DATALOGILABORATORIET 1974-07-05 DLU T74/20
Inst f informationsbehandling
Uppsala universitet

Program structure and process look-ahead

in language understanding programs

by

) Erik Sandewall

’

Abstract: The parsing and assimilation (= internaiization) aspects
of language understanding programs are considered. Several approaches
%/'% for writing such programs are discussed with fespect to the structure
| that they support and encourage, in the program and the grammar. A new
feature in programming languages, called process look-ahead, is
suggested to be useful in some cases for structuring the

grammar/program.

Sponsor: This research was supported mn part by the Swedish Natural

Science Research Council (Dnr 2654-009)



A program which analyzes sentences in a non-trivial subset of natural
language, and relates them to a data base, must necessarily be quite
complex. It is therefore an important issue how to structure language
understanders so that they are easy to write, change, and extend. Some
of the more specific problems involved are:

1. Subdivision of the task into separate sub-tasks. For example, one
might decide to separate out "parsing" or "injfference", although
smaller and more specific modules might also be useful. Regardless
of how the modules are chosen, there necessarily must be a large
number of interdependeﬁcies between them. It is desirable that the
interdependencies should be few, but it is more important that both
modules and interdependencies should be clearly defined. It is also
well known that-efficiency, as well as good structure within the
modules, may be hampered if the‘task is broken down in an unsuitable
way.

2. Choice of notation, e.g. a programmihg language, which encourages
well—structured‘programs, and avoiding notations which are supposed
to encourage "bad" programs. The goto statement is of course the
primari%example of the latter, in the opinion of many. It has also
been suggested (Sussman 1972) that fully automatic backtracking en-
courag%; programs which, amongst other vices, are hard to debug.

3. Undersé! ding the "character" of the problem in the right way, and
choosiné a notation which supports it. For example, suppose a pro-
gramming task which naturally requires recursion such as formal

differentiation, is tackled by a programmer who has not heard about

recurecursion and the techniques for implementing it, and who does not



invent it. He is then likely to come up with a complex and badly-
structured program, compared to the recursively written program

that would have been possible.

This paper éonsiders some approaches to language understanding systems
with respect to program structure. In particular, the paper proposes
one language featﬁre which, although much less dramatic than reéursion,
still is cléimed to help structuring certain problems in an appropriate
way. The feature can be characterized as look-shead in the computation.

One example is given to show the proposed feature in a practical context.

There have been several approaches to language understanding programs.
In the classical approach the program was organized in several "passes".
The first pass was a parser which used a grammar, and usually also a
lexicon, but nothing else, to transform ﬁhe sentences to a parse tree.

It was followed by an assimilation (or internalization) routine, which

related the parse tree to the data base, found referents to anaphora,
resolved ambiguities that could not be handled within the sentence, etc.
Both the first and the second pass had to scan through the whole sentence,
or its associated structure descriptor. They were followed by a third,
operative step which took an action on the assimilated parse. In the
simple-minded question-answering application, the operative step stored
assertiong in the data base, and retrieved the answer for éuestions. It
was often:hot necessary for the third pass to scan the whole sentence.

The classical approach has been described e.g. by Palme (1971).

The classical approach has some advantages, for example that one can

rely directly on linguistic models such as transformational grammars



for the parsing step. However, it also has some obvious disadvantages,
mainly that it assumes that the parser should operéte without contact
with the data base, generate some proposed "readings" of the sentence,

and refer them all to assimilation. Several of the branches traversed

by the parser in its search, might have been cut much earlier if parsing
and assimilation could be done in an interleaved rather than a sequen-
tial manner: Conventional parsers quickly become overloaded because of the
combinatorial expiosion of possible "readings", and the only efficient
way to avoi& the explosion is through the use of semantic knowledge of
various kinds (semantics of individual words and phrases, knowledge of

the domain of discourse, etc.). Such information should be brought to

bear on each part of the sentence as soon as it has been parsed.

Such considerations led to the programmed grammar epproach, where Wood's

Augmented Transitional Network Grammars (Woods, 1969) and Winograd's
PROGRAMMAR (see Winograd, 1972) led the way. In this approach, the "grammar"
is expressed in a specialized programming language. Teh grammar/program
operates on a sentence and may make decisions about structure (parsing
steps), query the lexicon or the data base (probably part of parsing),

and extend or modify the data base (assimilation) and its discretion.

What program structure does such a system encourage? According to WOOds

(personal communication), a recommended method for writing an augmented

transitional network (ATN) grammar is:

1. describe an approximation to your desired input language using a
context-free grammar. Often the approximation is a crude superset.

2. re-write this context-free grammar as network grammar rules, or at



least, keep it in the back of your mind when you write the network

grammar.

- make local (in some sense) modifications to the network grammar
in or@er to improve efficiency. Some permissible operations on a
grammar are described in (Woods, 1969), but many others are pos-
sible. Often the modifications serve to merge several would-be pro-
ductions into one composite structure. Thus modularity is preserved
although wi;h a greater granularity.

- insert appropriate checks which relate proposed parses to various
semantic information, e.g. in the data base. This serves the double
purpose of increasing efficiency and fitting the grammar more closely
to the desired input language.

- inseft operations which construct the desired output from the parse
(e.g. using the ATN primitive BUILD), and if desired, operations

*

which effect the data base.

This method of organizing ATN grammars, which we shall call the standard
one, encourages a reasonably good grammar structure. This will be further

discussed in a later section.

Wooas's system or very similar ones have been used by a number of other
reasearchers for writing grammars. (Winograd's system has also been used,
although apparently to a smaller extent). During the past few years, there
has also been some new trends. One important idea is to incorporate non-
determinism as a feature into the "host" programming system, usually the
LISP system. This approach has some obvious advantages over the ATN parser,
which is an extra level above the programming system. It has been used in

a parser at SRI (Paxton and Robinson, 1973).



Wilks (1973) has described a language analyzer whose design is new in
several ways. The input text is first cut up into fragments, which are
often only a part of a sentence. Each fragment is analyzed independently
and converted to a coherent structure, and then these structures are in-
tegrated. To analyze a fragment, each word is exchanged for its semantic
definition (or a Qhoice of several such); a pattern-matching operation is
performed whereby the fragment is classified and assigned a structure,
and links between' the semantic definitions of the words in the fragment
are found. The parse is considered more successful if there are many such
links. |

f

;
It should Be clear that Wilks' approach is radically different from both
the classiégl approach and the programmed grammar approach. From the
structuriniiviewpoint, it seems 3 priori that it should be able to do as
well as a ﬁ‘ogrammed grammar. However, since the programmed grammar approach
is in relatively common use, and since Wilks' system has not yet been m.uchI
tested, we shall restrict our continued discussion in this paper to the
programmed grammar approach, and in particular, to ATN grammars. Some
alternative solutions within the latter approach will be discussed toward

\

the end of the paper.

Program structure in the classical approach

The classical approach allowed well structured programs and grammars. The
strict division between parsing and assimilation was probably an advantage

from the structuring viewpoint, at least in systems with a limited ambition.



Its chief deficiency was in efficiency, although of course a grammar-
writer of programmer might be tempted to sacrifice grammar structure in
attempts to regain some of that efficiency. The parser was typically
driven by a grammar, which consisted of a number of productions and/or
transformations, each of which could have a reasonable intuitive inter-
pretation.(Some of the large transformational grammars would seem to be
counter examples Of this, at least in the eyes of an outsider, but this
might be because the grammar was overloeaded with tasks which could other-
wise have been handled by the assimilation step). Finally, the assimila-
tion of a parse tree can be described as a set of transformations associa-
ted with.the symbols which mark non-terminal nodes in the parse tree,

where again the transformations typically have an intuitive interpretation.

The modularity of assimilation operatorsy and their place in the system,
éhall be exemplified with a simple procedure for assimilating noun phrases
formed with the definite article. Using the approach in (Sandewall 1971,
1972), the parser is assumed to map the sentence into a tree with lexical
items at the leaves and "function" words (within or outside the language,
but chosen from a fixed and relatively small vocabulary) and the non-
terminal nodes. For example, the sentence "The dogs that John brough, are

barking," might map into the structure shown in figure 1.

Assimilation is performed bottom-up as an evaluation, where terminal nodes

evaluate to themselves, and non-terminal nodes apply the procedure named



Kennel

bark
subject the
AND\
Plural WHICH
dog
Figure 1

subject John

by the symbol in this node, to the evaluated sub—trees below the node.
Thus in evaluating "the father of my mother", represented by the struc-

ture in Figure 2.

7

father My
mother

Figure 2



we do the following evaluations:
1. father evaluates to itself
2, mother evaluates‘to itself
3. My(mother) evaluates to some node n which names my mother

4, OF(father,n) evaluates to some structure p which characterizes the

property of béingig's father.

5. The(p) evaluates to some object which has or obtains the property p.

Assimilation of the full sentence results in some structure a, and if this
sentence was given as an assertion, the operative step of the program might
choose to store a in the data base, i.e. store a link between a and the (node
for the) present context, indicating that a holds in the context. The storage

operation might also trigger some forward deduction.

The definite article is associated with a 'procedure the(p,cx), where the
argument p is a property, and the second argument cx is optional, and
specifies the contexf in which the denoted object has the property p. In
practice, the procedure must represent an idealized version of the English
definite article in the sense that there are some very difficult cases which
can not be handled. The procedure is non-deterministic, and tries a number
of cases, of which the following are the most important ones:

1. (Main case). A list of lately mentioned objects is scanned to find some
which has (have) the property p. The exact choice of which objects to
consider depends on the position of the phrase The(p) in the sentence's
parse tree. The default choice’of coptext in which the object has the
property also depends on the position of the phrase.

2. (Default case). If not other case applies, a new object o is created,



assigned the property p in a suitable context, and returned.
3. (Example: "The father of John" as in Fig. 3). If the argument p is

an expression heéded by the operator OF, which corresponds to some

The
OF
faﬁher Jjohn

Figure 3

usages of the English word of, thén g¢ase (1) is permitted to consider

the whole data base, rather than just a list of lately mentioned objects.

If an object with the property p still can not be found, case (2) applies.
4, (Examples "This car is no good. The brakes don't work, and ...").

If some object o is in what we call "focus" from the preceding context,

then it is checked whether OF(p,o0) has a plausible interpretation. If

so, The(OF(p,0)) is evaluated and may return a value, or values.

Rumelhart and Norman (1973) consider this case along with our preceding

cases, and call it "foregrounding" rather than "focus".

Ideally, exactly one value shoulé’be returned from one of these cases, but
in practice this will not always be so. Particularly when case (4) applies,
the non-determinism should be used in such a fashion that the process re-

turns one value but remains dormant, so that it can later be recalled and



10

asked to return some other value. This is accomplished e.g. in Conniver

with the AU-REVOIR primitive (McDermott and Sussman, 1972).

The four cases that have so far been specified are particularly convenient
to work with since they are "local", i.e. they only require access to the
"arguments" = the evaluated subtree below the node labelled The. The finer

points in case (1) are an exception to this. There also remain some other

-

cases which are not local, such as:
5. (Example: "John is the author of this book"). We admit structures

such as in figure 4, where o is an object and p a property. The

IS
o b
Figure L

given example results in a parse tree whose structure is that of Figure
5. The operator the should then be the identity function and return its

evaluated argument. It should also have the side-effect of noticing

Figure 5 P



11

that only one object has the property that its argument denotes.
6. (Example: "He thought that the author of the book was dead"). In the
referentially opaque case in modal constructions, we do not want
_Thegp) to evaluate to an object which has the property p in the main
context of the text, but instead to an object which "has" this property

in a certain other context (e.g. some person's beliefs).

-

The following case may have to be handled separately, or can be treated as

a special case of (6), depending on which system of representation is

chosen for the data base:

T. (Example: "If a hungry cat meets a mouse, then the cat is likely to
eat the mouse"). In expressions whose logical counterpart obviously

require variables, English often introduces each variable using the

+

indefinite article, and then uses the definite article or some equiva-

lent (e.g. a pronoun) for further references to the same variable.

In case (5) and in some possible solutions to case (7), the procedure
associated with the name the must look "upwards" and perhaps "sideways"
in the parse tree, and can not be restricted to look "QOWn" at the argu-
ments. The natural way to implement case (6) is to let the procedure for
the have access to a free context variasble that can be bound higher up
in the evaluation (assuming a LISP-type evaluation scheme). One might
also imagine cases where an opergtor wants to look at its unevaluated

arguments. We shall refer to all of these as non-standard evaluation

schemes.



12

It is well known how to implement such non-standard schemes; the imple-
mentation problems will only arise in the programmed grammar approach.
Also, non-standard séhemes do not in themselves disturb the structure

of the assimilation "program", and do not offer any particular temptation
useb"bad" programming practices. The assimilation program can remain a
collection of proéedures, associated with symbols in the parse gree, and
both symbols and procedures can hopefully be assigned their own, intuiti-

vely satisfactory interpretations.

The definite article is used in this paper to illustrate some basic con-
cepts with regard to assimilation operators. Quite naturally, the cases
that have been given here are not sufficient as a linguistic description
of the use of the definite article in English. Our claim is instead that
assimilation of sentences can be structured with advantage as an evalua-
tion,that the definite article could correspond to one assimilation
operator, and that problems because of non-determingsm and the need for
non-standard evaluation schemes are characteristic for assimilation

operators.

Modularity in the programmed grammar approach

Parsers for programmed grammars can in general be viewed as interpreters
for non-deterministic programming languages, so they can in principle be
used to implement any approach one chooses to use. Specific approaches

therefore correspond to specific ways of organizing the grammar/program.

In particular, one could use a programmed grammar to implement the parsing

step of the "classical" approach. The sentence is then scanned in at least



13

two of the "passes": parsing and assimilation. From the point of view of
modularity, this solution is not much different fpom the classical approach
considered in the preceding section; the only difference being (perhaps)

that network grammars tend to have larger modules then production grammars.

At the other extréme, there is the case of "one-pass" systems, where the
syntactic analysi§ is integrated with all assimilation operations. There

is finally an intermediate case, namely a two-pass system where some
operations that would have been relegated to assimilation in the classical
approach, are performed in the first, grammar pass. Such operations could
include the use of semantic information about individual words, word mean-—
ings, and phrases. éther operations, such as determining referents, are
saved to the second pass.

While the classical approach always assuﬁed two passes through the sentence,
the programmed grammar approach can therefore be used with either one or
two passes. (In counting passes, we now do not consider the operative step,
where e.g. questions are answered, and the possibility that it would scan
the internalized sentence). In choosing between the one-pass and the two-
pass approach, the issue is clear: If it is very useful to assimilate
phrases early in the sentence, and use the resulting information when pars-
ing other parts of the sentence, then one prefers the one-péss system. If
it is more useful to parse the latter parts of the sentence, and use the

information derived therefrom in-assimilating earlier parts, then one

chooses the two-pass approach.

The usefulness of assimilated information for the continued parsing is well



1k

recognized. We shall therefore discuss one-pass parsers with some detail,
in order to find out whether and how information from continued parsing

can be useful for assimilation.

A reasonable method for writing & one-pass grammar is the following:

Design an ATN—graﬁmar according to the standard method given earlier in

the paper, excluding assimilation operations such as finding referents.

(The resulting grammar would certainly be useful for the two-pass approach).
Then modify the grammar by inserting calls to assimilation procedures in
appropriate places. As a rule of thumb, whenever a two—pass grammar would
create a sub-expression, often using a BUILD command, the one-pass grammar

should evaluate that sub-expression immediately.

In one-pass grammar, it is important that the non—-determinism required by
assimilation, and the em® non—-determinism of the parser interact correctly.
This might be easy or very difficult, depending on the parser system and

its host programming language. Apart from this, the method is straight-
forward as long as the assimilation operators do not need any non-standard
evaluation schemes. Nothing is then changed compared to the two-pass approach
except the order of execution. However, as even the simple examples above
made clear, non-standard schemes are needed even for moderately difficult
sentences. The question is then whether they can be provided within the

grammar/program system.

In ATN terms, the following is required. Each level in the parsing process

(a new level is created by each PUSH operation) must have access to stack



15

functions, whereby it can find out where it is being called from, and
access registers on higher levels. Furthermore, to account for situations
as in case (6) of the the procedure ('"he thought that the author of the
book was dead"), one level must be able to re-set a register e.g. for

context, and lower levels must be able to access the value.

Such facilities exist, or can easily be implemented in current systems.
However, they will only work as long as information is created on the
higher (or side-ordered) level before it is accessed. For a concrete
example, suppose the "sentence" level of a grammar is able to recognize
when the main verb implies a modality, and sets a register to indicate
this, and suppose further that the definite article procedure, called
from a lower level which analyzes a noun phrase, accesses this register.
Things then go well in sentences like "hp thought that the author of the
books was dead": "He though that" sets the register, which then may be
used by the process that takes care of "the author of the books". But it
is easy to change the example so that the information is provided only

after it is needed: "The author of the books is dead, I think".

The other two examples of sentences which require non-standard evaluation
schemes can be modified similarly: "The author of the book is not known"
is again a statement about the property of being author of the book, and
therefore the noun phrase should not evaluate to its referent. In parsing
"A hungry cat will try to catch any mouse it sees", as long as the grammar
has only parsed "a hungry cat", it does not know whether the general or

the specific sense is intended.



16

From a program structuring viewpoint, this is the kind of problem for which
one must find an appropriate programming technique or language feature,
and where (as with recursion) the programmer is otherwise likely to write
a badly structured program in trying to deal with the problem. One candi-
date method is to let the lower level split into several computational
branches, each anticipating one possible continuation on the higher level,
and to arrange that the higher level suppresses all branches except the
right one.4This m;thod is however not.fully satisfactory, partly because
the same lower-level "subroutine'" might sometimes be used when the higher-
level information is already accessible, and therefore only needs to be
checked, and sometimes when it is not yet accessible. Another reason 1is

that the same highef—level information might be needed several times on

lower levels. .

The systematic solution is instead to define the parser/interpreter so
that a variable may be accessed regardless of whether it has been assigned
a value or not, and‘if it does not yet have a value, the system takes the
responsibility for splitting the computation into several branches, some
of which are suppressed when the value is finally set. The primary need

is for the ability to inspect future values of variables (or "registers",
to use ATN terminology) in this fashion. In some cases, one might also
wish to access other information that will become availagble in the future
computation, such as the fact that the process executes a certain state-
ment in the program (or passes through some node in the ATN grammar net-

work). It is therefore appropriate to use the term the process lookshead

feature, which indicates that the executing process uses information that



17

will become available in its own future operation.

Process lookahead would fit well into very-high-level languages, but does
not exist in present systems. In QLISP (Reboh and Sacerdoti, 1974) for
examplé, an attempt to access an undefined variable may be considered as

a "fail" (causing a backtrace) or may obtain a quantity "undefined" which
satisfies f(undefined) = undefined forvmost functions.

The implementation of process lookahead raises some interesting problems.
First, it is not obvious that exactly one of the branches will eventually
survive. After a logical test on future information, which causes the pro-
cess to branch, eécﬁ-branch may behave differently, and it is possible that
each branch becomes satisfied. Or else, each branch might develop so that
the entrance criterium is not satisfied - i.e. no branch survives.

Another interesting question is the execution order for the branches. We
still consider the case where a higher level has called a lower one, and
where the lower level tests for information which will become available
later, on the higher level. We then have two or more alternative ("OR-
connected") branches on the lower level, and this group is "AND-connected"
with the continued computation on the higher level. One strategy is to
immediately continue the higher-level computation: it might‘sometimes be
possible to do this without awaiting the result from the lower level.
Ideally, one could continue on the higher level until the accessed informa-
tion becomes available. This is however only possible in situations where
one would not lose anything by a two-pass approach (i.e. the one-pass

approach does not gain anything).



18

In other cases, one of the lower-level branches may be the normal one,
while the other one(s) are exceptional cases. It is then natural to pro-
ceed with the normal branch on the lower level, return to the higher level
and proceed there, and backtrace only if the normal choice was not satis-
fied. The sentence "The author of the book is dead, I think" is likely to
cause such a backtrace. Furthermore, if the posteriori check fails, it pro-
vides heuristic information for the decision where to backtrace to, namely

3

one other of the branches set up in the process lookahead.

A concrete example

Process look-ahead has been motivated by general considerations. In

order to check the usefullness of this language feature for structuring

A 2n ATN grammar, an experiment was performed where Cedvall's ATN

compiler (Cedvall, 19T4) was imcremented with a provisional implementa-
tion of process lookahead. An ATN grammar for a fragment of English was

then written for this system.

Process lookahead for register contents was implemented as follows:
For each register which might be accessed before it had been set, a special

PREDICT arc was added early in the network. The PREDICT arc stated the

possible values that=the—regtster—roniddala_——mwd e

that could be assigned to the register, and was implemented to branch
into several processes, one for each value. Also, the later would-be
assignments to such a register were changed into DECIDE operations which

checked that the register contgired the right value, and fail-ed if this



19

condition was not satisfied.

This implementation was clearly quite inefficient, but it did serve the

intended p«

purpose of checking out a grammar smsvesssshsmeeees which assumed pro-

cess lookahead.

Some other minor }eatures also had to be added to the parser; a GETRR

primitive which accesses a given register on any super-ordinated level

(which otherwise would have had to be done with SEND operations), and a
facility whereby a lower level could find out where it is called from on
the higher level. The latter feature was also implemented in a makeshift
fashion without changing the parser, simply by adding operations to arcs
in the network which set a dedicated register FROM with the name of the

»

node that the arc proceeds from.

The grammar was written according to the method suggested above, i.e.
assimilation operations were added after the grammar proper had been
specified. The grammar is described in Figues 6-7, using the following

notation:

Full lines mean TO transfers (normal case), dotted lines mean
Jump transfers.

Double lines mean PUSH arcs, i.e. call to sub-levels. In this case the
distinction between To and JUMP is irrelevant.

WRD and MEM arcs (i.e. checks for a specific word or choice of words)

are indicated by quoting the words. Other arcs are CAT arcs.



momﬁnm AT

wilTlu

il TNGIS CIl €T, eod! TNES Ll
OINHS N
dod
LT
w@INVa
I L L LS wlTu
Z
IILNES €< 7 GINES LS LNIS
| TR m ~ WwIVHL u q0SHA
N . o
“ dod // A oTaed MM.__M-MV usSIa
N
| ~
N
| Y LNTS JII" zINgS & A _\Bzmm/
" . 7ﬂ \ an INES
i \ / R~
| N/ )
|
“ YHI-dH4d |
“ _
L o




4 N AN
R‘ ¢yoSHa yosHa

°ay
¢amyy €&———=—=zgmud —yHd~d
74 aN < NSOdTdd Had
Jod
Y IN -—— — —
g0l & '
INE
¢¢dN
ulNOHMu
WHO THM.
¢¢dN € —FspImag NOON ¢
' cav

HTOTLYY
dN
HINVN

]
a\lrmz

d0d



20

Conditions tested for, and assignments to registers, are not indicated in
the figures, but are not essential to the understanding of the grammar.
They are used in the obvious way, i.e. successive components in the sen-
tence are accumulated on each level, and then used to compose a resulting

expression in the POP (=RETURN) operation.

After this, operators for the definite and indefinite article in one—pass‘
usage were implemented along the lines suggested in the preceding section.

The following observations were made:

The assimilation operators needed two pigces of information from the

higher level. One was the "context" of the immediately super-ordinated
sentence. Teh main sentence was considered as regular; the subordinated
sentence in e.g. "I think that ..." or "..., I think" was considered

as modal, and the clauses in "if... then...." was considered as conditional.
Since the implementation of lookahead required a small and fixed number

of cases, only these three were used. In a practical systeﬁ one would of
course wish to structure them, and use "in situation s" for "regular";

"in the mind of person A" for "modal", etc. This would however not essen-
tially affect these assimilation operators.

The other information needed from the higher level was the position and

usage of the noun phrase. This required access to which higher-level arc

the lower level was being called from, and also to a register that the

higher level had to set, to distinguish e.g. "the author of the book is



21

angry" from "the author of the book is not known". This was called the

subjmode register.

The context register was sometimes used after, sometimes before it had been
logically set. The subjmode register was always used before it was logically
set.

-

There was no need for any essential changes of the grammar network in order
to implement the assimilation operators. Assignments to the context and
subjmode registers were associated with arcs late in the network, where the
proper value had been determined. The operators for the articles could then
be programmed in a clean and self-contained way. Only, because of the make-
shift implementation, it was necessary to add two nodes at the beginning of
the sentence-level network in order to make the tentative assignments to the

registers that could be accessed in procéss lookahead.

Thus the hypothesis that a pure grammar/program structure could be retained
in the one-pass system, in spite of the need for non-standard evaluation
schemes, and that the lookahead feature would be of use, was confirmed for

this example.

Two somewhat unexpected things occurred. First, for subordinated sentences
it was often possible to set the context register from outside, in the call
(using a SENDR operation). In parsing "I think that he is angry", the top
level sentence can tell the lower level sentence that it is in a "modal"
context. In such cases, the branching that the implementation does at the

entrance to the sentence level, shall be suppressed. Also, on exit from the



22

network after parsing "he is angry" (or in general a "standard" sentence)
the grammar normally sets the context register to regular, thus informing
noun phrases in the sentence who made a prediction about that. But again,
it is clear that this late assignment (i.e. check of the provisional value)

should not be executed if the context had been imposed from outside.

Another observation was that it was sometimes desirable to "unassign" a
register wﬁich haé already been assigned a value. This happened for sen-
tences such as "He is dead, I think", where the analysis procedes through
the beginnings of the sentence, and then realizes (at the comma) that the
sentence that has been analyzed so far is a subordinate one. It should then
retroactively PUSH the process that has so far been carried out, loop back

to the beginning of the present levél, and start over with logically un-

assigned context and subjmode registers.

An alternative solution would have been to make instead a PUSH operation
in order to handle the phrase "I think" (in the same example) on a lower
level, and then assemble the right structure for the whole sentence when
control returns to the upper level. This solution is however impure, and
causes trouble at least for (admittedly somewhat wicked) sentences such as

"This is a good place, he said, I think".

It is not entirely clear how a general ability to unassign registers should
be realized in a definite implementation. In the experiment, it was only set

up for a special case.



23

Modularity in other approaches

In the two-pass programmed grammar approach, where assimilation is delayed
to the second pasé, the particular difficulty for program structure that
has been the concern of this paper does not arise. The major heuristics for
obtaining a well-structured grammar is then the normal method described
earlier, i.e. to structure the grammar/program at least partly according
to a produétion é;ammar. Conversly, the structure may deteriorate if the

programmer over_uses the possibility of passing information between registers

instead of backtracking.

Some of the more reéent programmed-grammar—-type understanders are of parti-
cular interest from the structuringtviewpoint. Riesbeck (1973) has written

a "conceptual analyzer", i.e. a parser which transforms antural-language
sentences to Schankian conceptual dependéncy graphs. This program dovetails
with Rieger's (197k4) program for "processing the meaning content of natural
language utterances", which internalizes the dependancy graphs into a "memory
structure". (But whose main purpose of course is to do more advanced things:)

Thus the two-pass approach is quite pronounced in this work.

The BBN speech project (Woods, 1973) uses a grammar which can be simply
characterized as an ATN grammar with a facility to start the analysis at
any point in the grammar graph, and move both forward and backwards from
there. In such a system, it becomes even more important to have a facility

where tests using the value of a variable can be handled even if the variable



has not yet been assigned. The problem domain of the program (the moonrock
query system) presumably does not raise the need for handling articles as
discussed in this paper. It is not clear whether it should be classified

as a "one-pass" or a "two-pass" system.

The PINTLE parser (Walker, 197h) used in the SRI speech project, is predictive
because of the special problems of speech understanding. When a part of a sen-
tence has Been anélyzed, it 1s used to generate plausible candidates for

the next words. The candidates are then checked against the acoustic in-
formation. When this approach is used for non-trivial subsets of language,

it seems that one will need as much information as possible from the already
parsed parts, and in particular, that it becomes very desirable to use an

one-pass system for parsing and assimilation.

(1973) describe
Rumelhart and Norman‘a:e:se:ké&g:&ilh.a gystem for modelling human memory,

which includes parsing and assimilation

parser is implemented as an ATN network, and seems to be an one-pass system.
The proéedure associated with the definite article is discussed to some
length in the given reference, and is treated in a manner very similar to
ours. However, only those cases which manage with local information are
considered, so the problem discussed in the present paper are automatically

excluded.



25
References

Cedvall, M., Dokumentation av en kompilator och tillhdérande runtime-
system f,r nitverksgrammatiken. Memorandum DLU Th/1k,

. Computer Sciences Department, Uppsala University, 197L.

IJCAI 1973 = Proceedings of the Third International Joint Conference on

Artificial Infelligence. Stanford Research Institute, 1973.

McDermott, D.V. and Sussman, G.J., The Conniver Reference Manual.

Memo No. 259, MIT Artificial Intelligence Laboratory, 1972.

Palme, J., Making Computers Understand Natural Language. In Findler, N.V.
and Meltzer, B. (Eds.) Artificial Intelligence and Automatic Program-

ming. Edinburgh University Press, 1971.

Reboh, R. and Sacerdoti, E., QLISP, ... {full title to follow).

Stanford Research Institute, 19T7L.

Paxton, W.H. and Robinson, A.E. A Parser for a Speech Understanding System.

In IJCAT 1973.

Rieger, Ch.J. Conceptual Memory. Ph.D. thesis, Computer Science Dept.,

Stanford University, 197L.

Riesbeck, c. Computer Analysis of Natural Language in Context. Ph.D.

thesis, Computer Science Dept., Stanford University, 1973.

Rumelhart, D.E. and Norman, D.A. Active Semantic Networks as a Model of

Human Memory. In IJCAI 1973.



26

Sandewall, E.J. Representing Natural Language Information in Predicate
Calculus. In Meltzer, B. and Michie, D. (Eds.), Machine Intelligence 6.

Edinburgh University Press, 1971.

Sandewall, E.J. PCF-2, a First-Order Calculus for Expressing Conceptual

Information. Computer Sciences Dept., Uppsala University (Sweden), 1972.

Sussman, G.J. Why Conniving is Better than Planning. Internal memorandum,

MIT Artificial Intelligence Laboratory, 1972.

Walker, D,E. Speech Understanding Through Syntactic and Semantic Analysis.

In IJCAI 1973.
Wilks, Y. Understanding without Proofs..In IJCAI 1973.

Winograd, T. Understanding Natural Language. Edinburgh University Press,

1972.

Woods, W.A. Augmented Transitional Networks for Natural Language Analysis.
Report No. Cs-1, Aiken Computation Laboratory, Harvard University,

December 1969,

Woods, W.A. and Makhoul, J. Mechanical Inference Problems in Continuous

Speech Understanding. In IJCAI 1973.



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


