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Abstract: The paper considers the problem of converting
axioms in predicate calculus to deterministic programs,
which are to be used as ''rules' by a GPS-type supervi-
-sor. |t is shown that this can be done, but that the
""objects' must then contain procedure closures or ''FUN-
ARG-expressions'' which are later applied.
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Background. Retrieval of implicit information in a sem-
antic data base is a kind of deduction. One approach to
doing such retrieval has been resolution-style theorem-
proving; a later approach has been high-level program-
ming languages such as Planner! and QA4?, where non-de-
terministic programs and pattern-directed invocation of
procedures are available. The use of uniform proof pro-
cedures for this purpose has been repeatedly criticized,
e.g. in ®. Users of the high-level languages have also
been worried because their systems are very expensive
to use*’? and because the non-determinism is difficult
to control®.

There is another approach, which has roots in A.l. re-
search back to the General Problem Solver®, where one
has a supervisor which administrates a (relatively) fi-
xed set of operators, and a working set of active ob-
jects. In each cycle, the supervisor picks an object
and an operator (using any heuristic information that
it may have), applies the operator to the object, and
obtains back a number of new objects (none, one, or
more) which are put into the working set. This process
is continued until some goal is achieved (e.g., an ob-
ject is a given target set appears in the working set).

This approach has certain advantages from an efficiency
standpoint. The operators are fixed programs, which can
be compiled or otherwise transformed all the way to ma-
chine code level. The non-determinism is concentrated
to the supervisor. Still, there is room for pattern-di-
rected invocation, by letting the supervisor classify
objects into a number of classes, and associating a
subset of the operators with each class. There is also
the non-determinism implied by the search.

The major disadvantage, of course, is that this scheme
is more rigid. For example, since everything happens on
one level, there is little room for recursion. |f one
operator calls a procedure, which calls another, which
wants to be non-deterministic, then there is no trivial
way to map that non-determinism back up to the ''search
level' of the supervisor, while retaining the environ-
ment of function calls, variable bindings, etc. that
must be kept available in all branches.

An interesting question is therefore: how harmful is
this rigidity? Is it very awkward to ''program around"
the Timitations of such a system, or is it easy?

In this paper, we try to answer that question by study-
ing those operators which correspond to axioms in pre-
dicate calculus. We assume that we have a data base,
which is like a large number of ground unit clauses,
plus a number of operators, which should correspond to
the non-ground axioms. We show that there are certain
problems in phrasing the latter as operators,,but that
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there is a systematic way to handle those problems. We
conclude that the search supervisor approach should be
considered as a serious candidate for the deductive sys-
tem associated with a data base.

Basic idea. For the reader who might not want to read
the whole paper, we disclose that the idea is to permit
the ''objects' to contain procedure closures®’’?, also
called FUNARG-expressions, i.e. lambda-expressions to-
gether with an environment of bindings for its free va-
riables. The lambda-expression is as fixed as the set
of operators, and can therefore be compiled, etc., but
the environment is new for each object.

After thus having sketched the bac%éround and the gene-
ral idea, let us ¢go into the details of the predicate-
calculus environment.

Simplest case. Let us take a common-place axiom and
convert it into a program-like operator. We choose the
transitivity axiom,

R(x,y) A R(y,z) D R(x,2)
which goes into a rule of the form

On a sub-question with the relation R, use
lambda(x,z) begin local vy;
determine y from R(x,y);
return sub-question R(y,z)
end

Here, ''determine y from R(y,z)" calls for a look-up in
the data base, and usually acts as a non-deterministic
assignment to y. ''Return sub-question'' specifies the
information which is given back to the supervisor; con-
sisting of a relation (R) and an argument list. The
latter is a list of the current values of x and y; it
does not need to contain the names x and y, or their
bindings to their current values. The supervisor will
then look up all operators (lambda-expressions) which
are associated with R, and apply them to the given ar-
gument list, of course at whatever time it chooses.

This rule describes what has to be done when any data
base search routine continues search according to the
transitivity property of the relations. It does not
matter if the search is executed by a uniform theorem-
prover, a Planner-type system, or by a hand-tailored
program such as the LISP functions in the SIR system®.
However, in a higher-level system, the system has to
"interpret' the axioms or rules, i.e. find out at run-
time what is to be done. A resolution theorem-prover

is extreme in this respect. Our concern in this paper
is to find out before execution (with information only
about the axiom or rule, not about the actual sub-ques-
tion) what operations will be necessary, so that we can
write out the code for doing exactly that. In program-
ming systems terms, we want to compile the axioms, and
do as many decisions as possible at compile-time.

If a resolution theorem-prover contains the above tran-
sitivity axiom, and the axiom

R(a,b)
and if it asked the "question' “R(b,c), it will genera-
te the sub-question “R(a,c). This step can be clearly
illustrated if the transitivity axiom is rewritten as



R(x,y) A “R(x,z) ) “R(y,z) . .
| f the same effect is to Ke obtained in a Planner sys-
tem or a hand-tailored program, it must be programmed
separately. In analogy to the rule above, we would wri-
te
On a sub-question with the relation R, use
lambda (y,z) begin local x;
determine x from R(x,y)
return sub-question “R(x,z)
end

Thus one clause (in the resolution sense) usually cor-
responds to several rules like the lambda~expressions
above. The number of rules that correspond to a clause
is finite. |f some rules are omitted, then the result-
ing system is not in general complete, but inclusion of
all rules is still not sufficient to insure complete-
ness. We shall not be concerned about this.

Going back to the first rule above, the reader should
imagine that the supervisor contains one queue of sub-
questions for each relation symbol, and that every sub-
question contains an argument list. Every relation sym-
bol is associated with a set of operatoers, written as
lambda-expressions 1ike the one above, which can be
applied to the objects that queue for that relation
symbol. The operator above returns a sub-question, and
tells what object = argument list it should contain,
and which relation it should attend. The operators can
be thought about as ''demons'', clustered in groups with
a common point of interest, which is named by the re-
lation symbol.

List of problems. This organization raises a number of
questions. One problem is how one should integrate heu-
ristic information into the system. We shall not go in-
to that question here. Another question is how the lo-
cal non-determinism in the rule is to be handled. The
answer is simple: we map the linear (i.e. loop-free),
non-deterministic program into a looping, deterministic
program. Each branch-point starts a new loop inside the
loops of the previous branch-points. All loops end at
the end of the rule. This is quite straight-forward.

If the PC (predicate calculus) axioms contain function
symbols (not merely relations), we obtain "unification",
or in programming language terms: pattern-matching and
pattern-reconstruction. Then the conversion to remove
the local non-determinism involves some additional prob-
lems, which however will be the topic of a later exten-
sion of this paper. Suffice it to say that every PC
function should be associated with one construction pro-
cedure and one or more matching procedures, and that

the compiled version of the axiom must contain a call

to one of these procedures. |t can be determined at
""compilation time'" which procedure shall be called. The
matching procedure for 'plus'' may for example match '‘4"
against 'plus(x,1)" and assign to ''x" the value 3.

Let us turn instead to the question of how open ques-
tions are handled. (''Closed questions'' are questions
which can be answered with a truth-value, i.e. Yes/no
questions; ''open questions'' are questions which have an
individual, or n-tuple of individuals as possible ans=
wer.) We decide immediately that ''closed questions with
the relation R'" shall be one class of object and inter-
est-point for operators, and ''open questions with the
relation R and an asked-for second argument, R(x,?)"
shall be another class of objects, treated with another
set of operators. We shall provisionally denote it as
R2(x). For example, the same transitivity axiom for R
also calls for the following operator:
On a sub-question with Ry, use
lambda (x) begin local y;
determine y from R(x,y);
return sub-question Rap(y) end
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Examples of non-trivial cases., Consider the PC axiom

P(x,y) A Q(x,y) D R(x,y)

This should be represented by the following rule:

On a sub-question with Rz, use

lambda (x) begin
return sub-question P2(x), but check that
any answer to that sub-question satisfies

Tambda (y) Q(x,y)

before accepting it
end

Here the rule returns to the supervisor a relation sym-
bol, an argument list, and a remainder procedure which
is to be used later. .In this case, the remainder proce-
dure is lambda (y) Q(x,y). Notice also that the current
binding of the variable x must be available to that
procedure, when it is later used. The variable x is a

transfer variable in the sense of reference®. In other

words, the remainder procedure is a procedure closure
as defined under ''"Basic idea'' above and x must be bound
in its environment part.

If we bave PC functions in the axiom, a similar situa-
tion may arise.Consider
P(x,y) & Qly,z) D R(x,f(x,z))
which would go into
On a sub-question with Rz, use
lambda (x) begin local y,z;
determine y from P(x,y);
return sub-question Q2(y), and for every
answer to the sub-question, apply
lambda (z) f(x,z)
and return the result
end

Here we again return a sub-question which contains a
remainder procedure with a transfer variable (x).

So in both of these examples there was an unexpected
complication: a need for objects which ''contain' refe-
rences to procedures. Because of the increased com-
plexity, the mapping from PC axiom to corresponding ru-
le is far from trivial in such examples. We shall. now
specify how it can be done. The method will be develop-
ed through '"'refinement', i.e. we first describe the ge-
neral idea and then modify it until it becomes suffi-
ciently precise.

New formulation of operators. Let us first re-write the
operators without reference to what sub-question is be-
ing returned. For the three axioms that we have alrea-
dy used as examples, we obtain:

Axiom 1 (transitivity of R)

On a sub-question with Ry, use
lambda (x) begin local y,z;
determine y from R(x,y);
determine z from R(y,z);
return answer z
end

Axiom 2 P(x,y) A Q(x,y) D R(x,y)

On a sub-question with Ry, use
lambda (x) begin local vy;
determine y from P(x,y);
determine that Q(x,y) [is in the data ba-
sel;
return answer y
end -

Axiom 3 P(x,y) A Q(y,z) ) R(x,f(x,z))

On a sub-question with Ry, use

lambda (x) begin local vy,z;
determine y from P(x,y);



determine z from Q{y,z)i
return answer f(x,z)
end

Each of these operators contains a main block, where
each statement except the last one makes an access to
the data base, for either a closed or an open question.
(Every such statement corresponds to .a literal in the
original axiom). We have tacitly assumed that thosere-
references should be ''immediate', i.e. only use facts
that are explicitly in the data base. However, it is
also possible to let such intermediate statements make
their own search. If we maintain the idea that the ope-
rators should be deterministic programs, and all search
should be managed by the supervisor, then the search in
the intermediate statement must -be brought ‘to an end
before the execution of the operator can continue. It
follows that in an intermediate statement we .can .only
make a search which is ''short" compared to the main
search done by the supervisor.

Is it possible to use the latest formulation .of the
operator as it is? All search would then be done in

the intermediate statements (both '"look up y" and 'look
up z'"' in the transitivity axiom, etc.) and ‘the opera-
tor can return a final answer, rather than a sub-ques-
tion for further search. This is correct, but clearly
the supervisor is not used at all in this case.

However, given the last formulation of the operators,
we can come back to the previous formulation by pick-
ing out one intermediate statement and decide that that
is where the main search shall be done. In the first
axiom, the main search is most naturally done for ''de-
termine z''. In the second axiom, our previous formula-
tion does the main search for ''determine y', although
in principle it would also be possible to determine vy
in the shallow search of an intermediate statement, and
then ask the supervisor to do main search in order to
prove Q(x,y) for the selected y. In the third axiom,
our previous formulation does main search to determine
z, although it would also be possible to do main search
for y, and to determine z and f(x,z) in the remainder
procedure.

Conclusion from the discussion. We conclude that the
general method to convert a predicate-calculus axiom
to an operator should be:

(1) Assign a suitable order to the literals to the left
of the implication sign. ("Suitable" will not be
discussed in this paper). Change each literal 1 in-
to the phrase

'"determine vy, v2, ... v, from 1"
where the v; are variables which occur in 1 but not
in previous literals, or (if j = 0)

'"determine that 1"

(2) Add a final statement, such as '"return success"
(for closed questions) or "return answer y" (for
open questions). Also enclose the block by a lamb-
da~expression. The information for this is taken
from the literal to the right of the implication
sign, in the obvious way as exemplified for the a-
bove axioms.

(3) Decide which of the statements in the operator
shall be handled by the extensive, top-level search
which is managed by the supervisor. This is called
a controlled statement. Let the statements in the
operator be

S1y $25 eee sk'i’ Sk, sk+]' v Sn

where S is the controlled statement.

(4) Construct a new operator where the statements are
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Sp—11 S
where s % is the following statement:
return %he sub-question sk,,with the provision
that any answer to this sub-question shall be fur-
ther processed by the following remainder proce-
dure:

Jdambda (vi, vzs .. vj) begin Skal? 0t Sp

where the v. are the variables mentioned in step
(1) which occur in Sy

'5], 52,

end

The same examples again. Let us check this method on
the three axioms that we have used above. In all cases,
we give rules which are to be used on an open sub-ques-
tion with Ra:

Axiom 1 (transitivity of R)

lambda (x) begin local y;
determine y from R(x,y);
return sub-question
determine z from R(y,z), with the re-
mainder procedure
lambda (z) return answer z
end

The phrase ''determine z from R(y,zf‘can be more conci-
sely expressed as Ra(y). We use that in the next two
examples:

Axiom 2 P(x,y) A Q(x,y) D R(x,y)

lambda {x) begin
return sub-question P,(x), with the re-
mainder procedure
lambda (y) begin
determine that Q(x,y);
return answer y
end

end

Axiom 3 P(x,y) A Q(y,z) D R(x,f(x,2))

lambda (x) begin local y;
determine y from P(x,y);
return the sub-question Q2(y), with the
remainder procedure
lambda (z) begin
return answer f{x,z)
end

We see that this third formulation is equivalent to the
first formulation of the rules, although it contains
more strict formulations. In axiom 2, the statement
"determine that Q(x,y)'' will "fail" if the relation can
not be retrieved or proved in the data base, and then
control will never be passed on to the next statement,
where the answer y is returned to the supervisor. The
formulations above use both the primitives '‘return sub-
question' and '"return answer'' with the obvious meaning.

We notice also that the formulatdions are still locally
non-deterministic, and that they must undergo the tri-
vial transformation to a deterministic program with
loops. We write this out for the first example; the
others are analoguous:

lambda (x) begin local y;
for every y in set of answers to Rz(x) do
begin
return sub-question R.(y) with remain-
der procedure
lambda (z) return answer z
end

end



Multiple controlled statements. It is easily seen that
the above rule in four steps can be generalized to the
cases where there are several controlled statements,
and top-level search is performed for each of them. For
example, in axiom 2 we might wish to make extensive
search both in order to determine y from P(x,y), and in
order to prove Q(x,y). We must then have two nested re-
mainder procedures. The resulting operator should have
the form:

On a sub-question with Rz, use
lambda (x) begin
return sub-guestion Py(x), with remain-
der procedure
lambda (y) begin
return sub-question Q(x,y)
/a closed sub-question/ with
the remainder prodedure
lambda () return answer y
end

end

We realize that ''every answer'' to a closed sub-question
must be affirmative, i.e. as soon as it has proved
Q(x,y), the above operator returns y.

Chains of sub-questions. The operators as formulated
above return sub-questions consisting of a relation
symbol, an argument list, and a remainder function, but
they only accept the first two items. This means that
the supervisor is responsible for administrating the
remainder procedures. However, in a programming system
where procedures are permitted as arguments (to other
procedures), the responsibility can easily be taken by
the operators and the programming system. We shall now
describe how this can be done.

In closed and open questions, we add one more argument
g, which is the remainder procedure. The resulting ar-
gument lists (x,y,g) for R, (x,g) for Ry, etc., are the
objects which our supervisor shall handle.

We then modify the examples so that g is introduced as
an argument and applied to the returned answer. Thus
the definite version of the rule for axiom 3 ia:

On a sub-guestion with Rz, use
lambda (x,g) begin local vy;
determine y from P(x,y);
return sub-~question
Q2 (y, function{lambda (z) g(f(x,zgg

end

The other rules are modified similarly. We notice that
the sub-questions that this rule returns, contain two
transfer variables: x and ¢g. The bindings of these must
be saved in the closure, and retained until the remain-
der procedure is used.

Let g' be the second argument of Qz in one particular
use of the above operator. Clearly g' contains a refer-
ence to g, which itself pfesumably is a procedure clo-
sure, which was set up by a previous sub-question. As
one sub-question generates another, a chain of closu-
res is generated, where each one refers to its prede-
cessor. When finally an answer is found to the last sub-
question, the last procedure closure is applied in a
return-answer statement; it calls its predecessor by
using a procedure variable, as seen in the example, the
predecessor calls its predecessor, and so on up the
chain. In the original (top-level) question, g is given
as ''return asswer'',

Discussion of applicability of the method. This proce-
dure works in all cases where the non-deterministic
interrupt points (where -another, parallel branch is per-

mitted to attract attention) can be brought to the top-
level block of the ''operators'', and not be hidden deep-
er down in recursion. In principie, the trick is that
the control stack (the stack of function calls) is only
one element deep at the interrupt points {(containing
the call frém the supervisor to the operator), and then
the control stack information, plus the information of
how far we have gotten, can be put in one additional
transfer variable. With this method, we have no control
stack environment, but merely a variable-~binding envi-
ronment at the interrupt points, and this is exactly
what FUNARG (or procedure closures) can handle.

We believe that this method is sufficiently powerful to
handle e.g. all cases which may occur when PC axioms

are mapped into rules, and probab ly also a broader app-
licatdon.

A questionable feature of this method is that one must
in principle decide at ''compile-time' which retrievals
are to be done by 'big'" search, and which are to be done
by "short" intermediate statement (= non-controlled sta-
tement) search. In some applications this is 0K, since
some relations are only stored explicitly or almost ex-
plicitly; in others it may not be acceptable.

Requirements on the programming language. If the conver-
sion from PC axiom to operator is to be done automati-
cally, then the selected programming language must of
course be able to generate and manipulate programs in
the same language. LISP is then an obvious choice. How-
ever, during the execution of the search, our require-
ment is ‘instead that we must be able to create a proce-
dure closure, and send it around as data. Some simula-
tion languages, notably Simula 67'° have this facility,
as well as POP-2'! and ECL'2. LISP1.5 systems (a-list
systems) provide it through the FUNARG feature. Later
LISP systems (LISP 1.6, original BBN-LISP) do not pro-
vide it?. A method for providing FUNARG in BBN-LISP-type
systems without undue loss of efficiency has been pro-
posed in?.

It has been suggested that the notion of a ''remainder
procedure'', as used in this paper, is rather closely
connected with the notion of ''continuation', which has
recently proved helpful in discussing the denotational
semantics of programming languages®®.

Implementation. The author has participated in the deve-
Topment of a program, called PCDB (Predicate Calculus
Data Base), which is organized according to the search
supervisor principle. This program was described in re-
ference '*, and contains a compiler which accepts PC
axioms and generates coreesponding LISP programs. It al-
so contains a simple supervisor, elaborate data base
handling facilities, etc. which are needed. The present
(1972) version of PCDB lets the supervisor administrate
the remainder procedures in an ad hoc and not completely
general way. A new compiler is being written, which will
administrate them with FUNARG expressions as indicated
in this paper. We hope to have it working at the time of
the conference.
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