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mERmERImEs

This paper proposes a set of general conventions for representing
natural-language (="semantie”) information in many-sorted first-order
predicate calculus.The purpose of this work is, of course, to provide
a testing-ground for existing theorem-proving programs, and to suggest
a method for using theorem-provers for question-answering and other
information retrieval. The purpose is HOT to propose any system

of logic. We stress practicality, and the contents of this paper

may well be quite trivial tec a logician.

Our approach consists of specifying functions and relations that re-express
commonly encountered constructions in natural language (e.g. “kernel
sentences”, comparison of adjectives, subordinate sentences, etc.) as

well as specifying the indended interpretation for, and some axioms for
these functions and relations. The given set of axioms is probably

incomplete but hopefully consistent. No proof of either is given.



This paper proposes a set of general conventicng for representing
natural-language (= “semantic”) information in many-sorted first-order
predicate calculus. The purpose of this werk is, of course, to provide

a testing-ground for existing thecrem-proving programs, and to suggest a
method for using theorem-provers for questiocn-answering and other
information retrieval. The purpose is NOT to propose any system

of logi¢. We stress practicality, and the contents of this paper

may well be gquite trivial to a logician.

Our approach ccnsists of specifying functions and relations that re-express
commonly encountered constructions in natural language (e.g. “kernel
sentences”, comparison of adjectives, subordinate sentences, etc.) as well
as specifying the intended interpretaticn for, and scme axioms for these
functions and relations. The given set of axicms is probably incomplete,

but hopefully ccnsistent. Iic nroof of either is given.,

This opproach should be contrasted with the "monkey-banana® approach,
where one selects cne particular prcblem enviromment, and tries to

Vrite down a notation and a set of axioms that will handle this

[#]

environment. Our reason for doing things the way we do is as follcws:

When a guestion or a problem is given tc an advice taker or

ancther similar system, we clearly wish (in the long run) that

the problem statement shall consist cnly of very specific statements
(“Consider & rcem in which there is a monkey and a box”). More
general statements("if a monkey is at a box, he can climb it”) shall
nct need to be part of the problem statement, but shall be known tc

the advice taker beforehand.

We should ask, therefore, what general axicms are necessary for such

a system, and equally important, how we can select functions and
relations sc that the amount of knowledge that has to be stored

away is held reascnably finite. We believe that these questicns are best
answered if we consider classes of semantic information first, and

specific exercises afterwards.



In this section, we shall outline in general form some of the prcblems
that cne mncounters while expressing natural-lengunge (NL) information
in predicate cslculus (PC). We shall alsc outline conventions which
are claimed tc handle these problers in a satisfactory manner. The

details of the notation are left tc later secticns.

Higher-order operations

Several natural-language constructions are in s certain sense
“higher-order”. For example, if we representant m is expensive™
(wvhere m is an cbject) through

Expensive(m)
(vhich is a reascnable, although not the cnly reascnable convention),
then "m is more expensive than n” might be well expressed through
More (Expensive ) (z,n)
where "More” is a second-order function that maps a monary first-order
predicate intc o binsry first-crder predicate. Such a function "More™
is of course preper only if we assign a intensicral interpretation

to predicates such as "Expensive’.

It is unfortunate, then, that althcugh the technclogy of autcmatic
thecren-proving has been developed rather far isee e.g. Green 1969,
Luchham 1970, Allen 19701. there is very little work dene on
theorem-proving in higher-~order lcgic. The paper by Darlingten in Machine
Intelligence ¢ is an exception. It has even been suggested [Robinson9

l969_j to use present thecrem—provers for simulating higher-crder logic.

With this stete of affairs, we propose that the “higher-crder” con-
structions in NL shwuld be expressed directly in first-order PC. The
methed, of ccurse, is tc re-express what used to be predicates =
individuals, and to use a single applicetion predicate. Thus “u is
expensive” is tc be expressed as

I8(m,expensive)
where IS is the application predicate. We neced te distinguish between
individuals of two types: OBJECTS end PROPERTIES, exemplified bty

a
ki

"n" and “expensive”, respectively. Our other example, m is more
expensive than n®, is then expressed through
I8 (m,MORETHAN (expensive,n))

where MORETHAF is a funetion
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Eproperties % objects > properties]

with the obviocus intended interpretaticn.

It might be objected that present theorem-provers have not been

designed to handle many-sorted logic, and that a notation using many-
sorted logic therefore is no better than a notation in higher-crder
logic. The answer is that recent results [Luckham, private comm.
indicate that under certain (genercus) restrictions, ordinary resplution-
based theorem-provers will handle~ many-scrted logic correctly without

even knowing so (i.e. only correct unifications will ever be attempted).

Sc far, properties have only been specified intuitively as counterparts
of adjectives or nouns. We shall
not attemnt tc make the interpretation of properties more
precise than this. One important point, however: We shall require
that properties are scmething ‘“more than® the set of all objects
that have the property (by the IS relation). In other words, we shall
NOT have the following axiom:
(¥ ) 18(n,p) = IS(msq)] o [p = q:é
This intentional usage of properties is necessary e.g. for

our vse of the function "MORETHAN", above.

In this paper, we shall not be concerned with transformations between
situations, or the logic of actiocns. If we were, we would probably
Propose that the predicate IS should have a third argument, which
weculd be the situation in which the object has the property. For
en introduction to the situation ccncept, see e.g. [McCarthy, 196é],
As long as IS cnly has two arguments, we shall usually prefer to write
it infixed, rather than prefixed. Thus we write

m IS expensive
synonymously with

I18(m,expensive)

Representation of attributes

Expressicns such as "Jchn is the father of Peter” are represented as
follows. We consider “father” as a property, and we have a property
modifying functiocn OF of two arguments,

OF: [properties » objects - properties ]
sc that we can write

John IS father
and

John IS (father OF peter)
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The same conventions and the same functicn OF are used for other
similar constructions, e.g. son of", "color of”, "telephone number of”,

etc.

Representation of sentence kernels

The simplest kind of sentence with a subject and an intransitive
verb is represented in the cbviocus way: the subject goes into an
Tebject” individual; the verb intc a “property” individual. Thus
ity

Jchn is running” goes into

John IS ruaning

Tor transitive verbs (see, give, etc.), we use the entire verb-
object constellaticn as a property. Thus "Jochn sees Mary’ goes into
John IS (seeing OBJ Mary)
Here, "OBJ" is a function
ﬁm@perties M cbjects - prOpertieé]
(similar in structure to "MORETHAN”) which ensble us to compouné the
property from indivuals that correspond to natural-language words.
In this particular case, i1t still makes sense to write
John I8 seeing
In scme other cases, this may not be so (e.g. “Jchn IS opposing’),
In such cases, we shall say that the verb-property itself
(Yopposing™) is a property that no object can have. Ta wrinciple,
1t would be mere attractive to add to the number of scrts, and to
let e.g. “opposing” have the sort of a "pre-property” whieh can
be mapped intc a property, using scme suitable functiocn, but at
least for the mcnent, we shall not bether to introduce such
tight-fitting sorts. - We shall later encounter several similar
cases where we must again resist the temptation to introduce too

nany sorts.

For verbs with several cbjeets (“give”, "lend”), we uce several
functions similar to “OBJ . It makes sense tc have a functicn
"0 for what is represented in our natural language as the
indirect object of a verb., For example, "John gives Fidc to Mary"
would be represented as

Jchn IS giving OBJ fide TO Mary
Other similar functions (BECAUSE, FROM, etc.) can be

introduced when needed.
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Notice that terms in our PC formulas are intended
to denote the "meaning” (?) of KL phrases, rather than these
phrases themselves. It follows that the convention of having
functions “OBJ" and “TO” that correspond to NL direct-
object and indirect-ocbject constructions, is motivated by
convenience, rather than by lcgical necessity. It is OK to
represent phrases involving some verbs differently (e.g. by
having more functions besides "OBJ” and "TO"), as long as we

are prevar=d to undertake the heavier burden in translation.
pPren

Representation of subordinate sentences

Verbs that govern a subordinate sentence, such as “knows that *,
“knows whether ", “believes”, "claims that”, ete. make it
neccsgsary to add some more conventions for handling these

subordinate sentences. We propose the following conventions:

We introduce one more scrt, EVENTS, and a function
g: {cbjects 3¢ properties ~ events]
Let @ be an object and p & property (either an elementary
property. such as “expensive’, or a composite property, such as
“father of Jochn“). Ve express “n believes that m is p” through
n IS Believing(g(m,p))
vhere “Believing” is a function |events ~ properties}.
The event “g(n,p)” then expresses the possibility or the idea

that m would have the property p.

It is uninmportant whether we use a single-argument function
JBelieving“ as defined here, or a (pre-)property individual
“pelieving” , used like in

n IS (believing THAT g(n,p))

where THAT is an infixed, binary function.

Here, again, it is ilmportant that the property p should carry nmore
informaticn than merely that of being the set of all cobjects

that have the property p. For, the statement “m believes that n

is a unicorn” must be ccnsidered to be different from the

statement

“m believes that n is a zublahi”, even though the set of all unicoras

equals the set of all zublahis equals the empty set.



It is hard to find a good English mnemeonic for the functicn g.

In cther FEuropean languages, we would have selected the subjunctive
of the present tense of the verb “to be” (waere, soit, sera, vore,
ete.). In English, by analcgy, we should write "were”. It is un-
fortunate, then, that “were is alsc used for past tense. In spite
of this, we shall represent g as an infixed "WERE", and we hope

that the reader will get the right asscciations.

With these conventicns, and some suitable priority conventions
which meke up for the suppressicn of parentheses, we can write
“n believes that m is p~ through

n I8 Believing n WERE p

Other sinilar verbs (know, claim, etc.) are handled similarly

to believe.

Representation of “knows what”

Some preperties (e.g. “father OF peter”) are only held by one
sirgle cbiect. It is reascnable to have an operator "The” which
maps such properties into objects in the cbvicus way. Thus "Peter’s
father is tall” would be cxpressed as

“"The father OF peter IS tall”
or more explicitly

(The (father OF peter)) IS tall”
The use of "The” may be regarded as an input convention only.
One would then eliminate all occurrences of "The" before the

theoren-prever is let locse cn a statement or a guestion.

Consider now a statement such as “Jchn knows Peter's father” cr
“John knows Peter's telephcne number”. In the first statement,
“knows” probably has the meaning of "is acquainted with", If
Dick is the father of Peter, then the first statement in synonymous
with “Jchn knows Dick”. In this case, the PC translation of the
first statement is

John IS Acquainted-with The (father OF peter)

t
where “Acquainted-with” is a mapping [objects =+ properties].
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By contrast, the second statement certaiuzly means “John knows whet
Peter's telephcne number is’. If Peter's telephone number is in
fact 321-5678, then the second statement is not equivalent to "Jchn
knows 321-5678". The use of properties enables us tc handle this

kind of sentence. We do it by introducing a function

Kncwing | properties >  properties

sc that we can write

John IS Xnowing (telephone number OF peter)

as well as

321-5678 15 (telephone-number OF peter)
with the cobvious meaning. It would seem that this approach is
congiderably ricre promising than the avkward

T

P . g * T -
"Idee-of-telephone~number” constructicns proposed in McCarthy (1969 ].

Referential opacity

&

In the nctation proposed here, all functicns and relations are
referentially transparent (i.c. if x =y, then f{x) = f{y) etec.).
The reason why we can permit this even for expressicns invelving
knowledge, belief, etc. 1s of ccourse that in this nctation, scme
censtructions which might be expressed using equality are
expressed in other ways. For example, we express 'Sir Walter Scott
is the author of Waverley” through

sir-walter-scott IS {author OF waverley)

or (since there is only cne author) through

sir-walter-scott The (author OF waverley)
but not through

Authorof(waverley)

4

sir-walter-scott

Deductions from belilefs

It is convenient tco make certain assumpticns about what 1t wmeeons

for a perscn o "believe’ scnething. The first of these assumptions
is that if a perscn believes &, and if he also believes b, then he
believes any consiusion from (af%). (The A sign should not be taken

too literally). Similar assunptions apply tc "knows™, ete.

How can this assumption be axicomatized? We propose to do this in the

following manneys:

(2) Ve introduce functicns AND, OR, Not, etc. which map events

(cr pairs cf events) intc cvents,



(b) We introduce one mcre type, that of a “subordinate variable”,

which is used syntactically like a constant, but which

should only occur in subordinate expressions ("WERE-expressicns™).

The purpose of subordinate varigbles is tc act like variables in

a simulated logic that goes on among the arguments of
"Believing” (etc,). (This is encther case where we may later

wish to add to the number of types tc make them fit tighter).

(c) Suppose we are planning to use the resolution cperator
[Robinson 1965 for deductions. We then invent a function
RESOLVE:" [events s« cvents - events |
which resclves all pairs of ‘“clauses” from the first and the
second argument, and forms the “conjuncticn® (using the

funetion AND on events) of the “resclvents®™. The function

RESOLVE nust of course do “unificaticn” on subordinate variables,

ete. We then have the axiom
mw IS5 Believing e A 1w IS Believing f o

1 IS Believing RESOLVE(e.f)

S

If we use some other inference rules instead of or together
rith the resclution rule, thern similar functicns on events

and similer axioms for Relieve (ete.) are introduced.

(d) During the deducticn procecss, the function “RESOLVE” is

handled with irmedizte evaluation.

This would seer tc be a satisfactory way of formulaeting the con-
venticn that “if m believes a and m believes b, then m believes the
conclusions from asab’. It must be understocd, of ccurse, that this
conventicn ig a rather crude approximation to the psychclogical
reality. {Even if m is a computer, rather than a human being,

is still an approximation for any reasonably interpretation of
believes”). - The detailed development cof these suggestions is

left to a later paper, and shall act bother us here arny further.

Analytic vs, empirical facts

We shall make encther, similar conventicn which approximates
reality. Namely, we shall attempt to distinguish between
“analytical” and "empirical’ facts. An “analytical” fact is a fact

7

such as “all men are mammals”y an “empirical’ fact is a fact such

as "John is asleep’. The difference between the two is critical
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because of the following convention: if a is an empirical fact,
and b is an analytic fact, and m believes a,then m believes any
ccnglusion from asb. In other words, snalytic facts are assumed
to be built intc all agents who are capable of believing (and

knowing, cte.).

From these conventicns, it irmediately fcllows thet analytical
facts can not be subjected to belief, knowledge, etc. We shall
therefore adopt the conventicn that empirical facts are
exactly thosc facts which are expressed with the relation IS
(which means they can be expressed as events, using the
functicn WERE). Analytical facts are expressed with other relaticms.
In particular, we need a binary relaticn SUB between properties,
used e.g. as in

elephart SUB mammal

This relaticn cbeys the axioms

(p 8UB gq) ={Believing(m WERE ») SUB  Believing(m WERE

Lo
Nt
~—

Hetice that we do. NOT have the stronger axionm
(p SUBqg) = (Yn) (m IS» = » ID q)

We do nct, beceuse we want the rclation SUB

to express that the relaticnship between p and g is an analytic one.

In summary, only empiric facts can be subject to knowledge, belief,
ete. . and only enalytic facts may be expressed with SUB (and other,
similar relaticns, which will be introduced later cn).

The distinction between analytic and empiric statements obviously

has scme potential philoscphical overtones. We hepe to avoid

most of them by formulating the distinction in terms of an assumption
on the verbs believe, know, ebtc. rather than in terms of philoscphical

consideraticns.

The predicate "Holds™

The "connectedness® of cur set of functions and relations requires thet
there should be some monary relation 'Holds® such that
Helds(m WERE p) = mn IS p

We shall find frequent use for this relaticn.



It might be ¢
and that it
IS true

sho

pep iy

e

(where “true®

argued that "Holds(e)®

is a property

11 -

I
an

is in essence

would be that we could write terms of the form

WERE true

e

But this is a very dispensa

e WERE true e

We shall therefore prefer to use the predicate

ble feature,

"Hol

empirical fact,

uld therefore be expressed through e.g.

on events). However, the cnly advantage

since we have anyway that

»
ds®.

Summary
In this scetion, we have introduced the followirg relations and
functions:
IS [cbjects » properties]
OF [properties 3 objects =+  properties]
OBJ {properties 2 objects > properties]
TO {properties « cbjects >  properties]
WERE [cbjects 3 properties =+  events
The properties = chjects.
RESOLVE [events 3¢ events -  cvents]
SUB [prcperties - properties]
AND, OR fevents #  events = events]
Net {évents > events]
Holds levents
plus some specialized functions:
Believing levents ~ properties]
Acquainted-with ichbjects -~ properties}
Knowing [properties - properties]
MORETHAN foroperties = cobjects -~ propertieﬁ}

These functions and relations are intended for expressing

imn

informaticn
culus. We have given
and relations, and outlined

ventions

a many-sorted,

. the

the intended interpretaticn of these

reasons for selecti

NL

irst-crder predicate cal-

functicns

ng these con-



2. __NOTATION AND OTHER_ COUVE

Before we proceed, we shall specify the nctaticnal ccnventicns that

we will use (2nd which we have in fact already tacitly used).

Ortography
Binary functions and relations are usually written infixed, and
with capital letters throughout: OF, WERE, IS. Functions have

higher priority than relations.

Monary functions snd relations (-ué operators, see below) are written
prefixed, and with an initial capital letter: Knowing, Holds, The, Any,
Minery functions have higher pricrity than binary ones. The arguments

are not necessarily enclosed by parentheses.

Constants and variables for objects and properties are written
with small letters throughout. Variables are written with cnly

cne letter.

We shall scometimes use b 1 £ 1 x functions. The Algol construction
‘if x then y© is an example of & bifix. A functicn is bifixed if it is
instroduced in the forn
More .. THAN .,
In such casesg, we really mean to have one binary functicn MORETHAN
of twe arguments, and we write
More tail YHAN peter
when we mean
MORETHAN (tall,peter)
An infix-to-prefix translator (in LISP) which alsc tskes care of

o

bifixes is availsble from the author.

Sorts

In the sequel, we shall need twe more sorts. Thus we use fivst--order
predicate calculus with the foliowing sorts:

1. Objects (for physical objects, perscns, etc.)

2. Properties (for counterparte of nouns (except proper names),

adjectives, and scme verbs)
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3. Events (fcr hypcthetical or real events in the world, e.g.

s peter's tel-nr’

[N

“that ijk

fthet the monkey is under the bananas”

“that the menkey jumps to the ceiling”

b, Integers

5. Locations (fcr spatial positions, e€.g. "in the room', “under the
zebie’)

5 hy T o -
Declarations of varisbles

We: shell use different varinble symbols for different sorts, according

.

%o the following conventions:

k,m,n cbjects
PyqsT rroperties
dye,T events
VW integers
1h lcecaticns

Finally, we use the following notation:
Q,R modification functions (see below)
Rprop property functicn corresp. to R

s(x) literal where x ig one occurrence of a term
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Ao DNE S TO FULCTIONS OF SLCTION 1.

3 e 0 e s e s B - 2 Saam

In this section, we shall pive sone additional cowrents on the furctions

that were introduced in section 1. Ve shall also introduce some useful

Sl l-“‘
ct

additional functions waicl are clesely related to those of section 1.
The things in tlie present section are minor details. They were not de-

rosed to give an over-

scribed in section 1 becsuse that section was su
vievw of the peneral approach in this paper.
Boolean alsebras for properties and events
¥Ye use the fuanctions AWD, OR. ana ot , tue relation SUZ, and the con.-
stonts truth and felsity in
a2 Docican algebra in the ¢bvious way. (Thae directicon of U8 is such
that

AYD £ SUB 2

et cetera), ¢ SUT £ is intended to mean that £  follows analytically
SR . . , . I .

frow fo 44D, OR, and Hdot are the functions we need for the function

DISOLVE  that was outlined in last section, Axioms for this algebra can

be taken from any textbook end will not be iterated in this paper.

The following aziows are rore or 1less obvious:
o o~ - o =
I'olds{ ot ¢) = = lolas(e)

Lolds(e A

T

volds(e) ~ Ifiolds(f)

-
——r

Ve easily obtain theorers suel a
SUE £ A iolds{e) =  iolds(f)
ifoids{e 0o f£) = Dolds(e) v olds(f)

If ve have a Ffuncticr DESOLVE like in »nrevicus secction., we alsc need

oLvr(e,f)

It is convonient to Lave o relation IXCLUDES, defined

e IRCLU o = e SUL ot T

% ¥

For example, we hove

w VERE mals LEACIUDEE  m

fTermale

L similer algebra 1s set up for nroperiies.

L7

tis functions
erties)d

[ (events + eve

and similarly
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We relate the bwo algebras through the following axioms
r WERE Not p = Eot(m WERE D)
w WERE p  AWD m VIRE ¢ = m VERE (p AFD g)

and obtain as theorens

m WERE p O =m VERE g = m WERE (» OR g)

p SUB g =3 m WERE p SUE m WERE g
The last theorem agrees with our intuitive ides that thc relation SUPR on
properties should be used like in

boy ©SUB male

Property functions: Ofp

Functions 1like ~ OEJ, T0, ete. shall be called modification functions.
They shall be assumed to obey certain axioms; e.g. if 'FF and GG are
two erbitrary modification functions, we shall have

m FF » &G g = = G g FF p

h

In order tc handle e.g. Peter knovws when John goes to school';, we have
for each - ifieation function OF an associated property function
Ofprop LL?“‘bb ~ properties] . satiszfying

» IS (p OF n) = n IS Ofprop {m WERE p)

Exemple: John IS giving OBJ fide TO wary

.

1s equivalent to

fido I8 Objprop (john WERL ~ivin
is =guivalent to

nary I8 Toprop (john WERE piving 0LJ  fido)

n natural lancuage. the last ohrase would be "mary is the one Joun

jo]
2
e
b
(v
0
Hy
e
o)
O

gives fido to  {or morc precisely, mary is onc thet joh

to').

Kample: wneter IS Knowing Toprop (join VERE siving OBJ  fido)

In patural language: Peter knows whon john gives fido to.

nowledge wud belief

Let us make the functions for expressing lnowledre and beliel slichtly

more precisa. ¥We use thae followine functions:

Believing [evonts> propertiesal
Knowing whetaer [events >nroperties]

Knowing- that [events »propertics)
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Knowing [oreperties + properticd

Acauainted-with [cbjects ~ propertieé]

Startins frem believing (the intention of which is left umspecified).

we say that a persca knows "that” an event iff he believes it, and it
holds. 4 person is said to lknow “vhether an event iff he either knows
that the event  or knows that not the event. Furthervcore. ve say that

o perscn knows z proverty p . iff he cen deterwmine for cvery objeet n
(given by its namc (cssumed to be unique), rer then by o description),
vhether (wm WERE ).

This konowledse could conceivably be implemented e..;. by meintaining a
list of all objects that have the preperty (or of those that do nct have
it),

-

Finally, 2 persom is acquainted with an object iff he knows, for every

property v . vhether hhe object kas this propcrty.

Exemples: oster IS IKnowins (tel-nr OF Jjohn)

>

Inoving-whether (321 WERE tel-nr OF John)

[*
0]
C
o
i)
A
—
[eal
s

peter IS Imoving-that (peter WERE Inowinsg tel-nr OF Jjohn

In o previous scetion, we proposed that oue should intreduce a counter-

part of variables in the event structurc. When this is done (we sinll not

.

do it in this paper). it beccnes peossible to contruct expressions which

Eelds (n WERE Incwinr—that Yot &)

vhere ¢ is nade to reference back to the WiRE-cxoression, This is thoen

cal paradox; it is impossible to attribute @

é
l...l
o]
o
Iz}
L3
&
t+
[
Q
o
o]
]
ct
)
m
o
b
)
]
[
|

truti-value to such an expression. We can sce tvwe ways of dealing with

the natter. both of vhich have sconme advantages:
5 £

() The ostrich (= head-in-tlLe-sand) coproach. It

will bc o while until mechanieal theorenm-provers discover this

parndox. If we can trust each other with not tollings the computer

its ©I

corer-prover vill retain its sonity.

(b) The threc-valued logic appnroach: Thc axioms above are

)
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b

With thesce (and possibly some other) conventions, we do not have
any longer tasat

Eolds{e) v Holds(Wot e)
so we obtain a three-valued logic on the event level (since we

account for cvents e where

Holds(tot e)
neither )
Under this approach, the function RESOLVEL will have to perforn

-

resolution in a three-valucd logic as described in Hayes (1969).

and the operators e, end HNo

The function

In those examples where we translate simple natural-language statements
into cur notaticn, we can gain rwch convenience by using the functions

el

or operators The, Any. Scme, and Fo.

The functica The Iproperties ~ objectz] assumes that the argument is

a property which is satisfied by exactly one object, and has this object

as value.

The operators Any and Some are used for those cascs where the ~arpument”
is not pguarantced to sahtisfy the uniqueness criterium.

The expression Any p (vhere p 1is a property) is used like a frec

it ¥
variable ranging over all 1 such that = IS p.
The expression 'Some p is equivalent to writing a nev ccnstant symbol

(generated in a gonsyr- like monner) pn, and stoting somevhere thet po

£ T

The expression Yo p' will only be uscd in a context of the form
‘No » I8 ¢ and is talen as an abbrevistion for
n I3 n=> —(n IS g)

There is an obvious glgoritlm for rewriting expressicns that involve The,

Any . Sone, and No into pure predicate caleulus.

o

"The is obviously similar . althoush not identical. to Church'sict

s -

operator.



- 10
The function Sizeof

We need some neans of specifying when the operator The may he
used. It is proposed to do this through a function

Siezeof {properties - oproperties]
where the value ranges over properties on integers. (It is possible
that this should be a separate sort, but we shall not delve intc

Ve intend

C-
v
o

this matte
v IS Siezcof p
to mean exactly v different objects have the nroperty p . The

reason why we use this formulation, rather than

Size(p,v)

is of course that we consider size to be an empirical property.

Whenever an cxpression of the form
S(The p)

is used, with the sub-expression The » used on any level, we shall

1 IS Gizeof p

as a rule of inference.

3
5°
e
0
o
a.
_J
'-—J
o
o
-‘
oy
b
el
[
<
o]
]
)

Finally, we need some way of handling situations vherc a person knows (or

believes,...) something about an object which he knows by its descrivticn

-

only. We introduce the function Vhatis for this purvcose. If p is a

property . then

that has properiy p , or more crudely, the idea of an object with

Iee

The function Whatis elini o¢ for constructions

property o .
such as “ides-of telephone-nwiber vhich are uscd in (HcCarthy & EHayes,

telephonc number is next to Joharna's | viz, peter

‘s belephione number is next to jchanna's  can be

gpresented as:

he (tel ur OF jekn) IS HNext-to The

(tel-nr OF jo

peter IS Believing [Whatis (tel-nr OF john)
V]

s 4o Whatis (telenr OF  johanna)!

flotice that peter may hold this belief witheut Lrowing john's or johamna'

telephone nunber. Thacrefeore, we should not write  The instocad of

‘Whatis  in the seccond expressicn.

is taken to nean ‘the object (whatever it is)

1969),

S



- LY

Exemple 2: Consider the tve expressions
peter IS Knowing-whether (Whatis {tel-nr OF john) WERE

tel-nr OF dick)

peter IS Knowing sthether (The (tel-nr OF joh

tel-nr OF dick)

If john's actual telephone number is 321, then the first of the above
entences says that Pebter would be able to answer correctly the guestion
“Do John 2n@ Dick have the same telphone number?
where as according tc the second sentence, he would be able to answer
the question

“Is 321 the telephone number of Dick?

In vague words, if The is used, then the descri iption is evaluated
during the conversaticn between you and ne. whereas the Whatis function

performs a kind cf quecting

Inference rulcs

We shall obviously nccd some conventional inference rules (e.g. the
resolution operztor) end a rule for handling equality. It may or may
not be a good idea to have special inference rules for the operaters
The, Any, and Some. (The alternative is to eliminate these before the
Geduction starts). Ir casc ve want to have such inference rules, they

are as follows;

(1) z=1vy, 8{x) = e(y)

(2) = 1% »n  s{The p) b s(a)

(3) 8(The ») - 1 IS8 Sizcof »

() m I8 ». olhny p) + &{m)

(5) s(Some ») - B3n) =»n IS p A S(m)

In each of these rules wo asswie 8 to be g literal. Ve coxbend the

rules to inference rules on cleuses in the obvious way.
Rerark: In (5), only OWE occurrence of DSome ¢ in 8 can be substi
tuted for ot & time. = an be selected as any variable which does not

ocecur in & or p-.



L.)OI‘ /c‘ ax:.oms

Finally., let us specify some axicms for the general (‘system ) functions
and reclations that have been introduced in this section. fxioms for nore
special-purpose functions (e.g. the knowledse functions) are postponed

tc next section. The axioms for the boolean algebras for properties and

events are cmitted altogether
(1) Holds (m WERE p) = n IE v

(22) Holas(flot e) = =lolds(e)

1
)
o]
I._J
>
o
~
>
st
o]
|._J
m
—_
H
~—

(2b) Eolas{c A¥D )

(3b) © VIRE (» AYD

—~
rond
S
=3
s
22}
jd

(%) v R owm g =n = 7 2 & R n

(6) wm IS » B or = n IS Rpron (51 p)

(1) 1 IS Sizecfp A miIfns A nlI8> = m=n
(3) @ IS tizeof 3 = —(n IS p)

(¢) e p IS g = fve) nIsp= -~ (= I8 )l

Axicms (7) and (7)) need to be supplerented with more meneral axioms for

the functicn Sizeof . and with an aziomotizetion of integers.
VEE 1&0@10*1 of axions
In the next sccticu, wiere axioms for special enviromments asre given,

we shall e.z. see the axion
r IS MORETEAN(p k) A Xk IS ¥
& IS MORETALN(p,n) oo (a)

This axion is of course perfectly ccuivalent to

Hoids( TMPLIES
1 WER

¢ OR £ . Fowever, we also
want Lo usc this axion in deducticns about beliefs: If o porson believes
that = is taller then Xk , and that

he believes thot wm 15 taller then n

permits us to make this deduction about
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For belicf, we shall use an axiom

e SUB £ = Belicving e SUB  Believing f
It is therefore reasonable to strengthen (b) into
. m WERE MORETHAN (D, k) AVD k VERE MORETEAN(» .n) SUB

m WERE !ORETHAK(p,n) so0 ()

A “clause forum  cquivalent of (c) is

[Tot(m VERE jiORETEAI(p k) OR

Wot(k VERE E‘EORT":”}IAI\T(P,n) OR

n WERE MORETELT(p,n)] = truth see ()

Clearly, then, “e = truth is our way of saying leecéssarily e or (less
nystically) ‘everybody knows that e’ . We should not be surprised that
all analytic facts come out as identical, for the reason for introducing
events was to have soue object for belief , knowledge, ete.. and we have
already stabted that cnalytic facts are those which are not subject to
belief,
Iz princinle, it would be preferable to state all analytic axioms in the
orn excrplified in (c) and (&), rather tlhen the weaker form of
(2) and (v).

and the weaker form, respeetively. Since we cousider the weaker form nore

stronger f

In the scquel, we shall siuply refor to these as the strouger

natural cnd more legible, we shall prefer e use it. To fill the gep. wo

6]

specify here the preccedure whereby an axicn can be strengthened; 1.

°

transformed from the weoker to the stronger form. The nrocedure operates

on clauses:

Let (L1, ... Lu) be @ clausc in the weaker form. We define o function v

on literals as follows:

et
[l

2

r{ "Hol

r( =Eolds ¢") = ‘ot ¢

r(m I8 »n’) = 1}
r(—m I8 p7) = .T:"ot(zu_ WIRE p)
and undefined for other srpuments. Let L1, 12, ... Lj (j > 1) be
those literals for which r is defined, Construct the clause
( r(z1) o’ »{12) OR ... OR r(zj} = truth.  L(j*1).... LL)

(the actation is 3

mure, but the intention should be clear). This is

then the desired, strensthened clause, If J = @, the clause can not

3

be strengthened.

Most axioms in the scquel deo not need strenpgtheniic, but a few do.
Axion (7) above must not be strengthencd.



b, FUNCTIONS , THEIR INTINDED THTERPRETATIONS,
D AXIOMS FOR VARIOUS DOUATHS

In this secticn, we shall work through various types of HL  inforuations

o

and suggest o notation and a set of axioms that reproduce this kind of
inforration. In cvery casc. we shall rely on the sencral framework that

wes sot up in previous secticns.
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Axiows for hknowledge

Following the discussion in previous scctions, we usce the following

axious:

Believing [events + properties]
Knowing [properties - proncrties]

Knowing-whether [events - propertied]

i

Knowing that events + propertiesl

o

Acquainted-with {objects > propertics] _
It is convenient to start out from the functiocn “Believing ., and to

define the othurs in terms of it.

(Kuow 1) n IS Krowing that o -

Holés e A mn IS Believing ¢
(xmow 2) Enowing-vwhether ¢ =

Koaowing that e OR  Knowing that Mot e

tit

(xmow 3) n IS Knowing

Live) m 15 Knowing-whetiicr (k& VWERE p)3J

(xiow &) @ I8 Acquainted with un =
L¢p) m IS mowing w

)
et
]
e
G
=
\Ji
~
.
i

IS Eknowing p» A n

n I8 Enowing whether » VERE q)

(xuiow €) (Believing ¢ AUD Believing £} = Believing(e AUD )
(Kiow 6b) e SUB f = Beclievinp e  8UD Belicving £

{xmow Ce) ¢ 8UB F = Enoving-tiuat ¢ SUZ Knowing that T
(1aow 7a) ¢ EXCLUDES ©Delievins Tot ¢

(1380W 7o) Knowing (¥ot p) = inowing v

(KmoW Te) fnowing. vhether (Mot &) = Enowing whether e

(Kiow 7a) Fnowing-that ¢  EXCLUDEE  Knowing thot Not e

rect corollary of (2
(7¢) can be deduced from (Ta) and the streagthencd version of (1) cte.

e

These axioms are not independent. (Tc) is a d
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Axicms for the conncectives ¥7 and 4U.

The funetion IT 1is used to construct composite objects from simple
objects, for us¢ e.p. in constructicns such as Peter and Mary are

married .

In Pnglish (iikc in several other European languagces) there is a number

of equivalent formulation such as
Peter and Mary arc warried =
Peter is warricd to lary =

Mary is uarried to Peter

it

Peter and ilary are guarreling

Peter is quarrelling with Mary

2

Peter and :fary meet in the city

Peter mcets Mary in the city = ...

We shall rake uwniversal use of the conneetive ZU  for the various
preopositions uscd in natural Enslish (o, with, . ...). Thue we

would write ¢.7.

=3

Peter IS nmnarried 2ZU nary

Peter I8 (usetine IN The city) ZU nary =

Peter ET wmory I8 meeting IH The city

Moreover, we usc o special (analytic) predicate Zuatle to nark those

A7

properties (merried, mecting, ...) which can be treated in this way.
We leasurily jobt down the following axicms®

(ETZU 1) n BT = = n ET n

(BTZU 2) (2 BT n) I k¥ = n ET (o ET %)
(ETZU 3) m T o o= om

(ETZU %) Zuable P

Y

o
[
wm
¢}
~
\:1
3
i
v
3
3
-]
%
3
S~
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Axioms for spatial location

We introduce o new sort, LOCATION, and the following functions:

Loc (locations - properties]
Inside Lobjects ~ locations]

Outside -
Hear
Farfroxz

Atinside -
At .
Upon

Under -

Above -

Below -

Beside

Between {objects » locationg]

A lcecation is thought of as having an EXTENSION in space, and optionally

(always) an BDCE. Ve write 'n IS Loc 1 (wherc o
iff [1] the extension of = is contained in the

the edge of 1» has some sesment in cop

n with the edrme of 1, if 1

1

as

one. (These idcas heve been taken from { Schank - Tesler - Weber, 19707).

The following functions generate lcocations with an edpe. Atinside, At

-

Upon, Under . The cther functicus do not. The meaning of all functions

shculd be rather obvicus:
Inside (m) has the same extension as m ., and no edre
Atinside(m) has the same extension, but it also has the edge of m

its edge; ete.

foT)
ct

The function " Between is supposed to take an arsument of the fom

m ET n' or k ET o ET a.

We use a relation SUBL on [Llcecations # locsticnsl to deseribe
analytic loeation -inclusion.

(roc 1) o suBL 1) = {Loc L SUD Loc n)

(Loc 2) I'ear 1 SUBL Outside n

(Loc 3) Forfror. n SUBL Outside n
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(Loc 4) Atinside m SUBL Inside wm

(Loc 5) At m SURBL Hear =m

(Loc 6 Uporn m SUBL At n

(Loc T) Above m SUBL Hecar n

(Loc 8) Upcn m SUBL Zbove m

(noc 9) Under m SUBL At n

(Lo¢ 10) Below @m SURL fear n

(LoC 11) Under m SUZL Below n

(noc 12)  m I8 Loc R n = n IS Lec R =um

(WEERE R = IHcar, Farfrom At, Reside)

(Loc 13) m IS Loec Upon n = n IS Inc Under m
(noc 1k) m IS Loc Above a = a IS ILoc Below n
(Loc 15) n I8¢ Loe R = =

™ k IS5 Ioec BRBebween n ET n

(VEERE B = At, Inside)

For some of the further axioms, it is convenicent to have an auxilliery
relation FAICLUDEL o [locations ¥ ‘locaticngl . saying that two

locations are mutually exclusive:

'.,.J
b
i
Bt
[¢X]
.
]

[¢]

g

(Loc 12) 1 EXCLUDEL h = Loe
(roc 17) Inside m IEXCLUDEL Qutside
(r.oc 18) Hear CLUDEL Ferfrom m
(Loc 19) Below 1  EJCLUDEL Above n
(Loc 20) Below m  EXCLUDEL Beside n
(Loc 21) Above 1 FEXCLUDEL Beside n

o

eduction using Loc exioms certainly nceds to be supnorted by a notural

]

w)

It may or ray not be a good idea to use functions “ILocinside’, ILocnesr:
ete. which mopdirectly from an object to the property of hoving a location

related to the object. ¥e would then avoeid treating locatlons as separate

scrts. Having o special sort for locaticns is probably a good idea, 1f we

plan to support the theorem-prover with some kind of natural model.




We use the following functicons:

ioms for the comparison of adjectives

f)
Hore .. THAN .. (properties ¥ objccts
As .. AS .,
Less .. THAY .. ‘
Most .. AMONC .. [properties X properties
Least .. AMOHG ..
The meaning of these

peter IS HMore +t8ll THAY John
Less tall
tall
HMost tall

ohn IS As

AMOHG

-
1

Dick, and that no brother of Dick

(brother OF

is taller than

nay be as tall as Peter. If Peter is stricily th
brothers. we can write the stronger statement

peter = The {(lost tall AMOUG

To explain
a nonery funchbion
Un:

pronertices -~ Dproperties

to be used like

peter IS Un{old)
young = Un{cld)

In cases

of an adjective {e.s.. both tall
of short ), we shall

arbicuity (for

that the set of properties nust be
individuals 4o rosclve the

nerging the two recundant pronertics

arrangements . the function Un-

Yotice the differonce botween ot p’
expressed by p end Un np iz not at

object has the nrouerty Hot(p),

ES

we say that a stone i

{brother

and ' lonr

ambiguity (' shortl
into ong {

can be made una

OF

that twe properties are each other's

ax

of imposcd redundancy

of

and Un p
all applic

t that

and

+ prepertieg]

Tunctions should be clear. Ixerple:

dick)

dick))

opposites, we introduce

language permits several opposites

arce Epglish opposites

O

tere the stondpoint thot this i1s o case of lexieal

("tall- ‘long ). and

vs

smoothened by using two different

long+tall ). With such

izous.

3 of property

it is Un(hapoy) -

2.7, h .
then tho



How some axiowms:

(CADT

(CADI

( CADJ
(CADT
(capg
(CADS

(capg

(capg ¢

(Cang

1)

3)

L)

1h)

2 IS More p TEHAN
o rn IS Hore p

o IS

MIT AT
THALH

THAM

n Io Less

E I8 ¥ore p

THAN .

THALI

n Is

m IS8

More ©p

More p

THAN
IS

m I8 More p

iy (As p AS m)

n I8 4s » A5 n

n IS As p AE n

AMOKG

ElolNe]

A

THAl n

k I8 More o

More p THAY m

k =
I
) =

Any (4s p LS k)

k_ pram-

More p TEAN :

o] =

IS ifore p TEAY wm)

m I8 Least » AMCHG g =

(w ISqg A Iocq¢ IS Less p TE =)
» = Un(Un(p))

Un{p) SUB Ilotln)

As p LS n =  As Un{(n) A3 n

As 0 AS n EXCLUDES  lore p TEAY n

More » THAN n =

tiost p MNMOIG ¢ =

Least Un(p) ANOUG
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Axioms for measures on adjectiyes

We use the following functions

Very propertics - preperties)
Rather e
Slightly -

We also assume that every object has exactly one of the following
properties:

Very o»

Rather ©p

Slightly »

Hot »
for every 'basic property p. (Very p, Rather p, ebtc. are not basic

propertics , so we do not assume constructions like Very Rather p )e

()

Some axicms arc

((rDT 1) Very » EXCLUDES Rather »

(V£DT 2) Rather p EXCLUDES Slightly »p

(:iaDJ 3) Very p EXCLUDES Slighatly p

(1iDJ b)) Very p SUB »

(14DT 5) vather p SUB

(12D3 ) Siistily p SUB P

MADT T) fny Very p IS More p THAN fny Rather p
(HMADT 3) iny Rather p IS lMore p THAW Any Slighily »
(xADT 9 Loy Very p IS Morc p THAN Any Slidmly »

(MADT 10 a-e) m IS s » Asn A mISOpp =

(WViERE Op = Very, Rather, Slishtly)



In this paper, we have proposed a set of functions and relations

of typleal

[ 47]
ez}
[}
()
(¢
ct
(=N
o
]

that we claim src good for re-expressing a cro
UL constructicns. We have also given some 75 axicme for these functions
and relations. This 1s an order of megnitude birger than the axiom sets
that (to our knowledge) have before been used in theoram-proving prograus,

and it should present a new challenge.
Some of the problems that should be treated next are:

a. Automate the translation from a simplificd natural language to the

notation presented herc.

The reader will have notised that in developing the notation, we took
considerablc delignt in staying clcse to HL  concepts and formulations.
There arc good and bad asnmects to this; one food aspect is certainly that

it should simplify translation.

o Polish up and extend the axiom sets.

The axiom sets that have been given in this scetchy paper are somewhat
1D (V] AL A%

ll’l'* car

haphazard , and they need debugging. Ve submit that this debugs
best be performed in intcractive experiments on a computer, and that

humen think nower is not sufficient. We submit. furthicr, that the criteria
for selecting an axiom set must be those of power and of computational

efficiency, aud that the criteria usually used in logic (elegance minimel

set of axioms, cte.) are largely irrelevant.

Co Develon short-cut methods whereby o theorem -prover cen manipulate the

alocbras on vroperties and events in an officient way.

&. Try to set some handle on those sentences in UL which arc not intended
to convey the information cf their ‘face velue' assertion, and which

are not cither intended as information requests {questions}).

lany of the scnbences thet we use (even in roculsr, non Tiction prosc)
arc pronounced only in order to focus the listener's attention on somc
fact thnt he already kacws, or to tell thoe listonor that the speakeor
knows o certaln fact and has accounted for it ., cote. Stntemcnts of th

if we nerely transletce than into PC and

Lind are not adcouate
shuffle then intc a datn bose. Tucy must be trated cuite Liffcrcntly.
Ve consider this the rost important {and also thc rost evasive) problen

in WL processin: todayr.
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