a sub-system for patterns; this is certainly sufficient for this simple
example. However, there is an interesting method, where one writes simply (in
INTERLISP)

(LAMBDA (R)
(PUTD R (OPTIMIZE
[FUNCTION (LAMBDA (4 B)
(COND [(GETP R 'TRANSITIVE)
(SOME (GETP 4 R)
(FUNCTION (LAMBDA (X)

(APPLY* R X B]
(T NIL)))
(R]
D)
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thus maximally mixing the generation-time variable R and the execution-time
variables 4, B and X. The outer function expression has two arguments. The first
argument is a general procedure which should be specialized in order to obtain the
desired procedure for the relation R. The second argument is the list of transfer
variables, i.e., those variables which were bound at generation time, and whose
values shall be retained until execution time. In this example R is the only transfer
variable. Its value is kept in a FUNARG-expression; the outer function expression
evaluates into an expression of the form

(FUNARG [LAMBDA (4 B)...] ((R. PARTOF)))

if the generator has been called with the relation name PARTOF as its argument.
The third element in the FUNARG-expression is an association list or an equivalent
array. This method of handling the FUNARG problem was proposed in [11] and
has subsequently been incorporated into INTERLISP.

The function optimize may be the identity function, and the relation R will then
be associated with a piece of code which is a FUNARG-expression. Some LISP
interpreters can handle such functions, and in the others it can be simulated.
However, the code will of course run slowly, since it has to look up the TRANSI-
TIVE property each time. If there are multiple parameters d;, and some of them
have to be computed by default, the overhead will increase. It is then appropriate:
to define optimize so that it will go into its argument, insert the known value of R
in all places, look up the TRANSITIVE property (since it is presumably to be
considered as fixed), make the right choice in the conditional expression, etc.
All of this is typical redfun operations, and it is sufficient to define

optimize[ fu] = redfun[ fu,NIL],
redfun[{FUNARG, fun, [D,ll] = redfun[ fn,append[1,Il]).

In the very elementary example that was given here, the strength of the FUNARG
method is not fully needed. In more complex examples, its advantages become
more evident. Basically, the advantage is that the user does not have to handle
generation-time and evaluation-time variables differently; the distinction is taken
care of by the subsequent optimization.

The fact that the user’s code goes through a partial evaluator which also is an
optimizer, is beneficial in several ways. It relieves the user of most of the concern:
for generating smart code. The amount of optimization can be adapted to the
situation; in the testing stage one can choose to do little or no optimization (i.e.,
keep the original FUNARG-expressions); in a latter stage one can optimize more.
An additional advantage became apparent when the PCDB system was translated
from LisP1.5 to the INTERLISP dialect of Lisp. It is usually difficult to make dialect
conversation of program generators, since it is not sufficient to modify the generator;
one also has to change it so that the generated code comes out in the new dialect.
But since the generator operated through optimization of FUNARG-expressions,
that consideration went away. As soon as all LisP code had been converted,
including the general procedures in the generators, both the generator and the
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generated code ran in the new dialect. (The task of converting redfun to the new
dialect was of course less trivial, but just had to be done once.)

The straightforward scheme that has been outlined here, was compromised in
two ways in the actual PCDB system. First, it was noticed that relations could be
divided into groups, where the appropriate procedures for relations in different
groups differed radically, whereas relations in the same group had procedures
which were fairly similar, although they should still differ in their details depending
on the remaining parameters d;. One parameter d, was therefore chosen as relation
type, and one set of generators was associated with each relation type. Thus each
generator F; has the form

(LAMBDA (R) (APPLY* (GETDFLT (GETDFLT R 'D,) '‘DEFINER)) R))
where getdfit is like getp except that it can also look up default values and such.
Thus we could have

PARTOF: D, = BINREL (a hypothetical relation group for binary relations),

BINREL:DEFINER; = (LAMBDA (R) (PUTD R (OPTIMIZE .. .))),

i.e., BINREL carries the real program generator. This organization makes it easy
to add new classes of relations to the generators, which has turned out to be very
useful. The other modifications to the original scheme was that, since it was

somewhat inconvenient to loop up the declared properties during the partial
evaluation, we did not actually do

(PUTD R (OPTIMIZE (FUNCTION (LAMBDA (X Y)...)
(R))

in the generator, but rather
(PROG (D1 D2..)

(SETQ D1..))

(SETQ D2..))

(PUTD R (OPTIMIZE (FUNCTION (LAMBDA (X Y)...)
(R D1 D2..)))),

where the body of the LAMBDA-expression in the latter case uses the variables
D1, D2, etc., whenever the original LAMBDA-body contains code that will
compute those parameters. (In practice, mnemonic names are of course used.)

Apart from these superficial deviations, the general method has been directly
applied, and worked well. The general procedures typically consist of calls that
lead to a hierarchy of auxiliary functions. Some of them are opened up by redfun,
and a few are allowed to remain and form a run-time system for the generated
code. However, it is striking how much expansion and simplification can be made
by the partial evaluator, and how big the difference is between the general procedure
in the program generator, and the generated code.
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5. Compilation of Axioms in the PCDB Application

The axiom compiler takes as input a clause written in implication form, for example,
R(x,y) A S(z,y) A P(x) o T(x,2),
R(x,y) A R(y,2) = R(x, 2),
R(o,w(c,a),s) = S(g(c,0,a),s),
R(0,f(p,0),8) A M(p) A X(0,0') = R(0,f(n(p),0),s)-
The latter two axioms are taken from an application. The result of the compiled
axiom shall be a procedure which accepts a sub-question and generates a set of

sub-sub-questions. For example, the transitivity axiom should compile into a
piece of code of the form

(LAMBDA (X Z) (. .. retrieve possible y and return sub-sub-question {R y z}
for every such y...)).

In practice, the procedure should take additional arguments which control the
depth and direction of search, and which specify the procedure which is to be
applied to sub-sub-questions. Also, one and the same axiom can be compiled in
several ways, depending on whether it is to be used for forward (IF-USED) or
backward (IF-NEEDED) deduction, and in the latter case also depending on
whether it is used for closed questions (answerable by truthvalue) or open questions
(of the form “which z satisfy R(x, z)?”’). All of this has been described in the above
mentioned references and is not significant for the present discussion.

The obvious way to compile axioms when a partial evaluator is available, is to
write an axiom interpreter P(axiom,sub-question), and partially evaluate it with
respect to its first argument. The resulting procedure takes one argument which is
the sub-question. One then has to modify its lambda-variables so that they corres-
pond to the arguments of the relation. But more important, such an interpreter P
could not simply make a loop over the literals to the left of the implication sign
and process them one at a time, since the operations on each literal depend on
which variables end expressions occur in surrounding literals. For example, the
literal R(o,f(p,0"),s) should be processed differently, depending not only on which
of the variables o, p, o', and s have occurred in previous literals or not, but also
depending on whether f(p, o) has previously occurred. Also, if this expression
has not occurred in previous literals, its value shall be computed, and the value
shall or shall not be saved, depending on whether the expression occurs in a later
literal.

Although it would certainly be possible to write an axiom interpreter which
handled all of this correctly and which could be partially evaluated, such an
interpreter would not necessarily be transparent. We therefore preferred to have
one program which converts the part of the axiom to the left of the implication
sign, to a prog-expression consisting of calls to certain procedures called bind and
cont. They are two general procedures for accessing the data base and for main-
taining the result(s) from the access. The arguments of the procedures will have
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known values, so the whole prog-expression is then given to redform which does
beta-expansion and partial evaluation.

After having written the compiler in this fashion, we considered again whether
there would be any gain in re-writing it as an axiom interpreter. For practical
purposes, the answer seems to be no; it would not become significantly more
transparent, and it would run slower. Re-writing it as an interpreter might however
be useful if one wants to prove its correctness. But even with the present compiler,
partial evaluation plays an important part; a compiler whose latter stages do
explicit code generation, instead of calling redform with a prog-expression as
argument, would be much more difficult to maintain than the present program.

To complete the picture, let us mention where the code from the compiled axiom
goes. At run-time, each relation symbol is associated with several deductive
procedures, each of which may contain the compiled code from several axioms.
There is of course an insertion procedure which knows how the deductive pro-
cedures are organized, and which can insert the compiled axiom in the right place.
The insertion procedure is sensible to advise from the user.

Since REDFUN was developed in conjunction with PCDB, one would expect
REDFUN to be fairly much tailored to its specific needs. Let us however mention
one point where early versions of REDFUN were not sufficient, and had to be
improved: It used to be that the OPEN declaration merely implied that beta-
expansion should be done if possible, and open specialization was not made.
This led to problems in several cases.

In the simplest example, the general procedures for storage, call an auxiliary
function defined as

(LAMBDA (ROOT B)
(COND ((NULL (CAR ROOT))(RPLACA ROOT B))
((EQ (CAR ROOT) B) T)
(T NIL)))
which attempts to put a new fact in the data base, and checks that nothing which
contradicts the new fact was stored there before. The auxiliary function is called
with a first argument on the form
(GETR S 4)
where getr is a property list access function characterized by
car[getrla,il] = getpla,i].
In this case it is not satisfactory to make a beta-expansion on the auxiliary function,
since the property list access will then always be performed twice. The problem
was temporarily solved by re-writing the auxiliary function as
(LAMBDA (ROOT B)
(PROG (RT)
(SETQ RT ROOT)
(RETURN (COND ((NULL (CAR RT))...)
(EQ...)...)
(T... M)

Artificial Intelligence 7 (1976), 319-357



344 L. BECKMAN, A. HARALDSON, (0. OSKARSSON AND E. SANDEWALL

This is only a provisional solution since in this way the user again has to think
about code generation problems. The definitive solution was to improve redfun so
that functions which are declared OPEN, like the auxiliary function in this example,
are treated with open specialization when they get this kind of argument.

The reader will already have noticed that the same problem is also faced by an
ordinary LISP compiler, and that some compilers perform services like open
specialization. In the particular and very simple example that was mentioned here,
such compiler facilities would suffice. In more complex cases, specialization
enables other operations on the program, and then it is useful to have it done by a
separate LiSp-level optimizer.

In summary, PCDB was the first application of REDFUN and provided most
of theideas for how it should be designed. The only problem which could not be
solved within the REDFUN framework was that of execution time. That problem
has however been solved with the REDCOMPILE program which is described in
Sections 7-8.

6. Specialization of a Utility Program in the GIP/GUP Application

Although the REDFUN program worked quite well for the PCDB application, the
conclusions that one could draw from that were limited since PCDB had been
able to influence REDFUN. In order to gain better experience with REDFUN,
a second experiment was designed as follows:

One of the authors (Oskarsson) wrote a program of the “general procedure”
type for input and output of property list information. This program was written
without thinking of the restrictions of REDFUN, and in fact without knowledge
of that program. After the program was completed we attempted to apply REDFUN
toit as a “general compiler”. This experiment shall now be described.

The GIP/GUP package is intended for parametized input and output of property
lists. There is one function (GIP) for input and one (GUP) for output. The functions
read and print sets of property list properties. They can also recursively operate
on atoms which are given or found as properties under given indicators.

For example, if the function gip is called with one argument, which should be a
free property list, it could read input on the form

CAIN: FATHER = ADAM;
MOTHER = EVE: HUSBAND = ADAM;
BROTHERS = ABEL /.
This input from the user will assign the following property list:
to CAIN: (FATHER ADAM MOTHER EVE BROTHERS (ABEL)),
to EVE: (HUSBAND ADAM SONS (CAIN ABEL)).
Similarly, if the function gup is called as
(GUP free-property-list ‘(CAIN))
it will print out
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FATHER = ADAM
MOTHER =

HUSBAND = ADAM:
SONS = CAIN, ABEL:;
BROTHERS = ABEL:

Usually of course the second argument to gup is a long list of atoms, and gip is
used to read larger sets of properties. The free property lists which are arguments
to GIP and GUP contain information about how to store and retrieve properties
and what layout is desired. There are 28 different indicators which can be used in
this list. Almost all have default values attached to them. Normally the user is
expected to give just a few of these indicators himself, but he has the possibility of

giving different specifications for almost every place in the recursive input or
output.

Such highly parametized programs are of course quite flexible, but have the
disadvantage that they must often consult the free property list. Almost every time
they will find nothing and must therefore go out and search the list of default
values. If one uses the program several times with the same free property list as
argument, he will find the program unduly slow. One would like to partially
evaluate the program with respect to this parameter. This was considered a typical
problem for REDFUN.

In a preliminary test, one function in GUP was simplified manually, and a 509
reduction in execution time was obtained. This encouraged us to apply REDFUN
to the whole package. This problem is an archetype specialization, i.e., with
knowledge of the parameter property list, gip can be reduced from one to Zero
arguments, and gup from two to one arguments, and their definitions can be
specialized. The function specialize for doing this is defined by

specialize[ (LAMBDA, vl, form, arg] =
= (LAMBDA, cdr[vl], redform| form,list[cons[car[v]),argl]]>.

6.1. Simplification through several levels of functions

Like the “general procedures” in PCDE, the function gup calls a number of
auxiliary functions. In the PCDB case, such functions should be beta-expanded,
i.e., they were declared OPEN. In the GUP case, this was not appropriate because
of side-effects, and closed reduction was desired instead.

Fig. 2 indicates the calling structure of gup. Marked boxes indicate functions
where the most can be gained by reduction. In order to simplify an auxiliary
function, REDFUN must first analyze the functions that call it, in order to
determine what arguments are known and what their values are. It was only when
the need for closed reduction was experienced in the GIP/GUP experiment, that
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the REDUCED option in REDFUN was introduced. A function with this
declaration will be simplified when a call to it occurs, and the simplified version
of its definition is stored separately as a new function, and a call to it is inserted
in the code. Also, REDFUN keeps track of what specialized functions it creates,
so that if the same specialization is later used again, it does not have to create a new
copy, but can make a second call to the existing specialization.

l

FiG. 2.

6.2. The effect of REDFUN on the function XTPR in the GIP/GUP-package

XTPR is declared REDUCED, REALIND and REALPROP are declared OPEN
and TAKEIN, TAKENDL and TAKEFL are declared PURE. XTPR/F1 is the
new version of XTPR generated by REDFUN. The function OUTIND has been
reduced to OUTIND/F1, but is not shown here. It uses however IDTI, IDTP and
CARRTERM as free variables, which are bound in XTPR/F1.

Before:
(REALIND [LAMBDA (1)
(COND ((GETL ILI (QUOTE INTNAME)))
T 1D,
(REALPROP
[LAMBDA (1)
(COND ((TAKEFL FLI (QUOTE FUNC))
(APPLY* I A))
(T (GETP 4 1)),
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(XTPR

[LAMBDA (IX) .
(PROG (P ILI FLI CARRTERM I SAVE OUTFUNC IDTI IDTP)

After:

(XTPR/FI1

(SETQ ILI (CDR IX))

(SETQ IX (CAR IX))
[COND ((NULL (ATOM (CAR ILI)))
(SETQ FLI (CAR ILI))
(SETQ ILI (CDR ILI]
(SETQ OUTFUNC (TAKEIN ILI (QUOTE OUTFUNC)))
(SETQ I (REALIND IX))
(SETQ P (REALPROP 1))
[COND (OUTFUNC (SETQ P (APPLY* OUTFUNC P]
(COND ((NULL P) (RETURN)))
(SETQ IDTI (PLUS (TAKEIN ILI (QUOTE INDENTI))
IDTC))
(SETQ IDTP (PLUS(TAKEIN ILI (QUOTE INDENTP))
IDTI))
(SETQ CARRTERM (TAKENDL ILI (QUOTE CARRTERM)))
(OUTIND I P (TAKEFL FLI (QUOTE VERT)))
[COND ((SETQ SAVE (TAKEIN ILI (QUOTE SAVE)))
(RPLACA SAVE (APPEND (CAR SAVE)

(DTST P]
(RETURN]).

[LAMBDA NIL
(PROG (P CARRTERM IDTI IDTP)

(SETQ P (GETP 4 (QUOTE RELATION)))
(COND ((NULL P) (RETURN)))

(SETQ IDTI 2)

(SETQ IDTP 4)

(SETQ CARRTERM (QUOTE =))
(OUTIND/FI1 NIL P)

(RETURN]).

7. Modes of Using the Partial-Evaluation Compiler

The purpose of the REDCOMPILE program was specified in Section 2, namely,
to speed up the optimization process when R(P,Q) has to be computed repeatedly
for the same P but different Q. In principle, REDCOMPILE is a program K such

that

K@P)Q) = R(P,Q).
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We shall henceforth refer to the computation of K(P) as compilation, to the
computation of P'(Q) where P’ = K(P) as compiled generation, and to the computa-
tion of R(P,Q) as interpreted generation. In all examples that we have run, compiled
generation has been considerably faster than interpreted generation. Compilation
takes roughly as much time as interpreted generation, but only has to be performed
once for each P.

The operator K which has been specified above describes the principle of the
REDCOMPILE program, but the actual program deviates on some points. First,
we actually need REDCOMPILE for two different though related purposes. One
is for specializing functions, as K does and the other is for beta-expansion. One
needs a function L which takes the definition of a function foo and generates a
function foo’ which can be applied to the actual argument list of foo, to generate
an appropriate form to be inserted. L should satisfy

P°l= L(P)*],
where = in this case is an equivalence between forms, where / is an argument list,
and where ° is an infix operator for LISP’s cons function and * for the apply function.

Although it is intuitively clear that the functions K and L are related, it is not
easy to express one in terms of the other. This can be done better if we first
introduce the exact conventions for the compiler. Just like redfun, the function
redcompile must actually be provided with two arguments. The first argument is a
lambda-expression (or an atom whose function definition is a lambda-expression);
the second argument is a list of atoms, each of which should occur in the first
argument, either as a lambda-variable, or as a free variable. The second argument
informs redcompile that this variable is to be considered as known in the following
sense: if it is a lambda-variable, then the corresponding argument in 1 will be a
constant or can be reduced to a constant at generation time (it may be a variable
whose value is known, or an expression consisting only of constants and of
functions which can be evaluated at simplification time). If it is a free variable, its
value in the given environment will be known at generation time. (This applies
both to compiled and interpreted generation. We define those concepts similarly
for L as for K.)

The list of parameter variables is particularly useful in cases like the following:
Suppose L is applied to the simple function definition

(LAMBDA (X Y)(COND (X (CONS X Y)) (T Y))).
If X is not a parameter, L could generate
(LAMBDA ... (LIST 'COND
(LIST (GETARG X)
(LIST ‘'CONS (GETARG X) (GETARG Y)))
(LIST T (GETARG Y]
whereas if it is a parameter, L could generate
(LAMBDA ... (COND
((ARGVAL X)(LIST 'CONS (GETARG X)(GETARG Y)))
(T (GETARG Y].
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In the former case, the execution of the conditional is postponed to execution time
(of the generated program), in the latter case the test is performed at generation
time.

There exist some special cases, however, where we cannot perform the simplifica-
tions until the second step of the process, i.c., when we know the values of the
variables. We can consider a conditional expression with both known and unknown
conditions. The strategy mentioned above will not be powerful enough to deal
with this, since we want the (LIST 'COND-version, but may want to omit some
or other branches, depending on the values of the known variables. This type of
simplification is significantly more difficult to handle in redcompile than in redfun.
In practical use, we have found only very few cases where it is necessary, and
handled them by using redform as a post-processor to code generated through
redcompile.

Consider the case where the definition of a function G calls another function H,
and L is applied to both of these. When L(G) is computed, L can analyze the
argument list for H in each call, and determine which arguments will be “known’’.
This information need therefore be specified by the user on the top level only.

In such a case, L(G) must contain a call to the saved value of L(H). Some
efficiency is gained by adopting the following somewhat complex calling conventions
for L(H): if H has a definition (LAMBDA (v1 v2 . .. vk) a), then L(H) shall have
the form (LAMBDA (v1 v2. .. vk) @), where the same variable names are used.
L(H) assumes that all arguments which are provided for known lambda variables
should come as their known values, whereas other arguments will come as forms.
For example, if the definition of G contains the sub-expression

(HA4 B)
and neither 4 nor B are known in G, then L(G) will in the corresponding position
contain
(H* '4'B),
where H* is defined as L(H). If 4 is known, L(G) will instead contain
(H* 4 'B).
This convention facilitates particularly the case where known values are passed on
from one auxiliary function to the next, and all of them are to be compiled. L(H)
must of course be designed to treat its arguments appropriately and according to
this convention. Using it, the relationship between REDFUN and REDCOMPILE
is:
redform([lx ° argl,al] =
= redcompile[lx,vl] * prepevlargl,al,mask[cadr[Ix],vl]] ¢))
if all variables in the list v/ are bound in al. Here redcompile is the function L
with the second argument v/ added, and with the special calling convention for the
generated code implied by prepev. The asterisk stands for apply in an arbitrary
binding environment, and the auxiliary functions prepev and mask are defined by:
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mask[ll,vl] = if null[ll] then NIL (1a)
else cons[memblcarl[ll],vl],
mask[cdr[ll],v1]],
prepevlargl,al,m] = if null[argl] then NIL (1b)

else cons[if car[m] then evallcar[argl],al]
else carlargl]),
prepev|cdrlargl],al,cdr[m]]].

It has been our experience that in each application of REDCOMPILE, it was
necessary to hand-tailor the interface from the generator to REDCOMPILE.
Furthermore, the two levels of program generation involved make it very easy to
make mistakes in using redcompile. 1t is therefore desirable to prove that the
usage is correct. The proofs can be worked out using the known (or at least assumed)
relation between redfun and redcompile. We shall illustrate this with two examples.

The first example is for the generation of direct storage and retrieval routines in
PCDB, as described in Section 4. Each generator takes a relation R as argument,
and essentially has the form

{LAMBDA, (R}, (REDFUN, (FUNCTION, {LAMBDA, I, a, vI>>>
with different /I, a, and v/ in different generators. The function body a typically
contains calls to other functions. REDFUN beta expands these functions several
levels down. When REDCOMPILE is used, it must be applied both to the
auxiliary functions, and to the explicit argument of REDFUN in the generator.
The former operation is the archetype use of redcompile, and is trivial once the
list of known variables is available as a side-effect of the latter mentioned operation.
In order to speed-up the generator, it is changed into the following expression:

{LAMBDA, <{R>, {LIST, 'LAMBDA, 'll, ac)>,
where ac is a form which is computed as
ac = redcompform[a,vl],
where redcompform is an auxiliary function to redcompile, and is characterized by:

redcompile[ (LAMBDA, lI, a>,vl] = <LAMBDA, II, redcompform[a,vl]>. 2

The equivalence between the old and the new generator is proven as follows. Let
the generation-time binding environments be the association-list e. Introduce a
function funct[fn,vl,allwhich corresponds to the Lisp pseudo-function FUNCTION
but where funct is really a function of its arguments, and where its third argument
explicitly specifies its binding environment. We have

Sunct[fnl,all = <FUNARG, fi, pair[vl,evlis[vl,al]]>. 3)
We have (1), (1a), (1b) and (2) as premises, and also need a part of the definition of
redfun:
redfun[{(LAMBDA, i, a), al] = {LAMBDA, I, redform|a,al]) 4)
and the rule for introducing LAMBDA-variables (which is a consequence of the
definition of eval):
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if 1l is a list of variables, a is a form, and «l is an association list, and each
variable in // is bound in al, we have
evalla,al] = <LAMBDA, I, a) * evlis|ll,all, (5a)
where the application indicated by * is to be done in al.
It follows that under the same assumptions
a =g {LAMBDA, I, a) ° I, (5b)
where the index on the equivalence sign indicates the environment in which the
equivalence holds.
Finally we need the following:
LemMA. If all bindings in the association list al also occur in the association list e,
and
ax,d,
then it follows that
redformla,al] = , redformla’,al].
The lemma follows immediately from the property of redform that was specified
at the beginning of Section 3.
With this, we are ready for:
PROPOSITION
redfun] funct[{LAMBDA, [I, a>,vl,e],NIL] =,
=~ (LAMBDA, li, eval[redcompform{a,vl},e]>,
where ==, means that they are equivalent in the generation environment e, for all
choices of a, vl, and Il.
Proof. By (3), the left-hand side of the expression equals
redfun[{FUNARG, <LAMBDA, II, a), pair[vl,ov}>,NIL],
where vv = evlis[vl,e], i.e., the list of values of the variable-list variables in the
generation-time environment. Here //, a, and vl, but not vw are known at compile
time. By the FUNARG case of redfun (see Section 3), this equals
redfun[{LAMBDA, I, a, pair[vl,vv]].
According to (4) this expression equals
{LAMBDA, II, redform|a, pair[vlvv]] ).
By (5b) and the lemma, this is equivalent in e to
{LAMBDA, I, redform[{LAMBDA, NIL, a) ° NIL, pair[vl,vv]]>
which by (1) is equal to
{LAMBDA, lI, redcompile]{LAMBDA, NIL, a)>,vl] *
prepev[NIL, pair[vl,vv),mask[NIL,vI1] >.
By the definition of prepev, this equals
{LAMBDA, II, redcompile[{LAMBDA, NIL, a>,vl]* NIL)
which is equal to
{LAMBDA, II, {LAMBDA, NIL, redcompformla,vl]y * NIL)
according to (2), this equals
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{LAMBDA, i, eval[redcompform[a,vl],e])
using (5a). In summary we have
redfun] funct[{LAMBDA, II, a>,vl,e],NIL] =,
=, (LAMBDA, i, eval[redcompformla,vl].e]}.
This completes the proof.

Only one step in the proof is an equivalence, and the others are equalities. The
equivalence really arises because of a technicality, and is not essential. If redform
is appropriately defined, it goes away. We should therefore have equality rather
than merely equivalence in this result.

It is straightforward to write a small generator-compiler which changes the old
generator into the new one, and which uses redcompile as an auxiliary function.
However, since this is an equivalence transformation, it is tempting to use redfun
itself for speeding up the generator. This is done as follows: The function redcomp
is defined through

redcompllx,vl] = list LAMBDA,cadr[ix],
eval[redcompform[caddr[Ix],vl]]]

and is declared OPEN. Also, the function redcompform is declared PURE, which
is appropriate since it is free of side-effects. Finally, the result above is implemented
as a rule
{REDFUN, <FUNCTION, Ix, vl), NIL) —
- (REDCOMP, (QUOTE, Ix), <QUOTE, vl
in the COLLAPSER property of the atom REDFUN. With this, redform will
change the original generator, first to the form
(LAMBDA, <{R>,
(LIST, '‘LAMBDA, 'll, (EVAL, <QUOTE, ac)>>>,

where ac is the value from redcompform, and then (using another simplification
rule) change (EVAL (QUOTE ac)) to ac. This is the desired result for improving
the equivalence.
The second example is taken from the compilation and optimization of an axiom
in PCDB. The original code for this was essentially
redform[{PROG, . . ., makbind|. . ],
makcont[. . ],
makbind]. . ],
makcont|. . .],
...>NIL]
with the addition of some labels etc., in the prog-expression. The function
makbind[ln] is defined as
{BIND, kwote[car[l]], kwote[cadr[I]] . . .>,
where / contains information of the conditions in the axiom. Makcont is analogous.
The code generation will be speeded-up by redcompiling bind and cont, and their
auxiliaries. In this case /I = vl, in the equation (2), i.e., all the known variables
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will be arguments and there will be no known variables which are not arguments.
This is just the opposite of the previous example. REDCOMPILE can be intro-
duced by omitting the call to REDFUN and changing the definition of makbind
into
redcompile[bind,ll] * {car[l], cadr[l], ... D,
where the call to redcompile can be evaluated once and for all. Makcont is redefined
similarly. The equivalence is proved as follows:
redform[{PROG, . ..makbind[. . ]},...>,NIL] =
= (PROG, ... redform[makbind|. . ],NIL},....>
where the essential element in the list equals
redform[{BIND, kwote[car[l]], kwote[cadr]l]], . . .»,NIL]
which, if the definition of bind is Ix = {LAMBDA, v/, a), equals
redcompile[lx,vl] *
prepev[{kwote[car[l]], kwote[cadr[l]], . .. D,
NIL,mask[vl,vl]]
which, since mask[vl,wl] = LT, T, ...) equals
redcompilellx,vl] * {car[l], cadrll], . .. >.
Clearly equality in this case assumes that redform does not make any change to the
top level of the prog-expression besides applying itself to each form in it.

In the completed application, the programs treated by REDCOMPILE were
written in full Lisp. It was easy to implement the new rules that were necessary to
treat the special functions, and to expand the capability of simplification. Some
restrictions had to be put on the programs, just as with REDFUN. The most
serious of these are that assignment of new values to variables which are considered
as known, creates problems. With REDCOMPILE it is easy to manage this for
the majority of situations, but there exists cases that REDCOMPILE cannot
manage. :

8. The REDCOMPILE Program

REDCOMPILE is in many respects designed very similar to REDFUN, although
it naturally uses somewhat different strategies.

REDCOMPILE expects every function to belong to the same function-classes
as REDFUN does. If the same declarations are used, the finally resulting programs
will be equivalent. The only exception is that the REDUCED class is not imple-
mented as yet.

The functions are treated in a totally different way in REDCOMPILE, though,
since at the time it works, compilation time, it does not have access to the values
of variables considered as known. These values will not be known until generation
time, i.e., when the resulting program is evaluated to give the optimized version
of the original program.
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. The central function is redcompform, which was formally defined in Section 7,
and is an analog of redform. It takes a form as argument, together with a list of
known variables. As result, it gives a form which evaluates to a form that is
equivalent (in the strong sense) to the input form.

If the input form given to redcompform is an atom, the result is almost trivial.
If the atom is a variable that is expected to be known at generation time, the result
is a form that shall evaluate (at generation time) to a form that evaluates (at
execution time) to the value. The former is

{LIST, QUOTE, form)
which evaluates to
{QUOTE, v)

at generation time (if v is the value).
if the input form is non-atomic,
{fn, arg,, args, . . ., arg,»
redcompform will proceed exactly as redform. If fn belongs to any class but
SPECIAL, redcompform will first call itself recursively on arg; until it encounters
atomic forms. Depending upon the class of fi, it will then proceed in different
ways.

If fn is PURE, fn is not immediately applied to the arguments even if they are
considered as known, since we can not expect to have access to their values until
generation time. We postpone the evaluation until then by returning

{LIST, QUOTE, {fn,... >,
where the dots stand for the result of redcompform on arg;.

It is easier to find a strategy for redcompform when fi is OPEN than is the case
with redform (defined in Section 3), since we do not know the values of the
arguments. To do the proper compilation of fin, we need only to know which of its
arguments will be known at generation time, i.e. consist only of constants and
known variables and/or functions without side-effects of these. When redcompform
is applied to the arguments it determines for which of these this is true, and there-
fore this is known when the beta-expansion of fi is done.

One way to proceed with this would be to substitute the lambda-variables for
the arguments as we compile the function body of fin. This would not be so efficient,
since the arguments have to be evaluated at generation time, and this would have
to be done once every time they occur in the function body. An easier way to solve
the problem, and prevent this, is the following:

(a) Make a call to redcompile with fn, where the list of known variables is
generated by matching the list of lambda-variables with the list of arguments.
This can be done without difficulties arising because the arguments that are to be
known are easily distinguished from the others.

(b) Save the result of this call—which is a lambda expression—on the property
list of fu.
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(c) Insert a call to this lambda-expression in the place of the original call to fi.

(d) Repeat this recursively when a new OPEN function is encountered. Thus
the insertion of the function body of fi is postponed until generation time.

One problem is not solved by the method described above, namely when the
beta-expansion of a function creates a new sequence that can be simplified. This
is not recognized at compilation time. The easiest method to solve this would be
local calls to redform at generation time at the places where this might happen.

SPECIAL functions are treated in the same manner as redform does, i.e. red-
compform is applied to the proper subforms by an analogue to the REDUCER
property of the function name that redform uses.

The no-op case, i.e. the LAMBDA class, is not trivial for redcompform, since
it can not return the form unchanged, with only the arguments properly treated.
Instead it must return a form that evaluates to a form differing from the original
only by having simplified arguments. This is done by returning

(LIST, <QUOTE, fu),...>.
The result of an application of redcompile to a program will be a program that is
considerably more complex—but when evaluated gives the same nice optimized
version of the original program as the one redfin makes.

Appendix

We will here give some figures, which we obtained from the various experiments.
‘We will compare execution time for unspecialized and specialized code both when
the generated code was interpreted and compiled (by the Lisp compiler). Figures
to compare the speed of REDFUN and REDCOMPILE with the Lisp compiler
are also given.

The first example is to generate code from parameters in the PCDB application.
In a typical testrun we obtained the following results:

time time
interpreted code compiled code
unspecialized code 3.62 sec. 2.29 sec.
specialized code 1.11 sec. 0.52 sec.

To get an idea of how slow REDFUN and REDCOMPILE are compared with the
LisP compiler we have made the following testruns:

We use a generator as described in Section 4, to generate a storage function
for a binary relation (in PCDB a STOREDEFINER for the relationtype CLEAN-
LINK). In the first test we measure the time to generate the funarg-expression and
to optimize it by REDFUN. Next is to measure the time it takes to run the generator
through REDCOMPILE which also implies redcompilation of the generators
auxiliary functions, and then measure how fast the retrieval function is generated
by this redcompiled generator. At last we compile the code in the original generator
and its auxiliary functions with the normal LisP compiler.
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time
(a) generation of a specialized storage function by optimizing
with REDFUN (interpreted generation). 2.80 sec.
(b) redcompilation of the generator and its auxiliary functions 7.00 sec.
(compilation).
(c) generation of a specialized storage function by the generator 0.68 sec.
produced from step (b) (compiled generation).
(d) compilation of the original generator and its auxiliary 8.34 sec.

functions by the Lisp compiler.
In the next example we used the following forward axiom
SC.y,2) A SGe,y,T) A S(x,0,2) © S(x,z,0).
We obtained the following figures when this axiom was used in an application:

interpreted code
unspecialized code ° 12.19 sec.
specialized code 3.18 sec.

In one typical experiment, the following figures were obtained for the original
GUP program and the specialized version generate REDFUN:

original program specialized program

size (approx. nr of cons-cells) 2150 1599

number of functions 29 22

time, uncompiled code 68.82 sec. 7.67 sec.

time, compiled code 5.16 sec. 2.22 sec.
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