17

Representing Natural Language
Information in Predicate Calculus

E. Sandewall

Computer Sciences Department
Uppsala University

INTRODUCTION

This paper proposes a set of general conventions for representing natural-
language (that is, ‘semantic’) information in many-sorted first-order predi-
cate calculus. The purpose of this work is to provide a testing-ground for
existing theorem-proving programs, and to suggest a method for using
theorem-provers for question-answering and other kinds of information
retrieval. The purpose is NOT to propose any system of logic; we stress practi-
cality, and the contents of this paper may well be quite trivial to a logician,

Our approach consists of specifying functions and relations that express
commonly-encountered constructions in natural language (e.g., ‘kernel
sentences’, comparison of adjectives, subordinate sentences, etc.) as well as
specifying the intended interpretation for. and some axioms for these
functions and relations. The given set of axioms is probably incomplete, but
hopefully consistent. No proof is given of these conjectures.

This approach should be contrasted with the ‘monkey-banana’ approach,
where one particular problem environment is selected, and one tries to write
down a notation and a set of axioms that will handle this environment.
Our reason for doing things the way we do is as follows: When a question
or a problem is given to an advice taker or some similar system, we clearly
wish (in the long run) that the problem statement shall consist only of very
specific statements (‘Consider a room in which there is a monkey and a box’).
More general statements (‘if a monkey is at a box, he can climb it’) should
not need to be part of the problem statement, but should be known to the
advice taker beforehand.

We should ask, therefore, what general axioms are necessary for such a
system, and, equally important, how we can select functions and relations
so that the amount of knowledge that has to be stored away is kept reasonably

255

i
x

COGNITIVE AND LINGUISTIC MODELS

small. We believe that these questions are best answered if we consider
classes of semantic information first, and specific exercises afterwards.

1. APPROACH
In this section, we shall outline in a general way some of the problems that
one encounters while expressing natural-language (NL) information in
predicate calculus (pc). We shall also outline conventions which are claimed
to handle these problems in a satisfactory manner. The details of the notation
are left to later sections. '

Higher-order operations
Several natural-language constructions are in a certain sense ‘higher-order’.
For example, if we represent ‘m is expensive’ (where m is an object) by

Expensive (m)
(which is a reasonable, although not the only reasonable convention),
then ‘m is more expensive than »’ might be well expressed by

" More(Expensive)(m, n)

where ‘More’ is a second-order function that maps a unary first-order
predicate into a binary first-order predicate. Such a function ‘More’ is of
course proper only if we assign an intensional interpretation to predicates
such as ‘Expensive’.

It is unfortunate, then, that although the technology of automatic theorem-
proving has been consideratly developed (see, for example, Green 1969,
Allen and Luckham 1970, Luckham 1970) there is very little work done on
theorem-proving in higher-order logic. The paper by Darlington in the present
volume (1971) is an exception. It has even been suggested (Robinson 1970)
that present theorem-provers be used for simulating higher-order logic.

With this state-of affairs, we propose that the ‘higher-order’ constructions
in NL should be expressed directly in first-order pc. The method, of course,
is to re-express what used to be predicates as individuals, and to use a single
application predicate. Thus ‘.1 is expensive’ is to be expressed as

1s(m, expensive)
where ‘1S’ is the application predicate. We need to distinguish between
individuals of two types: OBJECTS and PROPERTIES, exemplified by ‘m’
and ‘expensive’, respectively. Our other example, ‘m is more expensive
than »’, is then expressed by

1s(m, MORETHAN(expensive, 1))
where MORETHAN is a function

[properties = objects—properties]
with the obvious intended interpretation.

It might be objected that present theorem-provers have not been designed
to handle many-sorted logic, and that a notation using many-sorted logic

256

SANDEWALTJL

therefore i1s no better than the notation of higher-order logic. The answer is
that recent results (Luckham, private comm.) indicate that under certain
(generous) restrictions, ordinary resolution-based theorem-provers will
handle many-sorted logic correctly (that is, only correct unifications will ever
be attempted). i ' _

So far, properties have only been specified intuitively as counterparts of
adjectives or nouns. We shall not attempt to make the interpretation of
properties more precise than this. One important point, however: we shall
require that properties are something ‘more than’ the set of all objects that
have the property (by the 1s relation). In other words, we shall NOoT have
the following axiom:

[(Vm) 1s(m, p)=is(m, q)]>[p=4]

This intensional usage of properties is necessary, for example, for our use
of the function ‘MORETHAN’, above.

In this paper, we shall not be concerned with transformations between
situations, or the logic of actions. If we were, we would probably propose
that the predicate 1s should have a third argument, which would be the
situation in which the object has the property. For an introduction to the
situation concept, see, for example, McCarthy and Hayes (1969). As long
as 1s only has two arguments, we shall usually prefer to write it infixed, rather
than prefixed. Thus we write

m 1S expensive
synonymously with
1S(m, expensive)

Representation of attributes
Expressions such as ‘John is the father of Peter’ are represented as follows.
We consider ‘father’ as a property, and we have a property modifying
function OF of two arguments,

OF: [properties * objects—properties]
so that we can write

john 15 father
and

john 15 (father OF peter) ‘
The same conventions and the same function oF are used for other similar
constructions, for example, ‘son of’, ‘color of’, ‘telephone number of”, and
SO on.

Representation of sentence kernels
The simplest kind of sentence with a subject and an intransitive verb is
represented in the obvious way: the subject goes into an ‘object’ individual;
the verb into a ‘property’ individual. Thus ‘John is running’ goes into
john 1S running
S 257

COGNITIVE AND LINGUISTIC MODELS

For transitive verbs (sce, give. cte.), we use the entire verb-abject constella-
tion as a property. Thus ‘John sees Mary” goes into

john 1s (seeing OBJ mary)
wherc OBJ is an infixed function

[properties = objects— propertics]
(similar in structure to ‘MORETHAN") which enables us to compound the
property from individuals that correspond to natural-language words In this
particular case, it still makes sense to write

john 1s seeing
In some other cases, this may not be so, for example, ‘john 1S opposing’.
In such cases, we shall say that the verb-property itself (‘opposing’) is a
property that no object can have. In principle, it would be more attractive
to add to the number of sorts, and to let, for example, ‘opposing’ have the
sort of a ‘pre-property’ which can be mapped into a property, using some
suitable function, but at least for the moment, we shall not bother to introduce
such tight-fitting sorts. We shall later encounter several similar cases where
we must again resist the temptation to introduce too many sorts.

For verbs with several objects (‘give’, ‘lend’), we use several functions
similar to ‘oBJ’. It makes sense to have a function ‘T0’ for what is represented
in our natural language as the indirect object of a verb. For example, ‘John
gives Fido to Mary’ would be represented as ~

john 18 giving oBJ fido TO mary
Other similar functions (BECAUSE, FROM, etc.) can be introduced when
needed.

Notice that terms in our PC formulas are intended (o denote the ‘meaning’
(?7) of N L phrases. rather than these phrases themselves. It follows that the
convention of having functions ‘0BJ’ and ‘TO" that correspond to NL direct
object and indirect-object constructions is motivated by convenience. rather
than by logical necessity. It is acceptable to represent phrases involving some
verbs differently (for example, by having more functions besides ‘083 and
‘TO’) as long as we are prepared to undertake the heavier burden in transla-
tion.

Representation of subordinate sentences
Verbs that govern a subordinate sentence, such as ‘knows [that]’, ‘knows
[whether]’, ‘believes’, ‘claims [that]’, and so on make it necessary to add some
more conventions. We propose the following:
We introduce one more sort, EVENTS, and a function

g: [objects = properties—events]
Let i be an object and p a property (either an elementary property. such as
‘expensive’, or a composite property, such as ‘father oF john’). We express
‘n believes that m is p’ by

n 18 Believing(g(m, p))

258

SANDEWALY

where “Believing” is a function [events—properties]. The cvent “g(nm. p)
then expresses the possibility or the idea that m would have the property p.
It is unimportant whether we use a single-argument function ‘Believing” as
defined here, or a (pre-)property individual ‘believing’, used as in
n1s (believing THAT g(m1, p))
where THAT is an infixed, binary function.

Here, again, it is important that the property p should carry more informa-
tion than merely that of being the set of all objects that have the property p.
For the statement ‘m believes that » is a unicorn” must be considered to be
different from the statement ‘m believes that 7 is a zublahi’, even though the
sct of all unicorns equals the set of all zublahis equals the empty set.

It is hard to find a good English mnemonic for the function g. In other
European languages, we would have selected the subjunctive of the present
tense of the verb ‘to be’ (waere, soit, sera, vore, etc.). In English, by analogy
we should write ‘were’. It is unfortunate, then, that ‘were’ is also used for the
past tense. In spite of this, we shall represent g as an infixed ‘WERE’, and we
hope that the reader will develop the right associations.

With these conventions, and some suitable priority conventions which make
up for the suppression of parentheses, we can write ‘n believes that m is p’ by

n 1s Believing m WERE p
Other similar verbs (know, claim, and so on) are handled similarly.

Representation of ‘knows what’
Some properties (for example, ‘father OF peter’) are only held by one single
object. It is reasonable to have an operator ‘The’ which maps such properties
into objects in the obvious way. Thus "Peter’s father is tall” would be expressed
as

‘The father oF peter 1s tall’
or more explicitly

‘(The(father OF peter)) 1s tall’
The use of ‘The’ may be regarded as an input convention only. One would
then eliminate all occurrences of ‘The’ before the theorem-prover is let loose
on a statement or a question.

Consider now a statement such as ‘John knows Peter’s father’ or ‘John
knows Peter’s telephone number’. In the first statement, ‘knows’ probably
has the meaning of ‘is acquainted with’. If Dick is the father of Peter, then
the first statement is synonymous with “John knows Dick’. In this case, the
pc translation of the first statement is

john 1s Acquainted-with The(father OF peter)
where ‘Acquainted-with’ is a mapping [objects—properties].

By contrast, the second statement certainly means ‘John knows what
Peter’s telephone number is’. If Peter’s telephone number is in fact 321-5678,
then the second statement is not equivalent to “John knows 321-5678". The

259

COGNITIVE AND LINGUISTIC MODELS

use of propertics enables us to handle this kind of sentence. We do it by
introducing a function
Knowing [propertics— properties]
so that we can write
john 1s Knowing(telephone-number OF peter)
as well as
321-5678 1s (telephone-number OF peter)
with the obvious meaning. It would seem that this approach is considerably

more promising than the awkward ‘idea-of-telephone-number’ constructions
proposed in McCarthy and Hayes (1969).

Referential opacity
In the notation proposed here, all functions and relations are referentially
transparent (that is, if x=y, then f(x)=/(y) etc.). The reason why we can
permit this even for expressions involving knowledge, belief, and so on, is
of course that in this notation, some constructions which might be expressed
using equality are expressed in other ways. For example, we express ‘Sir
Walter Scott is the author of Waverley’ by_

sir-walter-scott 1S (author oF waverley)
or (since there is only one author) by

sir-walter-scott =The(author OF waverley)
but not by

sir-walter-scott = Authorof(waverley)

Deductions from beliefs
It is convenient to make certain assumptions about what it means ior a person
to ‘believe’ something. The first of these assumptions is that if a person
believes a, and if he also believes b, then he believes any conclusion from
(anb). (The A sign should not be taken too literally.) Similar assumptions
apply to ‘knows’, etc.

How can this assumption be axiomatized? We propose to do this in the
following manner:
(a) We introduce functions AND, OR, Not, etc. which map events (or
pairs of events) into events;
(b) We introduce one more type, that of a ‘subordinate variable’. which is
used syntactically like a constant, but which should occur only in subordinate
expressions (‘WERE-expressions’). The purpose of subordinate variables is
to act like variables in a simulated logic that goes on among the arguments of
‘Believing’ (etc.). (This is another case where we may later wish to add to
the number of types to make them fit tighter.)
(c) Suppose we are planning to use the resolution operator (Robinson 1965)
for deductions. We then invent a function

RESOLVE: [events x events—events]
260

SANDEWAILL

which resolves all pairs of ‘clauses” from the first and the second argument.
and forms the ‘conjunction” (using the function AND on cvents) of the
‘resolvents’. The function RESOLVE must of course do ‘unification” on
subordinatc variables, and so on. We then have the axiom

m 1s Believing ¢ A m 15 Believing [/ o

m 18 Believing RESOLVE(e, /)
If we usc some other inference rules instead of or together with the resolution
rule, then similar functions on events and similar axioms for Believe (etc.)
are introduced.
(d) During the deduction process, the function ‘RESOLVE’ is handled with
immediate evaluation. . '

This would seem to be a satisfactory way of formulating the convention

that “if m believes a and m believes b, then m believes the conclusions from
anb’. It must be understood, of course. that this convention is a rather
crude approximation to the psychological reality. (Even if m is a computer,
rather than a human being, it is still an approximation for any reasonable
interpretation of ‘believes’). The detailed development of these suggestions
is left to a later paper, and will not bother us here any further.

Analytic v. empirical facts

We shall make another similar convention which approximates reality.
Namely, we shall attempt to distinguish between "analytical” and ‘empirical’
facts. An ‘analytical” fact is a fact such as "all men are mammals’™: an ‘empiri-
cal” fact is a fact such as ‘John is asleep’. The difierence between the two is
critical because of the following convention: if @ is an empiricai fact. and 5 is
an analvtic fact. and /1 believes a. then 7 believes anyv conciusion from a » .

In other words. analvtic facts are assumed to be built into all agents who are
capable of believing (and knowing. and so on}.

From these conventions, it immediately follows that analvtical facts cannot
be subjected to belief, knowledge, and so on. We shall therefore adopt the
convention that empirical facts are exactly those facts which are expressed
with the relation 1s (which means they can be expressed as events, using the
function WERE). Analytical facts are expressed with other relations. In
particular, we need a binary relation SUB between properties, used, ror

example, as in
elephant sUB mammal
This relation obeys the axioms
(psuBg)>(misponmisq)
and
(p suB q)>(Believing(/m WERE p) SUB Believing(nm WEREg))
Notice that we do NOT have the stronger axiom
(pstBq)=(Vm)(misp>misq)
261

COGNITIVE AND LINGUISTIC MODELS

We do not. because we want the relation suB to express that the relationship
between p and g 1s an analytic one.

In summary, only ecmpirical facts can be subject to knowledge. belicf. and
so on, and only analytic facts may be expressed with sun (and other. similar
relations, which will be introduced later).

The distinction between analytic and empirical statements obviously has
some potential philosophical overtones. We hope to avoid most of them by
formulating the distinction in terms of an assumption on the verbs believe,
know, and so on, rather than in terms of philosophical considerations.

The predicate "Holds’
The ‘connectedness’ of our set of functions and relations requires that there
should be some unary relation ‘Holds’ such that
Holds(m WERE p)=m 1S p
We shall find frequent use for this relation.
It might be argued that ‘Holds(e)’ is in essence an empirical fact. and that
it should therefore be expressed by, for example,
e 1S true
(where ‘true’ is a property on events). However, the only advantage would
be that we could write terms of the form
e WERE true
But this is a very dispensable feature, since we have anyway that
e WERE true=e
We shall therefore prefer to use the predicate “*Holds".

Summary
in this section. we have introduced the foliowing reiations and

uncuons:

I [objects = properties]
OF [properties * objects— properties]
OBJ [properties * objects— properties]
TO [properties * objects— properties}
WERE [objects * properties—events]
The [properties—objects]
RESOLVE [events * events—events]
SUB [properties = properties]
AND, OR [events = events—events]
Not [events—events]
Holds [events]

plus some specialized functions:
Believing [events—properties]

262

SANDEW ALY

Acquainted-with [objects— propertics]
Knowing [propertics—properties]
MORETHAN [properties = objects— properties]

These functions and relations are intended for expressing NL information in
a many-sorted, first-order predicate calculus. We have given the intended
interpretation of these functions and relations, and outlined the reasons for
selecting these conventions.

2. NOTATION AND OTHER CONVENTIONS

Before we proceed, we shall specify the notational conventions that we use
(and which we have in fact already tacitly used).

Orthography

Binary functions and relations are usually written infixed, and with capital
letters throughout: OF, WERE, 1S. Functions have higher priority than
relations.

Unary functions and relations (and operators, _see below) are written
prefixed, and with an initial capital letter: Knowing, Holds, The, Any.
Unary functions have higher priority than binary ones. The arguments are
not necessarily enclosed by parentheses.

Parentheses are used freely to clarify or modify the order of application of
functions or relations.

Constants and variables for objects and properties are written in lower
case letters throughout. Variables are written with only one letier.

We shall sometimes use bifix functions. The ALGOL construction "I v then
17 is an example of a bifix. A function is bifixed if it is introduced in the form

More ... THAN ...
In such cases, we really mean to have one binary function MORETHAN of
two arguments, and we write

More tall THAN peter
when we mean

MORETHANX((tall. peter)

An infix-to-prefix translator (in Lisp) which also takes care of bitixes is
available from the author.

Sorts

In the sequel, we shall need two more soris. Thus we use first-order predicate
calculus with the following sorts:

(1) Objects (for physical objects, persons. etc.)

(2) Properties [for counterparts of nouns {except proper names). adjectives.
and some verbs]

263

COGNITIVE AND LINGUISTIC MODIELS

(3) Events (for hypothetical or real events in the world. for example.
‘that ijk is peter’s tel-nr’
‘that the monkey is under the bananas’
‘that the monkey jumps to the ceiling’)
(4) Integers
(5) Locations (for spatial positions, for cxample, ‘in the room’, ‘under the
table’).

‘Declarations’ of variables
We shall use different variable symbols for different sorts, according to the
following conventions:
k,m,n objects
p,q,r properties
d,e,f events
v, . integers
Lh locations
Finally, we use the following notation:
Q, R modification functions (see below)
Rprop property function corresp. to R
S(x) literal where x is one occurrence of a term.

3. AMENDMENTS TO FUNCTIONS OF SECTION 1

This section is a supplement to Section 1. giving some additional comments
on the functions that were introduced there as well as some usefui additional
1

functions which are closely related to those of Section 1. These are relativelv
minor details.

Boolean algebras for properties and events
We use the functions AND. OR. and Not, the relation SuB, and the constants
truth and falsity in a Boolean algebra in the obvious way. (The direction of
SUB is such that ’

e AND f SUB e
and so on), ‘e SUB f’is intended to mean that f follows analvtically from e,
AND, OR, and Not are the functions we need for the function RESOLVE that
was outlined in last section. Axioms for this algebra can be taken from any
textbook and will not be repeated in this paper.

The following axioms are more or less obvious:

Holds(Not ¢)=—1Holds(e)

Holds(e axD f)=Holds(e) A Holds(f)
We easily obtain theorems such as

264

SANDEWALT

csuBf A Holds(e) o Holds(/)
Helds(e or /) = Holds(¢) v Holds(/)
If we have a function RESOLVE as in the previous section, we also need an
axiom
¢ AND f SUB RESOLVE(e,[f)
It is convenient to have a relation EXCLUDES, defined by
CEXCLUDESf = esuB Not [
For example, we have
m WERE male EXCLUDES m WERE female
A similar algebra is set up for properties, using the same symbols for the
functions and relations. Thus Not is a function
[(events—events)u(properties— properties)]
and similarly for the others.
We relate the two algebras by the following axioms
m WERE Not p=Not(m WERE p)
M WERE p AND m WERE g = m WERE (p AND q)
and obtain as theorems
M WERE p OR m WEREG = m WERE (p.OR q)
pSUBg D m WERE p SUB m WERE ¢
The last theorem agrees with our intuitive idea that the relation SuB on

properties should be used as in
boy sUB male

Property functions: Ofprop, Atprop, ...
Functions like oF, 0BJ, TO. and so on. will be called modification functions.
They will be assumed to obey certain axioms; for example. if FF and GG are
two arbitrary modification functions, we will have
MFFpPGGqg=mGGqFFp
In order to handle, for example, ‘Peter knows when John goes to school’,
we have for each modification function OF an associated property function
Ofprop [events— properties], satisfying
m 1S (p OF n)=n 1s Ofprop(7 WERE p)
Example
john 1s giving oBJ fido TO mary
is equivalent to
fido 1s Objprop(john WERE giving TO mary)
is equivalent to
mary 18 Toprop(john WERE giving oBJ fido)
In natural language, the last phrase would be "Mary is the one John gives
Fido to’ (or, more precisely, ‘Mary is one that John gives Fido to").

265

COGNITIVE AND LINGUISTIC MODELS

Example: peter 1s Knowing Toprop(john weRrE giving ont fde). In
natural language: Peter knows whom John gives Fido to.

Knowledge and belief
Let us make the functions for expressing knowledge and belief slightly more
precise. We use the following functions:

Believing [events—propertics]
Knowing-whether [events— propertics]
Knowing-that [events— properties]
Knowing [properties— properties]

Acquainted-with [objects— properties]
Starting from believing (the intention of which is left unspecified). we say
that a person knows ‘that’ an event, iff he believes it, and it holds. A person is
said to know ‘whether’ an event, iff he either knows that the event. or knows
that not the event. Furthermore, we say that a person knows a property p,
iff he can determine for every object m [given by its name (assumed to be
unique), rather than by a description], whether (m WERE p). This knowledge
could conceivably be implemented, for example, by maintaining a list of all
objects that have the property (or of those that do not have it).
Finally, a person is acquainted with an<object iff he knows, for every
property p, whether the object has this property.
Examples
peter 1s Knowing(tel-nr oF john)
peter 1S Knowing-whether(321 WERE tel-nr OF john)
peter 18 Knowing-that(321 WERE tel-nr oF john)
dick 1s Knowing-that(peter WERE Knowing(tel-nr OF john})

Paradoxes
In a previous section. we proposed that one should introduce a counterpart of
variables in the event structure. When this is done (we shall not do it in this
paper) it becomes possible to construct expressions which involve essentially
Holds(/m WERE Knowing-that Not e)
where e is made to reference back to the WERE-expression. This is then our
version of the classical paradox; it is impossible to attribute a truth-value to
such an expression. We can see two ways of dealing with the matter. both of
which have some advantages:
(1) The ostrich (=head-in-the-sand) approach: It will be a while until
mechanical theorem-provers discover this paradox. If we can trust each other
with not telling the computer about it. then its theorem-prover wiil retain its
sanity.
(2) The three-valued logic approach: The axioms above are weakened into
Holds{Not ¢)>—1Holds(e)
Holds(¢ axD /)2 Holds (e) A Holds (1)

266

SANDEWALL

With these (and possibly some other) conventions, we do not have any
longer that

Holds(e) v Holds(Not ¢)
so we obtain a three-valued logic on the cvent level [since we account for
events e where

Holds(e)

Holds(Not ¢)

neither]

In this approach, the function RESOLVE will have to perform resolution in a
three-valued logic as described in Hayes (1969).

The function ‘The’ and the operators ‘Any’, ‘'Some’, and 'No’
In those examples where we translate simple natural-language statements into
our notation, we can gain much convenience by using the functions or
operators The, Any, Some, and No.

The function The [properties—objects] assumes that the argument is a
property which is satisfied by exactly one object, and has this object as value.

The operators Any and Some are used for those cases where the ‘argument’
is not guaranteed to satisfy the uniqueness criterion.

The expression ‘Any p’ (where p is a property) is used as a free variable
ranging over all m such that »n1 15 p.

The expression “Some p’ is equivalent to writing a new constant symbol
(generated in a ‘gensym’-like manner) pn, and stating somewhere that pn 1s p.

The expression ‘No p’ will only be used in a context of the form ‘No p15g°.
and is taken as an abbreviation for

mispo—(misq)

There is an obvious algorithm for rewriting expressions that involve The.
Any, Some. and No into pure predicate calculus.

‘The’ is obviously similar, although not identical, to Russell’s and Church’s
iota operator.

The function Sizeof
We need some means of specifving when the operator ‘The’ may be used.
It is proposed to do this by a function

Sizeof [properties— properties]
where the value ranges over properties on integers. ([t is possible that this
should be a separate sort, but we shall not delve into this matier.) We intend

v 18 Sizeof p
to mean ‘exactly v different objects have the property p’. The reason why we
use this formulation, rather than, for example,

Size(p; v)
is that we consider size to be an empirical property.

267

COGNITIVE AND LINGUISTIC MODELS

Whenever an expression of the form
S(The p)
is used. with the sub-expression ‘The p* used on any level. we shall fecel
entitled to deduce
1 18 Sizeof p
This will later bé given as a rule of inference.

The function Whatis
Finally, we need some way of handling situations where a person knows
(or believes, . . .) something about an object which he knows by its descrip-
tion only. We introduce the function ‘Whatis’ for this purpose. If p is a
property, then ‘Whatis p’ is taken to mean ‘the object (whatever it is) that
has property p’, or, more crudely, ‘the idea of an object with property p’. The
function Whatis eliminates the need for constructions such as -“idea-of-
telephone-number’ which are used by McCarthy and Hayes (1969).
Example 1. ‘John’s telephone number is next to Johanna's’, and ‘Peter
believes that John’s telephone number is next to Johanna’s’ can be represented
as:
The(tel-nr OF john) 1s Next-to The(tel-nr OF johanna)
peter Is Believing [Whatis(tel-nr OF john) WERE Next-to
Whatis(tel-nr OF johanna)]
Notice that Peter may hold this belief without knowing John's or Johanna'’s
telephone numbers. Therefore, we should not write ‘The’ instead of “Whatis’
in the second expression.
Example 2. Consider the two expressions
peter 1s Knowing-whether(Whatis(tel-nr oF john) WERE
tel-nr OF dick)
and peter 1s Knowing-whether(The(tel-nr OF john) WERE
tel-nr oF dick)
If John’s actual telephone number is 321, then the first of the above sentences
says that Peter would be able to answer correctly the question
‘Do John and Dick have the same telephone number ?’
whereas according to the second sentence, he would be able to answer the
question
‘Is 321 the telephone number of Dick ?".
In vague words, if “The’ is used, then the description is ‘evaluated’ during the
conversation between you and me, whereas the ‘Whatis’ function performs a
kind of quoting.

Inference rules
We shall obviously need some conventional inference rules (for example, the

268

SANDEWAL!

resolution operation) and a rule for handling equality. 1t may or mayv not
be a good idea to have special inference rules for the eperaters The. Anv, and
Some. (The alternative is to eliminate these before the deduction starts.) In
case we want to have such inference rules, they are as follows:

(1) x=»,S(x)FS()

(2) m1s p, S(The p)FS(m)

(3) S(The p)F 1 15 Sizeof p

(4) m1s p, S(Any p)+S(m)

(5) S(Some p)F (Im) mispAS (m)

In each of these rules, we assume S to be a literal. We extend the rule to
inference rules on clauses in the obvious way.

Remark. In (5), only ONE occurrence of ‘Some p’ in S can be substituted
for ata time. ‘m’ can be selected as any variable which does not occurin S or p.

SOME AXIOMS
Finally, let us specify some axioms for the general (‘system’) functions and
relations that have been introduced in this section. Axioms for more special-
purpose functions (for example, the knowledge functions) are postponed to
the next section. The axioms for the boolean algebras for properties and
events are omitted altogether.
(1) Holds(m WERE p)=m 1S p
(2a) Holds(Not e)="1Holds(e)
(2b) Holds(e axD f)=Holds (e) A Holds (f)
(3a) m WERE Not p=Not(m WERE p)
(3b) m WERE (p AND g)=(m WERE p) AND (111 WERE q)
(4) pRmsuBp
3)pRmQn=pQnuRm
(6) misp Rn = ni1s Rprop(m WERE p)
(7) 11sSizeof p A mISp A niSp D m=n
(8) 01s Sizeof p o 1(m1sp)
(9) Nopisqg = [(VYm)misp o 71 (m1sq)]
Axioms (7) and (8) need to be supplemented with more general axioms for
the function Sizeof, and with an axiomatization of integers.

'WERE-ification’ of axioms
In the next section, where axioms for special environments are given, we sha!.
see, for example, the axiom
1S MORETHAN(p, K) Ak 1S MORETHAN(p, n) D
m 1S MORETHAXN(p, 1) (i

269

COGNITIVE AND LINGUISTIC MODELS

This axiom is of course perfectly equivalent to
Holds (/7 WERE MORETHAN (2. A)Y AND A WEREMORETHAN(/. 1)
IMPLILS 771 WERE MORCTHAN(p. 11)) ()
where ‘e IMPLIES /7 is defined as ‘“Not ¢ OrR /7. However, we also want to use
this axiom in deductions about beliefs: if a person believes that m is taller
than k. and that & is taller than n, then certainly he believes that m is taller
than n. Neither of the above axioms permits us to make this.deduction about
his beliefs.

For belief, we shall use an axiom

¢ suB foBelieving e suB Believing /
It is thercfore reasonable to strengthen (2) into

M WERE MORETHAN(p, k) AND kK WERE MORETHAN(p, 1) SUB

m WERE MORETHAN(p, 1) (3)

A ‘clause form’ equivalent of (3) is

[Not(7 WERE MORETHAN(p, k)) OR

Not(A WERE MORETHAN(p, 11)) OR

m WERE MORETHAN(p, n)]=truth (4)
Clearly, then, ‘e=truth’is our way of saying ‘Necessarily e’ or (less mystically)
‘everybody knows that ¢’. We should not be surprised that all analytic facts
come out as identical, for the reason for introducing events was to have some
object for belief, knowledge, and so on. and we have already stated that
analytic facts are those which are not subject to belief.

In principle. it would be preferable to state all analyticaxioms in the stronger
form exemplified in (3) and (). rather than the weaker form of (i: and
(2). In the sequel, we shall simply refer to these as the stronger and the weaker
form. respectively. Since we consider the weaker form more natural and more
legible. we shall prefer to use it. To fill the gap, we specify here the procedure
whereby an axiom can be ‘strengthened’, that is, transformed from the
weaker to the stronger form. The procedure operates on clauses:

Let {L1,...Ln} be a clause in the weaker form. We define a function r on
literals as follows:

r(‘Holds e’)="¢’

r(*—1Holds ¢’)="Not ¢’

r(Cm1s p’)=‘m WERE p’

r(T 1S p’)="Not(m WERE p)’
and undefined for other arguments. Let L1. L2, ... Lj(j>1) be those literals
for which r is defined. Construct the clause

tr(L)orr(L2)OR ... OR r{Lj}=truth. Lij+~1)....Ln,
(the notation is impure, but the intention should be clear). This is then the
desired, strengthened clause. It j=0, the clause can not be strengthened.

270

SANDEWALL

Most axioms in the sequel do not need strengthening., but a few do.
Axiom (7) above must not be strengthened.

4. FUNCTIONS, THEIR INTENDED INTERPRETATIONS,
AND AXIOMS FOR VARIOUS DOMAINS

[n this section, we shall work through various types of NL information, and
suggest a notation and a set of axioms that reproduce this kind of information.
We shall rely on the general framework that was set up in previous sections.

Axioms for knowledge
Following the discussion in previous sections, we use the following axioms:
Believing [events—properties]
Knowing [properties— properties]
Knowing-whether [events—properties]
Knowing-that. [events— properties]
Acquainted-with [objects—properties]
It is convenient to start out from the function ‘Believing’, and to define the
others in terms of it. -
(kNow 1) m1s Knowing-that e = Holds e A m 15 Believing ¢
(know 2) Knowing-whether e = Knowing-that e or Knowing-that Note
(kxow 3) m1s Knowing p = [(Yk) m1s Knowing-whether(k WERE p)]
(KNOow 4) m1s Aquainted-with n =
[(¥p) m 15 Knowing-whether(n# WERE p)]
(kxow 5) mis Knowing pAm 1s Knowing go
m 1s Knowing-whether(Whatis p WERE ¢)
(KNOWw 6a) (Behieving e AND Believing /) = Believing (¢ AxD /)
(KNOW 6b) e suB/ > Believing e sUB Believing f
(kNow 6¢) e sUBf > Knowing-that e suB Knowing-that /
(k~xow 7a) Believing e EXCLUDES Believing Not e
(kxow 7b) Knowing(Not p) = Knowing p
(kxow 7¢) Knowing-whether(Not ¢) = Knowing-whether e
(kxow 7d) Knowing-that e EXCLUDES Knowing-that Not ¢
These axioms are not independent. (7¢) is a direct cofoHary of (2): (7d)can
be deduced from (7a) and the strengthened version of (1); and so on.

Axioms for the connectives ET and ZU
The function ET is used to construct composite objects from simple objects,
for use, for example, in constructions such as ‘Peter and Mary are married’.
In English (as in several other European languages) there is a number of
equivalent formulations such as
Peter and Mary are married =

271

. COGNITIVE AND LINGUISTIC MODELS

Peter 1s married to Mary=

Mary is married to Peter

Peter and Mary are quarrelling=
Peter is quarrelling with Mary= . ..
Peter and Mary meet in the city=
Peter meets Mary in the city= . ..

We shall make universal use of the connective zu for the various prepositions
used in natural English (to, with, . ..). Thus we would write, for example,

peter 1s married ZU mary
peter 1s (meeting IN The city) zU mary=
peter ET mary IS meeting IN The city

Moreover, we use a special (analytic) predicate Zuable to mark those
properties (married, meeting, . . .) which can be treated in this way.
We note the following axioms:
e (ETZU 1) METH = HETm
: (ETzU2) (METN)ETk = mET(HETK)
(ETZU3) METmMm =m
(ETzUu4) Zuablep o (mispzun = mETnisp)

Axioms for spatial location

We introduce a new sort, LOCATION, and the following functions:
Loc [locations— properties]
Inside [objects—locations]
Qutside ”

29

Near

Farfrom ”
Atinside
At ”
Upon
Under v
Above ”
Below

Beside ”

tx)

Between

A location is thought of as having an EXTENSION in space and. optionally,
having an EDGE. An object is thought of as having an EXTENSION and
(always) an EDGE. We write ‘n11S Loc " (where 1 1s an object. /is a location)
iff (a) the extension of m is contained in the extension of /. and (b) the edge
of m has some segment in common with the edge of /, if / has one. [These
ideas have been taken from Schank, Tesler and Weber (1970)].

272

SANDEWALIL

The following functions generate locations with an edge: Atinside., At,
Upon. Under. The other functions do net. The meaning of all functions should
be rather obvious: Inside(r7) has the same extension as m7. and no edge;
Atinside(m1) has the same extension, but it also has the edge of 71 as its edge:
and so on.

The function ‘Between' is supposed to take an argument of the form
‘MET I or ‘K ETmET 1.

We use a relation SUBL on [locations * locations] to describe analytic
location-inclusion.

(rocl) [/suBL/]=[Loc/suB Loc /]

(Loc 2) Near m sUBL Outside m

(Loc 3) Farfrom m suBL Outside m

(Loc4) Atinside m suBL Inside m

(Loc5) AtmsuBL Near m

(roc 6) Upon m sUBL At m

(Loc7) Above m suUBL Near m

(Loc 8) Upon m suBL Above m

(roc9) Under m sUBL At m

(Loc 10) Below m sUBL Near m

(roc 11) Under m sUBL Below m

(roc12) misLocRn = nisLocRm
(WHERE R=Near, Farfrom, At, Beside)

(roc 13) mi1s Loc Uponn = n1s Loc Under m

(Loc 14) wmr1s Loc Above n = n1s Loc Below m

(roc 15) misLoc Rn o —1k1s Loc Between m ET 12

{WHERE R=At, Inside)

For some of the further axioms, it is convenient to have an auxiiiary relation
EXCLUDEL on [locations locations], saying that two locations are mutually
exclusive:

(roc16) /EXCLUDEL i=Loc/EXCLUDES Loc /1

(Loc 17) Inside m EXCLUDEL Outside m

(roc 18) Near m EXCLUDEL Farfrom m

(Loc 19) Below m EXCLUDEL Above m

(Loc 20) Below m EXCLUDEL Beside m

(Loc 21) Above m EXCLUDEL Beside m
Deduction using Loc axioms certainly needs to be supported by a natural

model!

It may or may not be a good idea to use functions ‘Locinside’, Locnear’,
etc. which map directly from an object to the property of having a location
related to the object. We would then avoid treating locations as separate

T 273

COGNITINVE AND LINGUISTIC MODIELS

sorts. Having a special sort for focations is probablv a geod idea. if we plan
to support the theorem-prover with some kind of natural moedel,

Axioms for the comparison of adjectives
We usc the following functions:
More .. THAN .. [propertics % objects— properties]
As..AS.. b
Less .. THAN . .

"

Most .. AMONG .. [propertics = properties— properties]
Least.. AMONG.. ’

The meaning of these functions should be clcar. Examples:
peter 1S More tall THAN john
john 1s Less tall THAN peter
john 1s As tall As dick
peter 1S Most tall AMONG (brother oF dick)

The last expression is intended to say that Peter is a brother of Dick. and
that no brother of Dick is taller than Peter, although some may be as tall as
Peter. If Peter is strictly the tallest of Dick’s brothers, we can write the
stronger statement

peter=The(Most tall AMONG (k:)rother OF dick))

To explain that two properties are each other’s opposites, we introduce a
unary function

Un: [properties—properties]
to be used as in

peter 1s Un(old)

voung=Un{(old)
In cases where a certain natural language permits several onposites of an
adjective (for example. both "tall’ and “long” are English opposites of short’;,
we shall take the standpoint that this is a case of lexical ambiguity (for
‘short’) or of imposed redundancy (‘tall’ v. ‘long’), and that the set of
properties must be smoothed by using two different individuals to resolve
the ambiguity (‘shortl’ and ‘short2’) or by merging the two redundant
properties into one (‘long+tall’). With such arrangements, the function
‘Un’ can be made unambiguous.

Notice the difference between ‘Not p* and *Un p’. If the kind of property
expressed by 'p’ and ‘Un p’ is not at all applicable to an object, then the
object has the property Not(p), but not the property Un(p)}. For example,
we say that a stone is ‘Not(happy)’, but not that it is ‘Un(happy)’.

Now some axioms:

(capy 1) mi1s More p THAN & A A 1s More p THAN 17 =

m 1S More p THAN 22

274

SANDEWAT]

(CADI) —amris More p THAN

(cADI3) mas Less p THAN A = A 1s NMore p THAN

(capid) mas More p THAN A2 m 1S More p THAN Any (As p ASA)
(cAap15) mi1s More p THAN k> Any (As p ASm) 1S More p THAN A
(CADIG) mISAsSpASH D 1S ASpASm

(CAaDIT7) nisSAspAsn

(capi8) mi1s Most p AMONG ¢ = (m1SgANo ¢ 1S More p THAN 1)
(cAD19) m1s Least p AMONG g = (m1sgA No g 1s Less p THAN m)
(capy 10) p=Un(Un(p))

(cap111) Un(p)suB Not(p)

(cAap112) Aspasn = AsUn(p)Asn

(cADJ 13) As p ASn EXCLUDES More p THAN 11

(cAaDp1 14) More p THAN n = Less Un(p) THAN n

(cAaDJ 15) Most p AMONG g = Least Un(p) AMONG ¢

Axioms for measures on adjectives
We use the following functions
Very [properties— properties] =
Rather ”
Slightly ”
We also assume that every object has exactly one of the following properties:
Very p
Rather p
Slightly p
Not p
for every ‘basic property’ p. (Very p, Rather p, and so on, are not ‘basic
properties’, so we do not assume constructions like ‘Very Rather p’).
Some axioms are:

(MADJ 1) Very p EXCLUDES Rather p

(MADJ 2) Rather p EXCLUDES Slightiy p

(MADJ 3) Very p EXCLUDES Slightly p

(MADJ 4) Very p SUB p

(MADJ 5) Rather p suB p

(MADJ 6) Shightly p sUB p

(MADJ 7) Any Very p 1S More p THAN Any Rather p
(MADJ R) Any Rather p 1s More p THAN Any Slightly p
(MADJ9) Any Very p 1s More p THAN Any Slightly p

(MaDJ 10a-¢c) miIsAspasnAa misOpp = nisOpp
(WHERE Op=Very, Rather. Slightly)
275 '

COGNITIVE AND LINGUISTIC MODELS

5. CONCLUSION
In this paper. we have proposed a set of functions and relations that we claim
arc good for re-expressing a cross-scction of typical NL constructions. We
have also given some 75 axioms for these functions and relations. This is an
order of magnitude bigger than the axiom sets that (to our knowledge) have
before been used in theorem-proving programs. and it should present a new
challenge.
Some of the problems that should be treated next are:

(1) Automate the translation from a simplified natural language to the
notation presented here.

The reader will have noticed that in developing the notation, we took
considerable care to stay close to NL concepts and formulations. There are
good and bad aspects to this; one good aspect is certainly that it should
simplify translation.

(2) Polish up and extend the axiom sets.

The axiom sets that have been given in this sketchy paper are somewhat
haphazard, and they need debugging. We submit that this debugging can
best be performed in interactive experiments on a computer, and that human
think power is not sufficient. We submit, further, that the criteria for selecting
an axiom set must be those of power and of computational efficiency, and
that the criteria usually used in logic (elegance, minimal set of axioms, and
so on) are largely irrelevant.

(3) Develop short-cut methods whereby a theorem-prover can manipulate the
algebras on properties and events in an efficient way.

(4) Try to get some handle on those sentences in NL which are not intended
to convey the information of their ‘face-value’ assertion, and which are not
either intended as information requests (questions).

Many of the sentences that we use (even in regular, non-fiction prose; are
pronounced only in order to focus the listener’s attention on some fact that
he already knows, or to tell the listener that the speaker knows a certain fact
and has accounted for it, and so on. Statements of this kind are not adequately
handled if we merely translate them into P C and shuffle them into a data base.
They must be treated quite differently. We consider this the most important
(and also the most evasive) problem in NL processing today.

Acknowledgements

This research was supported in part by the Swedish Natura!l Science Research Councii
(contract Dnr 2711-8). Part of the work was performed while I was visiting at the
Stanford Artificial Intelligence Project. I am greatly indebted to Professor John McCarthy
of Stanford and to Jeff Rulifson, Richard Waldinger, and Bob Yates of sr1 for man:
stimulating discussions on the topic covered in this paper.

276

SANDEW ALL

REFERENCES

Allen, 1. & Luckham. D. (1970) An interactive theorem-proving program. Macline
Intelligence 5. pp. 22126 (eds Mcltzer, B. & Michie, D.). Edinburgh: Edinburgh
University Press.

Darlington, J.L. (1971) A partial mechanization of sccond-order logic. Machine
Intelligence 6, pp. 91-100 (eds Mcll/u B. & Michie, D.). Edinburgh: Edinburgh
University Press.

Green, C.C. (1969) Theorem-proving by resolution as a basis for question-answering
systems. AMachine Intelligence 4, pp. 183-205 (eds Meltzer, B. & Michie, D.).
Edinburgh: Edinburgh University Press.

Hayes, P. (1969) A machinc-oriented formulation of the extended functional calculus.
Stanford Artificial Intelligence Project Memo 86.

Luckham, D. (1970) Refincments in resolution theory. Proc. IRIA Symposium on
Automatic Demonstration, pp. 163-90. Springer Verlag.

McCarthy, J. & Hayes, P. (1969) Some philosophical probiems from the standpomt
of artificial intelligence. Machine Intelligence 4, pp. 463-302 (eds Meltzer, B. &
Michie, D.). Edinburgh: Edinburgh University Press.

Robinson, J.A. (1965) A machine-oriented logic based on the resolution principle.

J. Ass. comput. Mach., 12, 23-41.

Robinson, J.A. (1970) A note on mechanizing higher order logic. Machine Intelligence
5, pp. 123-33 (cds Meltzer, B. & Michie, D.). Edinburgh: Edinburgh University
Press.

Schank, R., Tesler, L. & Weber, S. (1970) SpiNoza 11: Conceptual case-based natural
language analysis. Stanford Artificial Intelligence Project Memo 109,

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

