Uppsala University
Computer Science Department

Datalogilaboratoriet.

Janusry 1971 Report No 29

A Proposed Solution
to the FUNARG Problem®

by Erik Sandewall

Abstract: This paper is a response to Joel Moses's recent paper,
"The Function of FUNCTION in LISP, or ...". We give some examples
where the FUNARG feature of LISP 1.5 is relative useful and suggest
a computationally efficient implementation of FUNARG. The idea in

the proposal is to let a FUNARG-expression create indirect-addressing

type bindings on the push-list for variables.

* The research reported here was supported in part by the Swedish

Research Institute of National Defence (FOA P) under best#lln. 010-218:1.

1. Why return closed LAMBDA expressions?

The reader is presumed to have read the paper by Joel Moses, "The Function
of FUNCTION in LISP, or Why the FUNARG Problem should be called the Environ-
ment Problem', This paper describes a possible solution to this environmental
problem. The solution is partial, but (I pelieve) almost complete. We shall
use Moses's conceptsand terminology. However, unlike him, we shall presume

a thorough knowledge of LISP.

Moses points out that the hard part of the FUNARG problem occurs when a
function is returned as the result of some computastion. His example is
(in LISP notation)

define f(x) if a = 0 then x else -x

define g(x) = prog((a) a := 2; return(function(f)))

prog ((a,b,h,) a := 0;
h := g(2);
b := h(3);

cee)

This example works correctly if function(f) returns a "closed LAMBDA
expression” (i.e. in LISP terms, a FUNARG expression). The given example
is pure, but it is also artificial. Before we proceed, we shall there-
fore describe two more practical situations where a competent LISP 1.5
programmer may wish to return a closed LAMBDA expression as the value

of a computation.

First example: memoization. Suppose an atom G has been given an EXPR (or

function definition) of the form

(IAMBDA (H) (+++++))

where the contents of the lambda-body is left unspecified here. Suppose,
further, that the function g is only to be used on atomic arguments; that
the lambda-body requires a lot of computer time for its evaluation; and
that it has no side-effects. It is then an obvious technique to memoize
g, i.e. to save the value of g(hl) on the property-list of hl under the

indicator G the first time g is called with this argument, and to retrieve

it from the property-list each succeeding time. If g has the additional
property that g(h) always is distinct from NIL, g can be memoized by
changing its definition to

(LAMBDA (H) (OR (GET H (QUOTE G))
(PUTPROP H (+++++) (QUOTE G))))

where or returns its first non-NIL argument and avoids evaluating the
remaining arguments, and where putprop returns its second argument .-
Memoization has previously been described in papers by McCarthy (19607)
and Michie (1967).

Consider then the exercise to define a function memoize so that doing

(MEMOIZE (QUOTE G))

changes the EXPR of G from the o0ld one to the memoized form, or to an
equivalent memoized form. Memoize should of course have a general defini-

tion, and not merely work for the specific atom G.

One method of doing this is of course to go ahead and write a piece of
code which breaks down the original EXPR property &nd builds up the
desired, new one. However, it is preferable to have instead a method
whereby the old function definition is embedded in the new one. One
reason is that we can then permit the EXPR of G to have an arbitrary
structure, and our definition of memoize does not have to know about

and account for all possible cases.

Since different functions which are to be memoized may have different
lambda varisbles, we must then re-write the memoized definition on the

following, equivalent form:

(LAMBDA (Z) (OR (GET Z (QUOTE G))
(PUTROP Z ((LAMBDA (H) (+++++)) Z) (QUOTE G))))

This solves the problem, but it immediately introduces a new one: the
embedding (LAMBDA (Z) ...) expression is rather hairy, even for this
simple example. This may make it inconvenient to program memoize:: a

trivial method of writing it is to do

(LIST (QUOTE LAMBDA) (QUOTE (Z)) (LIST (QUOTE OR) ...

There are ways of overcoming this difficulty, e.g. using subst, but
another disadvantage remains: we have to take a lot of free cells for
the embedding expression each time we wish to memoize some function.

The reason why we cannot immediately use the same embedding expression
for all functions (g, etc.) is that (QUOTE G) occurs on a low level,

and forces us to make a fresh copy each time. The disadvantage increases
as memoization is made more sophisticated, and the size of the embed-

ding expression increases.

The db§i6ﬁ5 way to solve a problem is to bind a varisble m to the name
of the function (G, etc.) on a high level in the expression, and to use
M instead of (QUOTE G) on lower levels. This can be done in various weys,
for example in the hairy way by writing a prog. Ecwever, LISP 1.5 offers
e conceptually pure way of doing it, namely using FUNARG. The EXPR

definition of G is then selected as

(FUNARG
(LaMBDA (Z) (OR (GET Z M)
(PUTPROP Z (FN Z) M)))
((M . G) (FN . (LAMBDA (H) (+++++]

The structure on the last line is an association-list where M is bound
to G and FN to the old function definition of G. Moreover, this FUNARG-

expression is generated if memoize is defined as

(LAMBDA (M) (PROG (FN)
(SETQ FN (GET M 'EXPR))
(PUTPROP M
[FUNCTION (LAMBDA (Z)
(OR (GET Z M)
(PUTPROP Z (FN Z) Ml
'EXPR]

It is hard to conceive a simpler way of defining memoize. In this defini-

tion, it returns a closed LAMBDA expression.

One might argue against this solution that it is computationally in-
efficient, and that other methods of binding the variable m should there-

fore be preferred. However, the notational and conceptual simplicity of

the solution using FUNARG is at the same time a reason to look for more
efficient implementations of the FUNARG feature than we have today. (If
one can not find efficient methods to handle FUNARG during interpretation,
there alwsys remains the possibility of writing a function which "compiles”
a FUNARG expression into an equivalent but more efficient expression.

However, this "solution" should be a last resort).

Second example: processes. A process is vaguely defined as a function

which has some local own variables (in the sense of Algol 60); and
which belongs to a class of functions with the same program (function
definition, lambda body, or whatever you choose to call it), where
different members of the class ﬁay have different values in their own
variables at a given instant. Typically, each process is evaluated a
number of times with a different value each time, and the side-effects
which are necessary to achieve this are restricted to the own varisbles.
In the general case; we permit each process to take arguments in each
call, but this feature is not always used. - Processes of this kind are
especially useful in simulation tasks, and are built into may simula-
tion languages. For a more detailed discussion of processes, see Dahl

(1968).

With the background of the memoization example, one method of dcing
processes in LISP should be obvious: use the FUNARG device. Each process
is then a FUNARG expression; its own variables are bound on the a-list
which is the second component of the FUNARG-expression, and its program
(which only needs to occur in one single copy) is pointed to by being

the first component of the FUNARG-expression.
Let us work out the details. Suppose we want to define DP in analogy
with DE and DF, so that
(DP PRGY (OWNL OWN2 ...) (CALLL CALL2 ...) (+++++))
defines PRPJ to be a process generator. Evaluating an expression
(PRES AL A2 ...)

then returns as value a process where the own varisbles ownl, own2, ...

are initialized to the values of al, a2, ... ; where calll, call2, ...

are parameters each time the process is called; and where (+++++) is the
form which is to be evaluated and return a value each time the process

is called. The value of
(PREG AL A2 ...)
should then be

(FUNARG
(LAMBDA (CALL1 CALL2 ...) (#++++))
((OWN1 . VA1) OWN2 . VA2) ...))

where VAL is the value of Al, etc. This FUNARG expression can be put

away as an EXPR, bound to a variable, or otherwise processed.

The definition of PR@$ which accomplishes this is of course

(LAMBDA (OWN1 OWN2 ...)
(FUNCTION (LAMBDA (CALLl CALL2 ...) (+++++))))

Ln adequate definition of DP in LISP 1.5 is therefore to give it a FEXPR
of the form

(LAMBDA (U V) (PUT (CAR U)
[LIST (QUOTE LAMBDA)
(CADR U)
(LIST (QUOTE FUNCTION) (CONS (QUOTE LAMBDA (CDDR U]
(QUOTE EXPR)))

It is not possible to make renewed use of FUNCTION in the definition of

DP to avoid the list and cons operations, because forms like (CADR U)

evaluate into lambda varisbles (or more precisely, variables for lists
of lambda variables).

Let us give two examples of the use of these processes:

(a) If we define

(DP SPIT (X) NIL
(coND (X (PROGL (CAR X) (SETQ X (CDR X]

then the wvalue of

(SPIT (QUOTE (A B C D E)))

will be a fumction which on its first call returns A, on its second

call B, etc. until E, and which then returns NIL on all successive calls.

(b) If we define

(DP ALTERNATE (G H) NIL (PROG (M)
(SETQ M G) (SETQ G H) (SETQ H M) (RETURN (H))))

then the value of

(ALTERNATE (SPIT (QUOTE (A B C D)))
(SPIT (QUOTE (1 2 3 Lk 5))))

will be a process which on successive calls returns
A, 1, B, 2, C, 3, D, 4, NIL, 5, NIL, NIL, ...

el ettt

Clearly, alternate assumes its two own varigbles to be bound to

processes and uses m for swapping.

In the example for processes, the FUNARG feature which enables us to
carry around environments for closed LAMBDA expressions is clearly in-

dispensable. Let us now proceed to the implementation problems.

2. Implementation of FUNCTION in a push-list LISP system

Suppose we have a LISP system where at least logically, variables are

bound on a push-down stack ("push-list") of the following form:

present top—>| variable binding
variable binding
variable binding
variable binding

In many implementations, the top-most binding of each atom is physically
located on this atom's property-iist (or in its car), but the logical

structure remains the same, at least for the purpose of our discussion.

In such a system, we have problems both when a FUNARG-expression is set
up (i.e. when FUNCTION is used), and when the FUNARG-expression is used
as a function. Let us consider the problems one at a time, and in that

order.

One possibility of handling the problem at "FUNCTION time" (as opposed
to "FUNARG time"), is to store away the present push-down stack, e.g.

on a secondary memory. This solution has some very obvious disadvantages.

We propose, instead, that FUNCTION shall return a LISP 1.5-style FUNARG-
expression, with a conventional association-list containing variable
binding, but that this a-list shall only contain bindings of those
variables which are given in an optional second argument to FUNCTION

("transfer variables"). Thus the form
(FUNCTION FOO (X Y))

shall evaluate into an expression

(FUNA%G F0O ((X . VX) (Y . VY)))

where VX and VY are the values of X and Y in the binding, environment.
Clearly, if the second argument to FUNCTION is omitted or NIL, FUNCTION
can operate like QUOTE (except that the compiler must continme to treat
those two differently).

Our proposai then puts some additional burden on the programmer when he
wants to use FUNCTION. We believe this is reasonable: in all practical
cases of thé use of FUNCTION that we have seen; the programmer knows
very well what variables in the binding environment he wants to bring
to the activation environment, and it is easy for him to give this in-
formation to the system. In particular, the two exémples in previous

section have to be modified as follows:
First example: Add (M) as a second argument to FUNCTION.

Second example: Add (OWN1 OWN2 ...) as a second argument to FUNCTION in

the definition of PR@F. This comes automatically if the generating func-

tion DP is changed so that the subexpression in its definition,

(LIST (<UOTE FUNCTION
(CONS (QUOTE LAMBDA) (CDDR U)))

goes into

(LIST (QUOTE FUNCTION)
(CONS (QUOTE LAMBDA) (CDDR U))
(CADR U))

Moreover, even with the added nuisance of writing out the transfer
variables, it is still much more convenient to use FUNCTION than to use

other, dirtier methods for handling these and similar examples.

3. Implementation of FUNARG in a push-list LISP system

The previous section gave us a way to generate good‘old—fashioned FUNARG-
expressions. The remaining problem is: how can we use them in a reasonably
efficient way without disturbing the overall efficiency of the system too
much. (We do not want those users or those functiOn.packages which refrain
from the FUNARG convenience to suffer too much, if at all). Let us discuss

some possibilities.

First idea: Find the variables of the FUNARG a-list on the push-list for
variables. This solution works fine for those cases where the closed
LAMBDA-expression only wants to look at the variables that it carries
with it, but unfortunately it does not work when the LAMBDA—eXpression
changes (does SETQ on) the same variables. In particular, it does not
work for the second example in Section 1 (where FUNARG was used for pro-
cesses), because the only possible definition of SETQ in this approach

is to retain its present definition, where it changes the topmost binding
on a push-list. This will have the correct effect within one call of a
process (or whatever); but this change of the own varigble will not be
remembered till the next call of the same process. Therefore, own variables
will have their original, initiaslization value on every call, and the

whole point with the process is lost.

Second idea: Let the interpreter maintain both a push-list (for ordinary
use) and an a-list (as introduced by FUNARG). When a variable is to be
evaluated, check first whether the a-list is empty. If it is, use the push-
list as usual. (Thus ordinary users only lose the cost of doing this

branch on not NIL every time a variable is to be evaluated). Otherwise,
look through the a-list first, and proceed to the push-list only if the

a-list contains no binding of the desired variable.
This idea solves the SETQ problem, but it has another, and even worse
bug than the previous idea. Suppose we use
(FUNARG (LAMBDA (Z) (FOO A Z B)) ((a . VA) (B . VB)))
where FOO is defined as

(LAMBDA (A B C) (+++++))

10

and the LAMBDA-body uses the value of a, b and c. On the call to foo,
these a, b and ¢ will be bound on the ordinary push-list. When (+++++)
is evaluated, the a-list bindings of a and b to VA and VB will appear
to be "higher up" than the push-list bindings, although in this case
they should be "deeper down'. '

Ohe may try to fix this bug, e.g. by having pointers from the push-list
to a-lists which hang around in free memory, or by pushing all varisbles
on the a-list instead of the push~list as soon as the a-list is non-NIL,
but such solutions immediately take iis back to the inefficiency of LISP

1.5-type implementations. However, they lead us to the

Third idea: Let every level on the push-list consist of two addresses
(l1ike before) plus one bit for indirect addressing, which is usually
set to zero. Use essentially the first idea of pushing the a-list

variables individually, but use the indirect-bit as in the following

diagram which describes the bindings for

(FUNARG F@¢ ((A . VA) (B . VB)))

FUNIRG

VA

VA

a

=g
- S)
< A

11

Li”,_,_\ '

014 push-list

12

With this solution, we again have one single push-list where all variables
are bound, which is fine. There remains some overhead: every time we look
up the value of a variable or do a SETQ, ﬁe must check the ihdirect—bit
and take slightly different action depending on whether it is on or off.
But this is relatively cheap, and it should be an acceptable overhead

on most computers. Moreover, in the longer perspective, it is one of the
things which could be put into LISP-oriented microprograms when micro-—

programmed computers become more widely available.

This third idea still is not completely compatible with LISP 1.5, In
LISP 1.5 one could write a process which gets hold of its own a-list,
and which changes the names of varisbles (by doing rplaca:s); deletes
veriable bindings from the a—list (by doing rplacd:s on a-list level):
etc. If such a program is to be run on a system which is designed by our
third idea, it must be reprogrammed using functions that access the
push-list. However, we consider this incompatibility to be of minor
importance: whoever uses rplaca or rplacd should be prepared for the
consequences. We do believe that the proposals in this paper (including
the third idea in this section) do maintain compatibility between LISP
1.5 and push-list LISP for those users who behave decently (by cnly
doing rplaca:s and rplacd:s on what is obvicusly data), and who are
prepared to write out the second argument for FUNCTION. As a simple
corollary, it is then a proposed solution to the FUNARG problem.

13
References

Dahl. Ole Johan, et al. (1968)

Simula 67, Common Base Language
Norwegian Computing Center (Forskningsveien 1 b, Oslo, Norway)

Publication No. S-2

McCarthy, John (19607%)

O Efficient Ways of Evaluating Certain Recursive Functions,
MIT A.I. Project Memo 32

Michie, Donald (1967)

Memo functions: a language feature with rote learning properties:
Research memorandum MIP-R-29.

Edinburgh: Department of Machine Intelligence and Perception

Moses, Joel (1970)

The Function of FUNCTION in LISP or Why the FUNARG problem should be
called the Environment Problem.

The ACM Special Interest Group on Symbolic and Algebraic Manipulation,
Bulletin No. 15 (1970)

	
	
	
	
	
	
	
	
	
	
	
	
	
	

