FOA P rapport
C 8265-11(64)
November 1970

A DATA BASE STRUCTURE-FOR A QUESTION—
ANSWERING SYSTEM

E Sandewall och K M&kili

FORSVARETS FORSKNINGSANSTALT
PLANERINGSBYRAN

Stockholm

FOA RAPPORTKATEGORIER

Rapporter avsedda f6r spridning utanfér FOA utges i féljande katego-
rier:

FOA A-rapport. Innehéller huvudsakligen f6r totalfé6rsvaret avsedd och
tillridttalagd redovisning av ett, som regel avslutat, arbete. Foérekom-
mer som 6ppen (A-) och hemlig (AH-) rapport.

FOA B-rapport. Innehdller f6r vidare spridning avsedd redovisning av
oppet vetenskapligt eller tekniskt-vetenskapligt originalarbete av all-
méint intresse. Utges i FOA skriftserie ''FOA Reports' eller publice-
ras i-FOA utomstaende tidskrift, i vilket senare fall sdrtryck distri-
bueras av FOA under beteckningen '"FOA Reprints''.

FOA C-rapport. Innehédller f6r spridning inom och utom FOA (i vissa
fall enbart inom FOA) avsedd redovisning av arbete, tex i form avdel-
rapport, preliminfdrrapport eller metodikrapport. Foérekommer som
6ppen (C-) och hemlig (CH-) rapport.

FOA-RAPPORTS STATUS

FOA -rapports status ar att forfattaren(férfattarna) svarar f6r rappor-
tens innehall, t ex f6r att angivna resultat 4r riktiga, fér gjorda slut-
satser och rekommendationer etc.

FOA svarar - genom att rapporten godkénts f6r utgivning som FOA -
rapport - fo6r att det redovisade arbetet utférts i dverensstimmelse
med "'vetenskap och praxis' pa ifr8gavarande omraéde.

[forekommande fall tar FOA stédllning till i rapporten gjordabeddm -
ningar etc - detta anges i sa fall i sdrskild ordning, t ex i missiv.

FOA-RAPPORTS REGISTRERING
From den 1.7.1966 registreras FOA-rapport enligt f6l1jande exempel:

FOA 1 rapport-A 1678-32(37)
“ N

rapportkategori — L— forskningsomrade
till vilket rappor- .
kod fér utgivande avd (motsv) teni férsta(andra)
(FOA A, Moch Index - 0 » hand &dr hanforlig

l6pnummer (inom grup-
pen A-rapporter utgivna
av FOA 1)

O woo
R NIV I

Forsvarets forskningsanstalt FOA P rapport
Planeringsbyrédn
104 50 Stockholm 80 C 8265-11(64)

November 1970
Research Institute of National Defense
Operations Research Center
S-104 50 Stockholm 80, Sweden

A DATA BASE STRUCTURE FOR A QUESTION-ANSWERING SYSTEM

Erik Sandewall, Kalle Makila

Abstract: This report describes a data base structure for
expressing binary relations, and a key-punch oriented data

language for specifying such a data base,

The first four sections give a géneral, and essentially machine-

independent description of the data base and the language.

The last two sections describe an IBM 360 implementation of

this kind of data base and contain:
(1) a detailed specification of the data base organization

(2) a brief description of the routines, that make the

translation from the data language to the data base

Search key: Artificial intelligence, GQuestion answering,

Data base, Data language, Proberty structure, Computer.

Sammanfattnings: Denna rapport beskriver en databasstruktur

for att lagra bindra rélationer, och ett stansorienterat

datasprdk for att specificera en sddan databas,

De forsta fyra sektionerna ger en allmén, och védsentligen

maskinoberoende beskrivning av databasen och dataspriket.

De tvd sista sektionerna beskriver en IBM 360 - implementa-

tion av detta slags databas och inneh8ller:
(1) en detaljerad beskrivning av databasens struktur
(2) en 6versiktlig beskrivning, av de rutiner, som Over-

sitter frédn datasprdket till databasen,

FOA kostnadsnummer 820M111 (FPrigebesvarande system)

N

CONTENTS

0. Introduction,
1. The property structure.
2., Introduction of PROPLAN, simple. statements.
2.1 Declarations,
2,2 Assertions,
2.3 Descriptions.
2.4 Abbreviations,
2,5 A formal syntax for simple statements{
3. Questions.'
3,1 Simple questions.
3,2 Compound questions.
3.3 Open questions,
4. Compound statements.
4,1 Temporary data.
4,2 IF statements.
5. Description of data fields used in an IBM 366 implementation.
5.1 Storage of extefnal names.
5.2 Origin fields,
5.3 Property list fields.,
5.4 Property string fields.
5.5 Relation between property list and property string fields.
5.6 Intérnal representation of quantifiers.
6. Communication with the assimilator routine.
6.1 A short description of the method used.
6.2 Specification of terminal symbols and relation names.
6.3 Control parameters an switches,

6.4 Error messages.

0. Introduction,

This report is intended to specify the following:

(a) The SPB data structure (mainly as in "A set-oriented
property structure representafion for binary relations, .
SPB", Sandewall sept. -69) ° + (section 1)

(b) PROPLAN, a formal language for expressing facts and

questions in SPB in a convenient form, (sections 2-4)

(c) An IBM 360 implementation of the SPB data structure,
a bit-level specificatioﬁ of the various fields used
in the internal data base. " (section 5)

(d) Routines that translate from PROPLAN into the data
structure described in section 5. The users communication

with these routines. . (section 6)

1. The property structure.

The property structure is designed to represent sets of
objects and binary relations connecting these sets. Thus we
have two kinds of entities; nodes that represent sets of
objects and arcs that represent the binary relations, To

each node is connected a ﬁroperty list which contains informa-

tion on all tﬁe arcs connected to this node.

Nodes.

In the final form of the property structure there are two
types of nodes, constants and variables. The difference is
that for variables some of the arcs on the prbperty list are

marked as defining properties. If there are other nodes in the

base which satisfy the defining properties of a variable,
then it can be concluded that a subset relation holds

between the corresponding sefs.

Arcs,

An arc connecting two nodes e.g. a and b is described by two
properties., The property list of the node a contains a
property that describes the connection with b, and similarly
the property list of b contains a property describing the
connection with a, Each property contains the following five

items of information:

< S,d,q,T b>)

(b) a pointer (or other means of reference) to the node at
the other end of the arc

(d) the direction of the arc ("coming" or "going")

(r) a binary relation

(s) the presence or absence of a negation sign

(q) information on how the arc is "connected" at each end

for example existential or universal quantifier,

2. Introduction of PROPIAN, simple statements.

In typical applications, é property structure receives a
continuous input stream of new relations (which are stored
in the structure) and of questions (which are answered from
the available data), The data base grows in this process;
new constant symbols (names for sets of objects in the
universe) may be introduced; but the set of binary relations
is assumed to-be given once and for all, The present section
will describe the SPB data language PROPLAN, which is a
keypunqh—oriented notation for the input to the data base.
It is intended that this language shall be used

(1) by humans who want to communicate with an SPB data base
(2) as the output of programs which translate from natural

language into a formal notation,

A text in the data language consists of an ordered sequence
of gstatements. There are statements for introducing a new
node in the data base, for adding more arcs, and for describing

a node which has already been put into the data base,

There are also a few possibilities of forming more complex
statements and questions using simple statements. These are

described in the next two sections.

In this section we shall describe the various types of simple

statements in detail,

2.1 Declarations.
A declaration may have any of the forms
CONSTANT x, ,

VARIABLE Xq 9 X5 9 ===y X3

%o -

DU‘NMY 2z X1) X2) T=== 9 X

ENDOFDEF X, 5 X, 5 ==== 4 xn';
which each Xy is a new alphameric identifier,'and z is a
code (e.g. THE,THIS) which indicates a choice of subprogram
call,

The effect of a CONSTANT or VARIABLE statement is to
introduce for each X:9 @ node, which can thereafter be

referenced by the identifier X,

The effect of a DUMMY declaration is to introduce egch xs
as a name for a node which (normally) is already in core,
and which is to be retrieved using information in succeeding
statements, and using a sub-program referenced by the

indicator z.

In the ENDOFDEF statement each X5 has been introducéd in an
earlier VARIABLE or DUMMY declaration, and has not yet

occured in an ENDOFDEF statement. The purpose of the statement
is to tell the assimilator (i.e. the program that stores

data in the data base) that no more assertions or descriptions
involving (explicitly or implicitly) a phrase ,.. DETF Xi oo
are to be expected. Such a terminal signal is necessary

before the variable or dummy can bé used by deduction

routines,

In the case of DUMMY variables ENDOFDEF also initiates the
process of retrieving a matching node and transferring the

properties (apart from the definition) to this node.

2,2 Assertions.
An assertion has the forﬁ

(g, a,dsr ,q b);

a .

‘where

a and b are’alphameric identifiers which have been

introduced in previous déclarations or descriptions; -

q, and 9, are "connection codes", which may be either of
ALL, SOME, ITS, DEF, THAT or blank. Blank is
synonymous to ALL, -

d is either blank, or the code REVERSE;

s . is either blank, or the code NOT;
r is a name for a binary relation. The names for the

various relations should be specified in an input

table before the process of assimilation is
started (see 6.2)

The meaing of an assertion

(q, a, dsr,q b)

is (in the notation of memo 6)

a [é(d’s'(r)i] b
Id if 4 is blank
= |Rev if 4 = REVERSE

Id if s is blank

where

d!

Neg if s = NOT

and q is determined‘from the following table:

6, 9 q
ALL ALL | 2a
ALL SOME| Ae
ALL DEF | A4
ALL ITS | At
SOME ALL | Ea
SOME SOME | Ee
THAT DEF | Bd

'DEF ALL Da
DEF THAT| Db
DEF DEF | Da
DEF ITS | Dt
ITS ALL | Ta
I7s DEF | ma
THAT THAT | Bb

10

1

2,3 Descriptions.

A description is a more compact way of writing a declaration
rlus a sequence of assertions., The form of a description is

either of
CONSTANT x f1 f2 -f- fm H
VARIABLE x f1 f2 —— fm H
DUIMMY 2z x f1 f2 - fm ;

where 2z is a code like above, and each fi is an agsertion

fragment. Each assertion fragment has the form

(andsr,q_b b)

where the components are like'above, If a, is blank, the
first comma should be omitted, '

A description is equivalent to a declaration plus a sequence
of assertions, and can be converted to that form by the
following algorithm:

(1) Insert x after the q, in each f,.

(2) Insert a semicolon before each f,.

12

2,4 Abbreviations.

The expression

SINGLEVARIABLE x f, F, === f_ 3
1 72 m

is an abbreviation for

VARIABLE x f, f, --- £ ; ENDOFDEF x ;

A gimilar convention is made for DUMMY statements.

The symbol DISJOINT is introduced as an abbreviation for
"NOT EQUAL" (where EQUAL stands for. an equality relation
between objects)., Similary we introduce abbreviations
OVERLAP, SUBSET, SUPERSET and OCCUR, The compiete definitions

are as follows:

abbreviated assertion full assertion

(a, &, DISJOINT , a, b) (.a, a , NOT EQUAL , q, b)

(a, OVERLAP , b) (SOME a , EQUAL , SOME b)

(q, & » SUBSET , b) (q, a , EQUAL , ITS b)

(2 , SUPERSET , g b) (IS a , EQUAL , g, b)

(a, NOT SUBSET , b) (Some a , Noi EQUAL , ALL b)
(a, NOT SUPERSET , b) (ALL a , NOT EQUAL , soﬁE b)

(a, OCCUR) (SOME a , EQUAL , SOME a)

Similar conventions are used for assertion fragments,

13

2,5 A formal grammar for simple statements.

STATEMENT

DECLARATION

FRELATION

SENTENCE

SRELATION

QUANTIFIER

TYPE

ORDER

oo
(1]

DECLARATION
FRELATION
SENTENCE
ORDER .

TYPE NAME l DECLARATION , NAME

(awrrersd] v , Gvensd] fod
RNAME , [QUANTIFIER] NAME) ’
(NAME ,” OCCUR)

TYPE NAME SRELATION | SENTENCE
SRELATION

([avawriFiEr | [REVERSE] [NoT] RNAME ,
[quavrirreR] wame). | (occur)

(ALL)
SOMB
< 118 >
DEF

_THAT

" CONSTANT
VARIABLE
J oy <
SINGLEVARIABLE
SINGLEDUMMY
_ENDOFDEF

$NANE

14

3. Questions.

3.1 Simple questions,

These are expressed exactly as assertions but are preceded
by the rese ved word "QUESTION",

Example: QUESTION (A, R1, B);

3,2 Compound questions,

Several assertions can be joined by the connectives "OR" and
"AND" to form compound statements. Both these connectives

gshould not be used in the same compound question,

Example: QUESTION (R1, RR, R2); OR (4, R3, B); OR (C, R5, D);

3.3 Open questions.

The basic form of open questions is the reserved word "WHICH",
followed by a description,

Example: WHICH CONSTANT X (R1, A) (R2, B);

This causes a question answering routine to start retrieving

all nodes X satisfying the description,

ther forms of open questions not yet implemented in the
system are similar and correspond to questions containing such
words as "WHEN", "VWHERE" "WHY" etc,

These questions initiate, first a retrieval of a hdpefully
unique node X and then a looking for other nodes connected
to X with certain relations such as spatial, time or cause

relations, which are somehow specified in the question,

15

4, Compound statements.,

There are a few possibilities to join simple statements and
form compound statements. This is only possible on top level

i.e. you can not join compound statements in the same way.
4.1 Temporary data.

Sometimes in connection with questions, it is desirable to
have temporary data that are present'in the data base only
while the question is answered and then removed.,

This is achieved by enclosing the statements between the
reserved words "TEMP" and "ENDTEMP", “TEMP" causes the
assimilator to save pointers to the present top of the data
base, and "ENDTEMP" causes it to reset these pointers and
zeroize all references made to the temporary data from the

permanent data. -

A typical question like
" Is copper a heavy metal 7 "
could be translated into the following PROPLAN statements:
TEMP
SINGLEVARIABLE HZAVYNSTAL (DEF, PRED, HEAVY)
(pm®, SUBSET, HMETAL*S);

QUESTION (COPPER, SUBSET, HEAVYMETAL);
ENDTEMP

Thus we introduce teporarily the defined set of heavy metals,
and ask whether copper belongs to this set.

16
4.2, IF statements.
These are useful when the device (or person) creating the
input data wants to give alternatives depending on what'is
already stored in the data base., They have two forms:
(1) IF string! THEN string2 CLOSE

(2) IF string! THEN string? ELSE string3 CLOSE

string? should be a question, simple or compound, optionally
preceded by temporary data. .

string? and string3 should be strings of simple statements
to be assimilated,

The statement is treated in the following way:

-

The question is answered (in a 2-valued logic, that is
all answers except "yes" are regarded as "no",)

If the answer is "yes", then string2 is assimilated,

otherwise string3 (if there is such a string).

17

5. Description of data fields used in an IBM 360 implementation.

The specifications in this section are applicable to all byte~
oriented computers. The data base consists of two main parts:

(1) The external names area.,

This consists of variable length fields containing essentially
the external name of a node, and a pointer to this node in

the network,

(2) The network,

This is organized in fields of eight bytes each, There are
three types of fields:

(1) origin fields

(2) property-string fields

(3) oproperty-list fields
The first byte in a field contains (among others) information
to indicate what kind of field it is.

Each field consists of a number of sub-fields, each of which.
consists of one or more bits. These sub-fields will here be
denoted by capital letters. 4

The address of a field is defined as the address of the
first byte in the field.,

18

5.1 Storage of external names.

The first time a node is presented to the system, it creates
an origin cell in the network, and a reference field
connecting this cell with the external name, All the reference

fields are linked together to form an alphabetic binary tree.
Optionally, the name of the node could be followed by
"spelling information" separated by an underline character.
This consists of a string of letters, which is stored only
to support the output translation procedures, In later

references to the node only the name should be used.

One reference field contains the following information:

n, number of bytes in the name

n, number of bytes in the spelling information
Pg pointer to the‘origin field in the network
pl upward pointer in the binary tree

s downward pointer in the binary tree

2, external name-of the node

a5 spelling information

Po is a relative address in the network area, Py and p, are

relative addresses in the area of reference fields.

The structure of a reference field is:

1 3 1 3 o 4 n, n,

n4 Py n, Pq Py 24 8

19

The text at the right end of the field is filled out with
blanks to make the size of the field a multiple of four bytes.

Example;

The name NAME1_SPELLINFO

would result in

n, = 5

n, 9 ° and the text

JAMELSPELLINFGbb

a1 a2 '

A name may contain letters, digits and the characters

* . + - o

20

5.2 Origin fields.,

The purpose of an originnfield is to represent a node in the
network, and to be a key to all information about the node.
The address of the origin field is used inside the compﬁter
as an,internal name for the node, Thus (apart from the
complication with DUMMY symbols) there should be an 1-1
corréspondence between declared identifiers and origin
fields. '

The structure of an origin field is:

IR I

T K C1 L N

where the sub-fields are used as follows:

subfield number of purpose ~ codes

name bits -

T 2 indicate that this is 00
an origin field

il 2 indicate what kind ", constant
of node variable

dunmy
01 4 open
L 24 give the first item on the

property-list (an address)

C 8 in case this is a dummy
node: an internal code
for z, otherwise open

N 24 pointer to the external name
field of the node as described
in 4.1

I+

o

00
01
10

21

5.3 Property-list fields.

A property-list field has the following layout:

2 |1 1]1 4 24 8 24 | |
T S D Q L R B

If an origin cell a is to he assigned a property Gb, represented

s,d,q,7 b (in the notation used in section 1.2)

then the subfields with these names are used.
The subfield T contains the code 01 (to indicate a property
list field) and the subfield L contains a pointer to the

next property of a.

A detailed description of the use of the field Q is given in

section 5.6.

5.4 Property-string fields,

A property-string field for the relation aGb, has exactly the
same layout as the corresponding property-list field, but
the contents of the T and L fields differ,

The subfield T contains the code 10, to indicate a property-

string field.

The subfield L now contains a pointer to the next property
of the node b,

Zvery property-string field in fact also belongs to the

property-list of the node pointed fo by its B-field,

22

5.5 Relationship_between property-list and propertx-string
fields., '

Each origin field is connected with properties in two ways:

(1) starting in the L sub-field of the origin field, we have
a chained list of property-list fields. Each field on
the property-list expresses one property of the node,

(2) in the positions immediately after the origin field,
we have a sequence of property-string fields, The string
is terminated by the occurence of a property-list field

or an origin field.,

It is convenient to describe the contents of these fields in
terms of the notation used in memo 6, We assume, therefor,
that input relations are converted to that form by the

conventions in section 2.2 and 2.3 of this memo.

An arc aGb between two nodes in the property structure can

be represented in either of two ways:

(1) using two property-~list fields: one field on a's
property-list, which assigns the property Gb to a, and’
one field on b's property-list, which agsigns the
property [Rev(GH a to b,

1(2) using one property-string field, which is on the
property-string of a and on the property-list of b, and
which points to b, This is the property-string field for
aGb. (Alternatively, a property-string field for b
E{ev(GZI a may be selected.,

Thus the property-string representation only requires half

as mach space as the property-list representation. However,

23
property-strings can only be used if space is available
immediately above the origin field for the node. This
condition is satisfied if memory is never released.in the
data base (no garbage collection), and properties are assigned
to arnode immediately after it has been created. This is the
cage at least when we use description statements in the data

language. Thus we make the following convention:

Assertions in the data language are to bhe translated into
pairs of property-list fields; assertion fragments into
property-string fields.

As a program runs down the pfoperty-list of a node a, it
will encounter both property~list and property-string fields.,
In the latter case, it may be preferable to copy the contents
of the field to an auxiliary space, and to reduce it there

to what it would have looked like, if it had been a property-
list field,

The following operations are needed:

(1) change the contents of the T sub-field from 10 to 01;

(2) go backwards (by decreasing addresses in steps of 8)
from the property-string field, until you find an origin
field, Store its address in the sub-field 3; 4

(3) complement Dj;

.(4) apply the Rev operation to the Q field., This is done by

bit manipulations as specified in the next section.

24

5.6 Internal representation of gquantifiers.

The left and right quantifiers are transformed into one

single fourbit quantifier Q , as shown in the table below,

Q@ consists of two different parts, the first three bits
denoted by Q123', and the rightmoét bit Qd . Qd is

nonzero only for pairs containing at least one DEF quantifier
in some place, and thus serves as a marking of the definition

properties of variables,

are so chosen as to facilitate the operations of

Q03

reversion and negation, Reversion is done by interchanging
the two leftmost bits of Q (except the pair Ad , Da where
the third bit is complemented), '
For the quantifiers not containing DEF or THAT there
exists a negation -Q which is obtained simply by comple-
menting Q123. , -
The following notation is used in the heading of the table:
Q,1 left quantifier
Q right quantifier
q mnemonic code for total quantifier
first three bits of Q
Q; rightmost bit of Q (definition marker)
Q total quantifier

Q reverse quantifier

-Q negation of quantifier

Ol

25

ALL ALL Aa 000 0000 0000 1110
ALL SOME Ae 010 0100 1000 1010 .
ALL 'DEF Ad 000 1 0001 0011

ALL ITS At 011 0110 1010 1000
SOME ALL Ea 100 1000 0100 0110
SOME SOME Ee 111 1110 1110 0000
THAT DEF Bd 100 1 1001 0101

DEF ALL Da 001 1 0011 0001

DEF THAT Db 010 1 0101 1001

DEF DEF Dd 110 1 1101 1101

DEF ITS Dt 011 1 0111 1011

IPS ALL Ta, 101 1010 0110 0100
ITS DEF T4 101 1 1011 0111

THAT THAT Bb " 001 0010 0010

26

6.1 A short description of the method used.,

The process of assimilation is performed in two separate.

routines:

SEMANTICS which takes as input one single symbol. For each

symbol it performs an appropriate sequence of actions

(which is "the semantic meaning" of the symbol). The

totality of these actions eventually creates the data base.

ASSIM which makes the parsing of the PROPLAN text. This

parsing contains the following steps:

Step 1 Preprocessing of simple statements and handling of

(v)

compound statements., Symbols are taken from left to
right, and if part of a simple statement put into a
statement buffer, First they are compared to the
table of terminal symbols and found to be either:

A terminal symﬂol used in constructing compound
statements., This only causes a call of SEMANTICS,

Another terminal symbol. Its index in the terminal
symbol table is put into the statement buffer., If .
it is a ";" then the statement is complete and the

parsing (step 2) is started.

A string not found among the terminal symbols, Then
it must be an external name, either of a node or a
relation., It is determined from the context in the
statement, whether it is a relation name (RNAME)

or a node in an assertion (NAME) or a node in a de-
claration (DNAME), and the corresponding index

(=internal name) is put into the statement buffer.

27

Step 2 The statemént buffer now.:.contains exactly one simple
statement in the form of a string of indicesin the
table of terminallsymbols. This is now parsed using

~mainly the Wirth-Weber method,

The precedence functions are obtained by using a
program "SYNPROC" written by Nicklaus Wirth, This
program takes as input the productiong of the
grammar, and as output it produces the same produc-
tions and the precedence functions in the form of
data declaration statements in PL360. These can be

put directly into the syntax analysis program.

For every symbol, terminal or non-terminal, that
appears during the parse, the routine SEMANTICS is

called and thus the data base is created,

28

6.2 Specification of terminal symbols and relation symbols.

Before presenting cards with PROPLAN text to the assimilator,
tables containing the terminal symbols and relation symbols
must be built up. These tables are specified on cards in the

following way:

First we have a steering card with the directive "%ASSPAR",
starting in column 1, This indicates that what follows is
ASSimilator PARameters, Each set of parameters is headed by
a steering card with an % in col.'1. The data cards contain
strings of characters separated by spaces. Each string is
taken as a symbol until a card with "#" or " % " in

column 1 is found.
#SYMBOLS

These are the basic symbols (or reserved words) used in
the PROPLAN language as described in sections 2-4, They must
always be presented in the same order but symbols can be

replaced by other symbols having the same meaning,
#RELATIONS

The set {E} of relations symbols. The first five of them -

must always denote the same relations as
DISJOINT OVERLAP GSUBSET SUPERSET EQUAL

in the sense of section 2,4, The rest of them can be chosen

freely.

#TRANSITIVE

The set of relations {RT} < {R}

which are transitive,

29

»¥RSYMMETRIC

The set of relations {RS} < {R} ,
which are symmetric,

*REVERSIONS

Pairs of symbols a; » by) (i=1,2, v...)

where a, € {Rp, b, ¢ {Rp = and b, _ REVERSE a

Thus we can here introduce new relations that are interpreted
by the assimilator as the reversion of some relations intro-
duced under ¥RELATIONS,

30

6.3 Control parameters and switches,

The program contains parémeters and switches, thaﬁ have to
be set at the beginning of a run, and which can in in some
cases be changed during the run. Most of them control the

deduction procedures and are to be described in a later

report,

There are a few more steering cards similar to those in the

previous section,
#PARAMETERS

After this card follows a number of cards with integers,
which are converted to binary half-words and taken as

initial values of certain steering parameters.
*NEWPARAMETERS —nn -

Sets new values to the parameters beginning with the nn: th.

*SWITCHES=-VVVVVVVVVVVVVVVV

After the minus-sign {col 11) follows a string of 16 zeroes
and ones. A corresponding set of logical bytes in the

memory are set true or false,

A single switch among the first nine can also be set on or
off directly in the PROPLAN text by writing:

*SWITCHn; or *NOSWITCHn; where n is the number of the
switch, This type of statement ($ keyword ;) are called
orders and are used to perform simple actions in the
SEMANTICS routine.‘Sometimes an order is followed by a
string of text, that is to be interpreted in some special

way.

31
A few examples of orders:
$ CRITIQUE;

The subsequent assertions are put as questions to the
deduction procedures, before they are added to the data
base. If contradictory, they are ignored and an error

message is given.

$ UNCRITIQUE;

Agsimilation is performed without checking for contradiction,
$ NEGQUESTION; : ($ NONEGQUESTION;)

In questionanswering the negation of the question is also

answered (not answered),
$ PROPERTIES;

followed by a number of node names terminated by the string
" FINE " , gives a listing of the property structures of

these nodes.
$ORINT;

after a question gives a listing of all the subproblems

that were produced in answering this question.

There are several other similar report generating and dump
facilities in the form of orders. These have been of great

value in debugging and developing the programs,

32

6.4 Error messages.

There are a few error meésages indicating incorrect or
incomplete PROPLAN input., Also the deduction procedures
(which are normally called during the assimilation) can
produce error messages, but these are to be described in a
later paper., Mostly they indicate overflow in some table or

stack,
The messages are all of the form:

e %xnx% QAP ERROR MESSAGE: S

where 8 1is a 32-character string.
During the process of assimilation S could be:

(a) PROPLAN SYNTAX ERROR

-

The next line contains 64 characters of text beginning

with the statement containing the error,
(b) UNDEFINED NODE A

Yhere A is a name of a node., This name has been used

in an assertion or description before it has been

declared,

(¢) UNDEFINZD RELATION R

Where R is a relation name not contained in the table

of relation names.,
(d) DUMMY FAIL A -

Where A is a name of a DUMMY variable, The program

33

has failed to eliminate this node from the data base.

CONTRADICTION

An assertion is written on the line following this
message, This assertion has been proved to contradict
the data base. (That is, the negation of the assertion
has been proved from the previous data base.) The

assertion is ignored,

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

