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ABSTRACT

This paper contributes to the discussion whether and how predicate calculus should be used as
a deep structure in question-answering programs. The first part of the paper stresses that there
are several possible ways of using predicate calculus, and argues that predicate calculus has
significant advantages above competing deep structures if the way of using it is carefully
selected. The second half gives hints on how various natural-language constructions can be
encoded in a consistent way, and how axiom sets that define these encodings can be written
and debugged.

1. The Role of a ““Deep Structure’’ in Question-Answering
Systems
The following are the major tasks that have to be performed in a computer
question—answering system:

1. Input translation. This process performs morphological analysis, and a
simple syntactic analysis which picks out important substructures (noun
phrases, subordinate sentences, etc.). It also identifies words in the sentence
with previous occurrences of the same word (represented e.g. as a node in
the data base). Input translation may access the data base, so that the data
base is used as a lexicon, but it does not integrate the sentence into the data
base.

2. Assimilation. This step links the new sentence to the existing data base,
i.e. it evaluates references to previous sentences, such as “that man”, “his
father”, “for this reason’, etc. A sentence is then simply defined as that which
the input translation phase takes in one bite.

3. Acceptance. This step is only performed for assertions. It checks
whether the new sentence can be added to the data base (checks for well-
formed-ness, contradiction with previous facts, etc.). Possibly, the acceptance

1 The research reported here was supported in part by the Swedish Natural Science
Research Council (contract Dnr 2654-3).
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procedure may throw out some old facts from the data base to be able to
accommodate the new fact without contradiction (“the system changes its
mind”).

4. Answer-finding. This step is only performed for questions. For closed
questions (which can be answered by “Yes” or “No”’), we search through the
data base, to check whether the proposition of the given question follows
from or contradicts the data base. In the first case, the answer is yes, in the
second case, the answer is no. If neither consequence nor contradiction is
found (because of insufficient data in the data base, or insufficient resources to
carry on the search to the end), the answer is ““Don’t know”. (If there is both
consequence and contradiction, the data base must be modified). For open
questions (WH questions), a similar search is done, and a similar analysis
holds.

Other steps may sometimes be needed (e.g. output translation of answers to
questions), but the above four steps are the most essential ones. I do not wish
to imply that the “sizes” of the four steps given here are approximately
equal, nor that these steps need to be done sequentially. For example, it may
sometimes be suitable to do some assimilation before input translation has
been completed, and in order to guide its course. The four steps are simply
four different tasks that have to be done.

The overriding purpose of the input translation task is to transform the
sentence to a form where assimilation, acceptance, and answer-finding can
be performed more safely and conveniently than in the original sentence.
We shall use the term ““deep structure” for this form, i.e. for the result of the
input translation phase. The deep structure which is used in transformational
grammars is certainly one candidate for the deep structure of a question—
answering system, but we must recognize that a computer scientist must
select his deep structure on different criteria from those of the linguist. In a
question-answering system, input translation is an investment of work which
is expected to pay off in later steps. A more sophisticated deep structure,
which requires more expensive input translation, is therefore warranted if and
only if it simplifies later processing at least as much.

It follows, also, that the decision on exactly what is to be done during the
input translation phase is a question of efficiency: in some systems, it is
perhaps not efficient to reduce equivalent sentences (e.g. active and passive
form) to a common, canonical deep structure, but better to verify the
equivalence by logical deduction in the question-answering (internal proces-
sing) phase. If this is so, then it would be a reason for not using the deep
structure of transformational grammars (as usually designed today) in such
question-answering systems.

We can now make an important observation. Assimilation, acceptance,
and answer-finding can be programmed quite easily if the deep structure (i.e.
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the final result of input translation) and the components of the data base are
formulas in first-order predicate calculus. We can then use existing methods
in computational logic as a major subroutine in all these steps. The most
important method is the resolution method; see Robinson [1] or Nilsson [2].
Using it, answer-finding for closed questions becomes trivial, and there
already exist methods (Green [3]; Luckham and Nilsson [4]) which rely on
resolution, and which answer open questions. Assimilation obviously consists
of answering open questions (plus some administration), and acceptance
consists mostly in verifying that the answer to certain closed questions is
“I don’t know”". (At least, a simple form of acceptance tests can be performed
in this fashion. This is further discussed in Palme [5]). Therefore, program-
ming assimilation, acceptance, and answer-finding is facilitated considerably
if we express the deep structure in first-order predicate calculus, and set up
the necessary axioms. The present paper contributes to the discussion
whether and how predicate calculus can be used in this way, and what the
advantages and disadvantages would be.

2. Some Possible Ways of Using Predicate Calculus as
Deep Structure '

Unfortunately, there are misunderstandings current, as regards what can be
done in predicate calculus. For example, in a recent working paper from a
renowned university, we find the following statement: “The point is that in
English, sentences often refer to other sentences, that this is a feature of
meaning as well as syntax, and that first-order predicate calculus, which does
not involve such references, fails to provide a translation for such sentences.”
This is not a singular example, although it is an unusually precise formula-
tion; other authors often treat the matter with more handwaving. In this
section, we shall show that the statement in the above quotation is wrong.

The heart of the matter is that the predicate calculus notation (like any
notation) is only syntax, and that it remains for the user to define its semantics.
This can be done in several different ways. Let us illustrate this with three
possible translations into the predicate calculus of the sentence “Peter gives
Fido to Mary”:

1. Verb is used as predicate symbol. The translation is

Gives(peter, fido, mary)

where Gives is a three-place relation, and peter, fido, and mary are constants.
Possibly, more arguments can be added to indicate when and where the action
takes place.

2. Prepositions and cases are used as predicate symbols. The translation is
(3e) Subject(peter, e) A Verb(giving, e) A Object(fido, e) A
Indirobject(mary, e) A Holds(e)
where e is interpreted as the event where Peter gives Fido to Mary. The first
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four relations are used to describe this event, and the predicate Holds is used
to state that the event does in fact take place. Thus in the translation of
“John believes that Peter gives Fido to Mary’’, we would mark the top-level
sentence, but not the subordinate sentence with Holds:
(de) (Jesub) Subject(john,e) A Verb(believing,e) A

Object(esub,e) A Holds(e) A

Subject(peter,esub) A Verb(giving,esub) A\

Object(fido,esub) A Indirobject(mary,esub).

3. Prepositions and cases are used as function symbols. The translation is
IS(peter, TO(OBJ(giving,fido), mary)) '
or (if the relation IS and the functions 7O and OBJ are written infixed)
(peter IS ((giving OBJ fido) TO mary)).
This expression can be drawn as a binary tree (Fig. 1):

1S

peter

oBJ

mary
giving fido '

FiG. 1.

In this translation, as in the preceding one, we have two sorts: objects
(peter, fido, mary), and properties (giving). The relation IS assumes its first
argument to be an object, and its second argument to be a property. (It is a
relation on objects times properties). Thus |

peter IS giving
is a well-formed formula, and is interpreted as saying that Peter is giving
something to somebody. Moreover, 70 and OBJ are functions which map
properties times objects into properties.

We shall deal with details in a later section. The point here is that all three
translations are possible, and all three are syntactically proper predicate
calculus. Admittedly, the later two translations may be interpreted as
reformulations in predicate calculus of some other calculus. From a practical
viewpoint, however, the important thing is whether existing methods and
programs for computational logic are or are not applicable to the selected
formalism. Since all three translations permit this, it is meaningful to talk
about them as predicate calculus translations.

The first translation method is the most common one. It has been used,
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e.g. by Bohnert and Backer [6] and Green [3]. The reason why it is so popular
is probably that people easily identify the “predicate” concept of traditional
grammar with the “predicate” concept of predicate calculus. However, this
translation method also has some obvious limitations, which were presumably
thought to apply to predicate calculus as a whole in the statement quoted
above.

The second translation method has been used in several question-answering
programs (see, e.g. Simmons [7] or Palme [5]). It also corresponds closely to
Fillmore’s [8] case grammar. As we have seen, this approach does permit one
sentence to refer to another sentence (or, to be precise, to the event described
in another sentence).

The third method bears some resemblance to the deep structure in trans-
formational grammars. It is interesting to compare the tree in Fig. 1 with
the conventional phrase-marker for the same natural-language sentence.
Our tree is more compact, since non-terminal nodes are used to convey
information in the sentence, rather than merely information about the
sentence. Nested triples of roughly this form have been used, among others,
by Simmons and Burger [9].

All three approaches have been tried. Unfortunately, the people who
follow approaches (2) and (3) generally do not exploit the fact that their
deep structure can be thought of in terms of first-order predicate calculus.
The only exception I know of is Palme [5].

The second and third approach have another thing in common: they both
assume a relatively small number of functions and relations, which serve to
express primitives of our conceptual and linguistic framework (the relations
Subject, Verb, etc. and the functions OBJ, TO, etc.). Dictionary items, on the
other hand, are considered as constants in the calculus. This is in contrast to
the first approach, where the list of functions and relations is necessarily very
long, and open-ended. Therefore, only the second and third approach permit
us to quantify over dictionary items.

I believe these are sufficient reasons to decide against using the first
(verb-into-predicate-symbol) approach except for the most trivial programs.
In the choice between the second and third approaches (and other possible
approaches), I have no fixed opinion. Both are used and investigated in
present research projects in Uppsala and Stockholm.

3. Advantages and Disadvantages of Axiomatic Deep
Structures
One advantage of using predicate calculus for deep structure was stressed in
the first section above: it enables us to use existing computational methods.
However, predicate calculus has some further advantages, which it shares
with formal systems (i.e. with axiomatization) in general. In this section, we
Artificial Intelligence 2 (1971), 129-145
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shall discuss those further advantages, and also say something about the
disadvantages of predicate calculus deep structures.

The computer world abounds with data structures which are supposed to
be useful for re-expressing ‘“‘semantic information”, “natural language”,
“deep structure”, or whatever other synonym is used. Usually, it is easy and
entertaining to set up such a data structure, and to write a program which
translates some fragment of natural language into it.

The next problem, of course, is: how do we retrieve information from the
data base that we have set up? The usual approach is to “write a retrieval
program”. In other words, one writes an answer-finding routine which first
checks whether the answer to the question is explicitly stored in the data base,
and which otherwise searches the data base, combining the given question
plus some information in the data base into a sub-question, which is recur-
sively given to the answer-finding routine. Such a retrieval program is by
necessity rather ad hoc: its designer has to sit down, think, and decide which
sub-questions are adequate for a given question.

This ad-hoc-ness is a disadvantage at the design stage: writing the retrieval
program would be easier if one had some fixed guide-lines or some mathe-
matical method by which to proceed. It gets to be an even bigger disadvantage
when the retrieval program is to be tested and improved. For, suppose the
retrieval program answers “Don’t know” to a question, when the human
user thinks the data base has all the information that was needed for answering
the question by “Yes”. Who is to blame? Is the retrieval program too
dumb, so that more search time or more sophisticated search, or perhaps
more sub-questions (higher branching factor) would solve the problem ?
Or could it be that the data structure is in some sense “insufficient”, i.e. that
the “information content” that remains after the input translation has added
some entropy, is in fact too small to give a positive answer to the question ?

One way to solve this problem is to write axioms. The design of the
retrieval procedure is then performed in two steps:

(1) Formulate axioms which express what conclusions can be drawn from a
certain fragment of the data base. An example of an axiom is
“if x is greater than y, and y is greater than z, then x is greater than z”
where each of the assumptions and the conclusion must be expressed in
the notation of the selected data base.

(2) Use the axioms as a guide-line for the retrieval program. Every sub-
question generator (if the retrieval program has such a structure) is then
viewed as the implementation of an axiom. In a very simple case, an
axiom of the form

AN BoC

may be implemented as a piece of codé which recognizes the internal
Artificial Intelligence 2 (1971), 129-145
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question or sub-question C, combines it with the explicit fact 4 in the data

base, and generates the sub-question B.
If this approach is followed, and the resulting retrieval program cannot
answer one particular question, there is a constructive action to take: we sit
down with the date base and the given question, and try to prove the question
statement manually from the information in the data base. If this succeeds,
then obviously the retrieval program is to blame, and we have probably also
gotten some hint of what one should change in it. If we do not succeed (and
if we consider ourselves to be perfect theorem provers for small, test-case
data bases), we must clearly add some more axioms. In attempting this, it
could happen that every proposed axiom which would enable the system to
answer Yes to the test-example question, also enables it to answer positively
to questions which we (intuitively) understand are not supported by facts in
the data base. If this is so, we can conclude that the data structure itself is
inadequate for its intended purpose.

In this discussion, I have purposely avoided using the terminology of
mathematical logic, because the merit of axiomatization needs mostly to be
explained to those readers who do not know logic. It is clear, however, that
anybody who intends to use axiomatization as a method for programming a
retrieval program should learn at least the elements of logic, and familiarize
himself with concepts such as interpretation, validity, completeness, etc.

If some usage of logical terminology is permitted here, let me add that a
reasonable third step in the design of a retrieval procedure is
(3) Analyze the proposed retrieval program to determine whether it is sound

(i.e. whether it only answers positively to questions which can be proved
from the data base, using given axioms) and complete (i.e. whether it
will answer positively to all questions which can be proved from the
data base).
Such an analysis is something quite easy to do. Sandewall [10] does it for the
“chaining” method in a data base of binary relations between nodes.

The axiomatization method is particularly convenient if the data base is
expressed in predicate calculus notation. One advantage is that we then have
a fixed external notation which adequately describes fragments of the data
structure. (This is not necessarily the case when we use “home-made’’
structures.) Another advantage is that there is at least some knowledge
available on when and how axioms should be written. A third advantage is
that some axioms (namely those handling logical connectives and quantifiers)
are standard, and can be taken from “‘the book”. (To some extent, they are
even built into the existing deduction methods.) If one uses his own data
structure, he has to set up and debug these axioms himself.

The major advantage is, however, that methods which will do the retrieval
for us already exist. This remark will immediately be qualified : these methods
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exist in formal descriptions, and they have been tried on very small data bases.
The primary method is of course the resolution method (Robinson [1];
Nilsson [2]). Deduction by resolution, starting from a small number of
axioms can be done rather efficiently today, and the problem of how one
should use resolution for (relatively) shallow deductions from a large data
base is an important research topic. One can expect that much more will be
known even before this paper is published. For further details about this, the
reader is referred to Nilsson’s excellent book [2].

The major disadvantage in using predicate calculus for question-answering
today is that these techniques for doing shallow resolution deductions in a
relatively large data base, have not yet been developed. In particular, we do
not know how to exploit the semantic content of the formulas to direct the
search for proof or refutation. On the other hand, hardly any research has
been devoted to this problem, and I believe that techniques of this kind are
within reach.

4. Encoding Natural-Language Constructions in Predicate
Calculus

If we accept that predicate calculus should be used in the data base of a

question-answering program, we must ask next what the major sub-problems

are when this approach is used. The following seem to be the most important
ones:

(a) Formulate pieces of our (linguistically based) conceptual framework in
the selected version of predicate calculus. This includes concepts of time,
space, cause-effect, adjective-noun composition, adjective comparison,
etc.

(b) Formulate axioms which express the properties of the various concepts
that were formalized under (a).

(c) Adapt the methods of computational logic for use in the data base of a
question-answering system.

This section will give some hints on how task (a) can be performed, and the
next section will deal with task (b). I am presently working on an approach to
task (c).

One major rule-of-thumb for the concept formulation task was given in
the last section, namely: write your axioms (or your retrieval program, in
case you do not wish to axiomatize) in parallel with concept formulation,
not after. They give you an important guide-line for selecting a useful
notation.

Another rule is: do not attempt to formulate “raw” natural language
constructions, but instead idealized constructions. For example, it would be
senseless to look for axioms which characterize adjective-noun or noun-noun
combinations in general. Instead, one should assume that such combinations
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are ambiguous and that there are several underlying types of combination,
which can be axiomatized separately. Examples:

“the red house” (it is red, and it is a house)

“the little elephant” (it is little for an elephant, but it may be big for
an animal)

“the bad teacher” (he is bad as teacher, but he may be good as
father).

A third rule is: distinguish carefully between factual elements in the deep
structure, which express new facts or actual questions, on one hand, and
referential elements which serve for reference to previous text, on the other.
Factual elements remain intact after the assimilation phase (cf. Section 1),
whereas referential elements are eliminated in assimilation. Factual elements
must be characterized by axioms; referential elements must be characterized
by clear rules which define how these elements are to be used during assimila-
tion.

We now show some examples which illustrate these rules of thumb, and
which also may have some interest in themselves. We prefer to use the third
approach of Section 2 (prepositions and cases used as function symbols),
mainly because formulas tend to be much more legible than in the second
approach (binary relations throughout). Most of the examples are taken from
a recent paper (Sandewall [11]).

First some preliminaries:

Sorts. We need individuals of at least three sorts: objects, properties, and
events. The individuals peter, fido, and mary are objects; the individual giving
(in the example in a previous section) is a property. Event individuals will be
introduced immediately.

Functions and relations all have one or two arguments. If there is one argu-
ment, the function (relation) is prefixed; if there are two arguments, it is
infixed. For every function, the sort of each argument, and of the value is
specified. For every relation, the sort of each argument is specified. This
enables us to parse in an unambiguous fashion expressions which would
otherwise be ambiguous. For example, the expression

peter IS giving OBJ fido TO mary
is unambiguous if IS, OBJ, and TO have the following sorts:
IS: objects X properties
OBJ: properties X objects — properties
TO: properties X objects — properties

The construction of a simple algorithm (similar to precedence analysis) which
does infix-to-prefix translation using sort restraints is an interesting program-
ming problem.

We can now proceed to the discussion of some essential natural- -language
constructions.

Artificial Intelligence'Z (1971), 129-145
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Representation of attributes. For expressing, e.g. “John is a father” and
‘John is the father of Peter”, we assume a property “father”, and a function
OF: properties X objects — properties.
The two examples can then be expressed as

john IS father

and
john IS father OF peter.

The same conventions and the same function OF can be used for other similar
constructions, such as “son of”, “‘telephone number of”’, and so on.

Representation of sentence kernels. These are handled like the example in
Section 2 (“Peter gives Fido to Mary”).

Representatwn of subordinate sentences. We introduce the functions

1Z. objects X properties — events
THAT: properties X events — properties.
These functions are used as in the following example: We express “Dick
believes that John is the father of Peter’” by
dick IS believing THAT (john IZ father OF peter).

The difference between IS and 1Z is of course that IS is a relation, whereas 1Z
is a function, whose value (the ‘event’) is presumed to retain the information
contained in its first and second argument. (In Sandewall [11], the function IZ
is called WERE.)

Up to this point, we have treated factual constructions. Let us give an
example of a referential construction as well:

A ““definite article”. In the expression which is generated by input transla-
tion, we permit sub-expressions of the form

The p
where p is an expression of the sort ‘property’. We specify the following
assimilation procedure:
(a) If the data base contains exactly one object m for which it is known
(i.e. stated or deducible)
miISp
then m is inserted instead of ‘The p’ in the input expression.

(b) If the data base contains no such m, then a new constant m is introduced,
and the expression
mlISp
is considered for acceptance in the data base.
(If this expression contradicts the data base, then the acceptance routine
is supposed to protest. This would presumably occur, e.g. if we try to

introduce
m IS father OF matterhorn

when the data base contains information about the Matterhorn and
about fathership). '
Artificial Intelligence 2 (1971), 129-145
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(c) If the data base contains several such m, then a question is directed to the
user: which p do you mean?

This very simple procedure obviously does not describe the actual usage of
the definite article in natural language, and it is not intended to. It is, instead,
a description of a logical operator.? For mnemonic reasons, we chose to call
- the operator “The”, rather than “A,” or “a”, but the name is arbitrary. In a
practical system, we would like to have a number of operators similar to
“The”. One of the challenges to the input translation module is then that it
should be able to identify which of the logical operators is intended in one
particular occurrence of a definite article in a sentence.

It is interesting to notice that assimilation of the operator ‘“The” should
not be performed if our system is to be used for automatic translation from
one natural language to another, with input translation from the source
language to predicate calculus, and output translation from predicate
calculus to the target language. This is so because one wants to make the
same kind of references in the target language as in the source language,
although the rules for how various operators are expressed may vary
considerably.

Sortwise, ‘“The” is an operator

properties — objects.
This fact is useful in parsing formal expressions such as
The father OF peter IS father OF mary

or
321-5678 IS telephone-number OF The father OF peter.

The operator Any. One operator that will certainly be useful is
Any: properties — objects
which is used as in
Any boy IS male.
The assimilation procedure for “Any’’ must prescribe that this sentence is to
be re-expressed internally as
(Vx) x IS boy = x IS male.
In general, every sub-expression of the form ‘Any p’ is changed into a
variable v, and the restriction :
vISp
is added to the formula. In principle, this expansion could have been done in
input translation, since it does not require access to the data base and the

2 We call it a logical operator, not a function. In fact, since we chose to use the term
“deep structure” for the result of the input translation (before assimilation), and since it is
the data base and the retrieval requests (after assimilation) that need to be in predicate
calculus, we have been slightly imprecise when we proposed to “use predicate calculus for
deep structure”. Possibly, it would be a good idea to distinguish between deep structure
in transit (before assimilation) and deep structure in corpore (after assimilation). The
conventional deep structure of transformational grammars is then an in transit version,
whereas predicate calculus is used in corpore. The notation in this section, which includes
the operator “The”, must then be characterized as a proto-predicate-calculus.
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deduction procedures, but it seems more convenient and more natural to
do the expansion in the assimilation stage. (One reason for this choice is the
connection with automatic translation. We suggested above that the
representation of the sentence after input translation but before assimilation
should be the “intermediate language”. One certainly wants to retain the
operator “Any” in this intermediate language.)

Comparison of adjectives. We take for granted that adjectives are expressed
as properties, so that we can write e.g.

peter IS tall.
To handle comparison, we then introduce functions
ER-THAN: properties X objects — properties
EST-AMONG: properties X properties — properties.

These are to be used as in

peter IS tall ER-THAN john

peter IS tall EST-AMONG (brother OF dick).
The first of these formulas is of course intended to say “Peter is taller than
John”, and the second one to say ‘“Peter is the tallest of Dick’s brothers”.
For the sake of the deduction procedure, we must decide on some conven-
tions, e.g. whether the latter formula allows Peter to be one of two equally
tall brothers, who both are taller than all the other of Dick’s brothers.

We have already remarked that the infix notation for functions which is
used in this paper is for the reader’s convenience, and that one will probably
prefer to have prefix notation internally in the computer’s data base. We can
increase the external convenience a trifle by permitting ‘bifix’ functions, so
that we can write

More tall THAN john
synonymously with
tall ER-THAN john.
Translating bifix to prefix is no harder than translating infix to prefix, and
can be done mechanically by a quite simple program. The bifix notation is
excellent e.g. for the function
As...AS: properties X objects — properties
used as in
john IS As tall AS dick
with the obvious intended meaning.

The previously mentioned paper (Sandewall [11]) contains suggested

formalizations of a number of other idealized natural-language constructions.

5. Hints on How to Axiomatize
Strangely enough, very little seems to have been written on this topic, in
spite of the fact that formal logic is extensively used in mathematics, and
axiomatization is a common preoccupation there. Some axiomatizations of
Artificial Intelligence 2 (1971), 129-145
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non-mathematical concepts can be found in McCarthy [12, 13, 14], Green
[3], Sandewall [11], and Nilsson [2]. All of these are reports from A.I projects.
For illustration, let us set up here some axioms which characterize compari-
son of adjectives as expressed in the data base notation of Section 3 of this
paper. The following axioms are useful:
1. m IS More p THAN k A k IS More p THAN n o
m IS More p THAN n
2. 71 (m IS More p THAN m)
3. m IS More p THAN k o> m IS More p THAN Any (As p AS k)
4. m IS More p THAN k > Any (As p AS m) IS More p THAN k
5. mISAspASno>nISAsp ASm
6. mIS Asp ASm
7. m IS Most p AMONG g = (m IS g A No g IS More p THAN m)
where the operator “No” is defined so that any expression
NogISp
is assimilated into ,
(Ym)(Vp)(Vg)  T1mISpA mISq)

and where the universal quantifier on the variables (m, n, k, p and ¢) has

consistently been omitted. Theorems which can be proved from these

axioms include
m IS Most p AMONG g A n IS More p THAN m > 71(n IS g).

The inference expressed in such theorems can therefore be obtained by a

sequence of several successive sub-questions in any complete retrieval

program based on the axioms 1 to 7.

How does one set up such a set of axioms ? The followmg steps are generally
useful:

(a) Jot down a number of observations about the environment that you
wish to describe (in our example, comparison of adjectives). Be careful
to express everything in correct predicate calculus.

(b) Check for inconsistencies. When you wrote down the observations, you
expressed in a strict fashion your intuitive idea of the environment that
is to be formalized. This intuitive idea may have varied from one axiom
to the next. For example, in the treatment of comparison of adjectives,
different suggested axioms might have expressed contradictory ideas
about whether

m IS Most p AMONG ¢
permits some other g to be as p as m is. If you have been inconsistent in a
matter like that, your axioms are likely to be inconsistent too.

(c) Check for redundancy, i.e. check whether some of the proposed axioms
can be proved from some of the others. It is possibly, but not necessarily,
a good idea for efficiency to remove redundant axioms. The idea tends
to be better if the proof of one observation from the others is short.
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(d) Check for completeness, i.e. check whether some axioms are missing.
The general method to do this is to make up test examples of desired
theorems (desired conclusions from the axioms), and to check manually
that each of them can in fact be proved.

The test examples may be ““positive” or ‘“‘negative”. Positive examples are
those which are useful, in a direct way. For example, in an extended adjective
comparison system, where one has an OPPOSITE relation on properties
times properties, used as in

big OPPOSITE small
it is reasonable to check that from

m IS More p THAN n

k IS More ¢ THAN n

p OPPOSITE ¢q

follows , |

m IS More p THAN k

because this is a deduction that may be needed to answer some questions.

now

THEN

THEN THEN

Fi1G. 2.

In finding negative examples, we look for “legal loopholes”, or things that
our axioms should outlaw but which they might fail to outlaw. For example,
suppose we have agreed to describe time by using a binary relation THEN on
events, used so that

e THEN d
says that both e and d have occurred, and d occurred after e. Suppose, further,
that we have proposed some axioms, such as the obvious transitivity axiom.
Then a reasonable “negative example’” might be: does our set of axioms
permit two converging strands of time, both of which end in “now”, but such
that neither “e THEN d” nor “d THEN e’ holds if d and e are on opposite
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strands ? (Fig. 2). This test example is of course equivalent to proving that
(Fe)(3d) ~le THEN d A "1d THEN e
contradicts the axioms, i.e. to proving
(Ve)(Vd) e THEN dV d THEN e.
If our set of axioms passes this test, our next “negative example” might be:
does the set of axioms permit two parallel strands of time, one which is
finite and ends in “now”, and one which is infinite and unconnected to the
first strand ? (Fig. 3). It is left as an exercise to the reader to rewrite this
negative example as a desired theorem.

It is interesting to notice that these four steps have counterparts in the
methods for writing computer programs. In particular, the “positive” and
“negative” test examples in step d correspond to “‘simulate the program and
see if it works”, and “look at the program and try to invent some case where
it would not work™, respectively. But when we compare a set of axioms with
a computer program which performs the same task (strictly speaking,
performs the task of a resolution-based retrieval program loaded with these
axioms), we shall see that the axioms are much easier to write, easier to debug,
and easier to integrate into large systems.

For a comparison in another direction, let us point out that if the predicate-
calculus notation used in this report is analogous to the deep structure in
transformational grammar, then the axioms are analogous to some of the
optional transformations. We claim the same advantages for axioms in this
comparison: they are easier to write, easier to debug, and more modular than
conventional transformational grammars.
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