S
-

tructure

3

4 Y

s I’}?

d proper
bina
Sandewall

te
on for

J

o
S

n

A sct-oric
reascntati
Sril

o)
£

o
-

.

UPPSALA UNIVERSITY
COMPUTER SCIENCES DEPARTHMENT
REPORT NR 24
AUGUST, 1969

also:
SWVEDISH QUESTION-AWSWERING PROJECT
HE0 6

A set-oricented property~structure

reprcscentation for binary relations, SPB
by

Brik J Sandewall

Paper presented at the lMachine Intelligence 5
workshop in Edinburgh, Scotland
September 15 - 20, 1969

2e

0. Introduction

Early question-answering systems often used ad hoc representations
for their data bases, and corresponding ad hoc deduction methods

for the question answering. llany systems, such as the SIR system

({Raphael 1964g}) represent binary relations on property-lists.,
This term will be defined below. In recent years, it has been
argued (e.gs in {Slagle 1965b} and {Green 1968a}) that a dialect
of predicate calculus should be used insteadi This would have two
advantages: (1) predicate calculus is a richer language, i.e.
more things can be said in ity (2) for predicate calculus, one
knows reasonably efficient proof procedures, e.g. resolution (see

{Robinson 1965@} or {Nilsson 1969@}).

The distinction between these two approadhes is not clear-cut,

and it is tempting to try to incorporate the use of property-lists
to speed up resolution; For example, one may find it useful as the
data base grows to construct, for each object symbol ¢, a

chained list of all literals or clauses where c¢ occurs. This
chained 1list is then (in a sense) a property-list for c. However,
if we consider it as given that certain information is to be
retrieved on property-lists, then it is not obvious that the best
way to use this information is to feed it into the resolution black=-
box. It is natural to look for deduction procedures which utilize
efficiently the kind of information that is stored and can be
retrieved from property-lists, and which can be used instead of or

together with conventional theorem-proving methods.

In this paper, we shall suggest one such alternative, namely a

"clean" property structure where binary relations uRv are stored as
address references. We shall show how formulas that involve quantifiers
can sometimes be expressed simply by giving a certain structure to

the "R", We shall also specify a fast deduction procedure for this
notation. - An ultimate goal for work along these lines is that

property-lists shall no longer be considered as an ad hoc notation.

3

1. Property-structures and property-lists

The purpose of this section is to define what we mean by a property-
structure and a property-list, and to give some notation. It will

not contain any new results.

Let U = {u,v,w,...} be a set of objects, and let A:{P,Q,...)

be a set of binary relations on U (i.e. subsets of U x U). Con-
sider the problem to design a computer program which has partial
knowledge of these relationsy which can accept more information
about the relations and store it in a data base, and which can
also accept questions about these relations and answer them from
the data base., In the simplest case, assertions and questions are
given as triples <ﬁ,P,v> , meaning " <p,v>» is a member of P" wviz,
"is <u,v> a member of P?", Ve want to organize the data base in
such a way that new assertions can be added easily, and answers

to questions can be retrieved easily and quickly.

Let us first discuss the use of such systems. Several previous
gquestion-answering programs are essentially of this type. In
Lindsay's program ({Lindsay 1962@}), U is a set of people and fami-
lies, and the relations are "u is the husband in the family v",

"u is offspring in the family v", etc. Raphael encountered the same
problem ({Raphacl 1964a}) with U being a set of objects and people,
and the relations being e.g. "u is physically part of w'", "v is

the owvmer of x", etc., Levien saw it ({;evien 1965&}) with U being
a set of people, meetings, institutions, and documents, and
relations such as "u is the author of v", "u is employed by w'", etc.
We met the same kind of problem ourselves when we decided to trans-
late natural-language sentences like "A gives B to C" into an

expression
(3 x) R, (x,8) A R,(x,Give) A RB(X,B) A R4(X,C)

where x is the activity described by the sentence, R, can crudely be

1

described as an "activity-to-its-subject'" relation, R2 is an

"activity-to~its~verb" reclation, cetc,

One standard way of representing binary relations in the computer is

through property-structures. We formally define a property-structure

as a mapping

o u —> ZAXU

4

i.c. a mapping which assigns a set of pairs Rv to each member u
of U(x « A property-structure o corresponds to a set ¢ of facts
iff

WwRv € ¢ = Rv ¢ o (u)

If o 1is a property-structure and Rv € o (u), we shall say that

u has the property Rv in o,

To represent & property-structure o in memory, one usually does

as follows: a unique cell is associated with each member of U. A
cell which is so associated is called an atom. The atom associated
with w will itself be called u. A property Rv is rcpresented as an
indicator for R plus the address of v. All the propertics that an
atom u has are stored in such a way that they can be accessed from u
as easily as possible, This may be done using a chained list (in

which case cach o (u) is represented as a property-list), through

hash-coding, or by other means.

It is usually necessary to represent cach fact through two properties:
If A is the reverse relation of R, then a fact uRv (equivalent to

v3Au) is represented in a property-structure o through

Rv & o (u)
and

SAu e o (v)
If R is symmetric, then R and 3} are of course the samc relation,

Figure 1 illustrates how ¢ = {qu, VRW}' can be represented as

a property-list structure. Arrows stand for address rcferences.

Let us contragt the property-structure representation of facts with
the linear representation, where the data base consists of a
straight list of all facts that have been accumulated. Clearly, the
property-structure representation is superior for honoring simple
information requests like "is uRv stored (explicitly) in the data
base?". However, all interesting question-answering programs must
be ablec to perform logical deduction, i.ec. to retrieve facts which

are stored implicitly in the data base., It is at lcast not trivial to

—— — - o - - — e Aot o By e s g)

(=) This is an abbreviation for <R,€> . We shall often usc this

abbreviation of the notation for tuples.

S I,.«O

s34y 03 dosd

Figure 1.

6.

modify conventional deduction procedures (c.g. resolution) so that

they can make efficient use of a property-structure.

However, for certain types of infercnce rules, one can write
decduction procedures which are particularly adapted for a property-
structure data base, In particular, this is true about rules of the
type

uPv , vQw | uRw

(where P, Q, and R nced not be distinct)e Such rules shall be called

chaining rules, and shall be writtcn

PxQ - R

Chaining rules can be handled by the following

Lincar chaining proccdure., To determine whether uRw 1is stored

(explioitly or implioitly) in a property-structurc o, do the

following:

(a) Sec whether Rw egc(u). If so, exit with success.

(b) TFor all pairs <P,Q> such that P x Q@ —> R, and for all v
such that u has the property Pv, sct up the sub-problem to
prove that vQw is stored in o, If this subproblem has
not becen attempted before, attempt it now by the lincar
chaining procedure., =~ When no new sub-problems rcmain,

exit with failurc.

We call this procedurc "linear" because it only considers those
properties Pv vwhich are explicitly stored under u. A more careful
procedurec would also consider propertics Pv that u can be proved

to have, Linear chaining corresponds to linear proofs in resolution.
The linear chaining procedure is completc only if certain
assumptions arc made about the sct of chaining rules. This question

will be more thoroughly treated in another context.

It is casily seen that if the number of chaining rulecs 1is finite, and
the number of facts in o is also finite, then this procedure will

always terminate.

To summarize, a major advantage of the property-structurc represen-

tation is that it permits fast rctrieval and fast deduction, in some

Te

simple cases. A major disadvantage is that the notation is so restric

restricteds no logical conncctives are allowed (except the trivial
and which conneccts all facts in the data basc), and no quantifiers

or other logical operators can be uscd.

The notation which we shall define in the next few sections consists
esscntially of a few operators on the relations P,Q,;.. , Which
enable us to express conncctives and quantifiecrs in some cascs.
Using these operators, each fact would be written uGv, where G

has the form
A1(A2(... AJ(R) oll))

Such facts can of course casily be stored in a property structurc,
Besides spedifying a set of interesting operators, we shall give

a sct of chaining rules
FxG —=>K

where F, G, and K have been formed using these operators.

8

2. Quantification of binary relations

We repeat that U = {u,v,w,...} is a set of objects, and

A = {P,R,...} is a set of binary relations on nembers of Ui

Starting from the relations in A , we shall now define further

relations on members of U (ground relations) and on subsets of U

(set relations)i The opcrators Id, Rev, Neg, Aa, Ae, At} BEa, Le,

and Ta on relations are defined as follows:

Id(R) = R

Rev(R) = X (x,y) R(y,;x)

Weg(R) = A (x,5) "R(x,¥)

ra(R) = X (b,c) (V xeDd)(V yec) R(x,y)
Ac(R) = A(b,c) (3 yec)(V xeb) R(x,y)
At(R) = A(bse) (v x€b)(3 vec) R(xy)
Ea(R) = N(b,e) (A xeb)(V yec) R(x,v)
Ee(R) = A(b,e) (3 x€1)(3 yec) R(x,y)
Ta(R) = A(b,c) (¥ yéec)(3 xed) R(x,y)

In these definitions, we have usced the abbreviations
(V¥ xé€v) P (V x)[xed = P
(ﬂ xéb)P = (3 X)[XQb A P]

Wi

|

We immediately obtain
Rev(lleg(R)) = UNeg(Rev(R))
which can more compactly be written as

Rev o Nleg = INeg o Rev

With similar notation, we obtain
Neg o Neg = Rev o Rev = Id

Tor combinations of Rev and ifeg with other operators, we obtain the

following table (figurc 2):

/insert figure 2 here/

Let I be the equality relation (on members of U). We obtain the

following set relations:

9e

¥ ' Rev =« X Neg o« ¥
Aa Aa = Rev Ee s Ncg
Ae Ba e Rev Taes Neg
At Ta o Rev Ea » Neg
Ea Ae o Rev At « lleg
Ee e e Rev Aa « Weg
Ta At o Rev Ac olleg
I ure 2

Be(I) = X(b,c) (b and ¢ overlap)

Aa(Weg(I)) = A(b,c)(b and ¢ are disjoint)

A(I) = A(b,c)(p is a subsct of c¢)

Ea(Weg(I)) = A(b,c)(b is not a subset of c)

In particular, b[Ee(I)_]b means "b has some member", and
b[Aa.(Neg(I))]b means "b is the empty set". The relation Ia(I)
may also be usefuls b[Ea(I)]b means "b is a set of cxactly

one member'.,

Consider now the set I" of all set-relations that can be con-
structed from A using these operators. Clearly, every member of T

can be written in exactly one way as

a(a(s(R)))

where R i1s a member of A , 8 is either Neg or Id, d is either

Rev or Id, and q is one of the six opcrators Aa through Ila,

A data base where members of 2U x [x 2U are reprecsented in a

property structure can be characterized as a sct=-oriented property-—

structurc representation for binary relations. We introduce the

acronym SPB for this representation.

10.

Let us finally comment on how to visualize an SPB property structure.
It should obviously be thought about as a network, where ecach node
represents a subset of U, and ecach arc aGb is a member of

U Mx o', 1r ¢ = q(a(s(R))), it is useful to think about the
arc as dirccted from a to b, and labeled with d(s(R)), whereas
the q is manifested by two connection codes A, E, or T which
indicate how the arc is connccted to the nodes. A stands for "all
nembersyY E stands for "one and the same member", and T stands for

"onc variable menmber". I'or example,

b[Ae(Rev(Neg(R))i]c

would be visualized as in figure 3:

b c
A
Rev(¥eg(R))

FPigure 3

v
=l

The same relation cah be written as
c[Ea(Neg(R)Z]b
which is visualized as in figure 4:

b c .
‘2 - >E' Figure 4
Heg(Rev(R))

Thus the table for Rev =Y above is thought about as saying '"the

connection codes do not move when we reverse the arrow',

The SPB property structure has the advantage of offering a simple
and efficient way to store information about classes of objects in
a data base, Other approaches to the samc problem (such as present
attempts to find good rcfutation procedurcs for higher-order logic)
arc certainly more general, but their maturation to practical use

scems to lie quite some way in the future.

1.

%3, Ground lcvel chaining rules

By a chaining rule, wec still mean a rulce of the type

wPv , vQw = uRw
which is written compactly as

PxQ = R

If P, Q, and R arc ground rclations, then this is a ground level

chaining rule. In this section, we shall study some equivalcnces
which permit us to consider scveral, apparently dissimilar

chaining rules as csscntially the samc.

Ve immediately notice

Proposition 3.1. If P x Q@ —» R, then the following chaining

rules also holds
Rev(Q) x Rev(P) —> Rev(R)
leg(Rev(R)) x P —> Neg(Rev(Q))

Q x Neg(rev(R)) —> HNeg(Rev(k))

Proof from the definitions of Rev and lleg.

Corollary 3.2. Iterated usc of proposition 3.1 on a chaining rule

Px Q =R gives cxactly six rules, viz. the four oncs mentioned

in proposition 3.1, plus
Rev(P) x Neg(R) —> Neg(Q)

Neg(R) x Rev(q) —> Neg(P)
Proof by inspection of all possible cascs.

lotice that if the Rev and lleg operators are ignored, the six forms
of a chaining rule are exactly the six permutations of the three
clements P, Q, and R, Let us now look for a pattern among the lev

and Neg prefixes.

The rule Px Q>R is clearly cquivalent to

(VY w)(V v)(v w) T (uPv A vQw A wR'u)

12,

where R!' = Neg(Rev(R)). We can illustrate the latter statcment
as a "forbidden triangle" (figure 5):

s
Q

Pigurc 5.

liorcover, if we write this forbidden triangle as a triple

<P,Q,NOg(RCV(R))>
then it is immediatcly obvious that the same triangle can be

written in five other ways, c.g.

{QsTea(Rev(R)),B)

or

<Rev(P),Neg(R),ROV(QX>

lloreover, since each triple <?,Q,R‘> is cquivalent to a chaining
rule P x Q => Neg(Rev(R')), these six ways of writing the
forbidden triangle immediately give us the six forms of the

chaining rule derived in corollary 3.2.

Since the forbidden triangle is clearly the basic thing, we shall
change our habits with respect to the symbol R and talk about a
forbidden triangle <P,Q,R>, which is equivalent to the six

chaining rules
PxQ —> leg(Rev(R))
Q x B —» Neg(Rev(P))
RxP —> Neg(Rev(Q))
Rev(R) x Rev(Q) —> Neg(P)
Rev(Q) x Rev(P) —> Neg(R)
Rev(P) x Rev(R) —> Teg(Q)

Chaining rules arc needed for the linear chaining procedure in

section 1. However, it is more convenient to bypass the cheining rule

13

and to describe the procedure directly in terms of forbidden

triangles:

Linear chaining proccdure (new description): To determince whether

uRw is stored (explicitly or implicitly) in a property structure

o , perform the followings

(a) See whether Rw (u). If so, exit with success.

(b) Otherwise, for all properties Pv that u has in o, and
for all Q such that -<Rev(Neg(R)), P, Q> is a forbidden
triangle, set up the sub-problem to prove that vQw is stored
in o, If this subproblem has not yet been attempted, attempt
it by the linecar chaining proccdure. When no new sub-problems

remain, exit with failure.

The idea in step (b) is to prove that if u(ﬁeg(REIW', or
equivalently, W[Neg(Rev(R)Z]u were in the data base, then this
woull at least implicitly close a forbidden triangle there. This is
indeed the case if we can prove that vQw is in the data base,

which is true if V[ﬁog(Qi]w cloges a forbidden triangle, ctc. The

process is illustrated in figure 6.

The chaining procedurc runs through a sequence of forbidden tri-
angles with a common vertex w., Triangles are connected by an
inversion relationship (Q to Neg(Rev(Q))) between adjacent sides

of two successive triangles. Rays coming to the vertex w stand for
successive questions (things to be proved); rays going out stand for
things to be disproved, Arcs along the perimeter are in the data
basc. The procedure ends successfully when some ray coming into w

is also in the data base.

Notice that w is not needed during chaining, but only in the
termination criterion. Therefore, cssentially the samec chaining
procedure can be used to answer questions of the type: "which w

satisfies uRw?" (open questions, VI questions).

15

4o Set level chaining rules

Let <?,Q,R> be a forbidden ground level triangle. In this section,
we shall derive forbidden triangles on set relations obtainecd

from P, Q, and Re.

Ve can immediately write down a few of them:

{aa(p),Ze(a) ,48(R))
(1a(P),Ee(Q),4e(R)D
{at(P),2t(Q) ,4e(R)D
(at(P),he(Q),he(R))
(e (P),he(Q),hc(R))

The reader should verify that these are indeed forbidden., for

example, if the first trinagle were not forbidden, we could have

plha(P]ec A cfBe(@)}a A a[at(r)]b
i.c., all b are P'ing all c, some c¢ is Q'ing some d, and for
every d, there exists some b which it is R'ing. Consider one cf
in ¢ and one d1 in d which are Q'ing together., d1 is R'ing some bl
in be This b1, like all b, is P'ing with all c including c1. But

tis was a forbidden situation.

Now, if <P,Q,ﬁ> is a forbidden trianglec, so is <Q)R,§>, 50
we have five more set level forbidden triangles, c.J.
(2a(Q),Be(R),4t(P))

In fact, there is no point in writing out all the set level for-

bidden triangles. Instecad, we have the following forbidden opecrator

triangles:
{ha,Be,At)
(4a,Te,he)
(At ht,he)
{it,he, Ac)
{Ae, e, he)

plus the following rule:

/ncxt page/

1C.

Rule of triangle composition: if <P,Q,R> is a forbidden ground

level triangle, and <A,B,C> is a forbidden operator triangle,

then {a(P),B(Q),C(R)) is a forbidden sct level triangle.

Yle have now compacted our chaining rules quite a bit. Let us

illustrate this with an example. Consider the ground level chaining

rule

IxR —> R

where I is the equality relation, and R is any relation). This
q

corresponds to the forbidden ground level triangle

{1,R,Nes(Rev(R)))
Combining the six forms of this triangle with each of the five
operator triangles, wc obtain in>principle 30 set level
triangles, which means 180 sct level chaining rules. Some of these
arc of course identical (basically because triangles like
<Ao,Ac,Ae do not change when they arc rotated), and some are not

very interesting, but we do obtain c.g.

from At,Aa,Be

1, A6(T) x Aa(R) —> Ueg(Rev(Ee(lieg(Rev(R))))) = 4La(R)
i.c. < x Aa(R) —> Aa(R)

2 Ee(I) x At(R) -2> Teg(Rev(Aa(eg(Rev(R))))) = Ec(R)
where Ec(I) dis the "overlap" relation

3 At(R) x Aa(Weg(Rev(R))) —» Neg(Rev(Ee(I)))
which is the "disjoint" reclation

from At,At,Ae

be A4(I) x at(R) —> Weg(Rev(he(lleg(Rev(R))))) = At(R)

where At(I) is the "subsct" relation

5e Specializing (4) to the casc R = I we obtain

Cx T =
G At(R) x Ae(Weg(Rev(R))) —» lNeg(Rev(at(I)))

which is the "is not supersecet" relation

17,

and quitc a number of others,

If the five forbidden operator triangles are visualized with

connection codes as at the end of section 2, we notice
(1) +there is one "A" connection and one "TI" or "E" connection
at cach corner of the triangle;
(2) there is at least one "E" conncction in each triangle;
(3) every triangle that satisfics (1) and (2) is a forbidden onc.,
Observations such as these can be used in programming the lincar

chaining proccdure for set level triangles. This will be the topic

of next section.

18.

o The linear chaining procedurc on sct level
[

The purpose of this section is to specify in detail the algorithm

for linear chaining with set level chaining rules.

Ve assume that expressions

bla(a(s(r)))]e
(wvith q,d, and s as in section 2) arc stored in a property structurc

so that b obtains the property

<q,d,s,r,c>

and ¢ obtains the property
<Rev(q), —d, s, T, B>

where Rev(q) is defined to be the ' in the equality
Rev(q(P)) = q'(Rev(P))

This definition should be natural, Our notation is helpful: we

have Rev(Ac)

that d and s arc reprcsented as boolean variables. liorcover,

Ba, ctcs =~ 1In the above fivetuples, it is assumed

we assume g to be represcnted as a triplet <q1, q2, q5> of
boolean variables according to the following conventions

(figure T)s

q ql q2 a3
Aa 0 0 0]
Ee 1 1 1 .
figure 7.
At 0] 1 1
Ea 1 0] 0]
Ac 0 1 0
Ta 1 0 1

With these codes, we have
Rev(ql,92,93) = (a2,q1,a3)
lloreover, if lleg(q) is defined similarly to Rev(q), we have

Neg(ql,02,93) = {(~al, =a2, ~a5)

If the components of a »roperty are packed into one computer word,

then complementation in given bit positions may be faster than

19.

permutations of bits. We can define the Rev operation through
complementation if Aa is given a double representations as (0,0,0)
or (1,1,0), and Be is given a double rcpresentation as (0,0,1)

or (1,1,1). In this casc,

Rev(ql,92,q3) =<aaly, mv a2, a3)

The "meaning" of the various bits in the representation of q, arc:

gl: is therc an E or T conncction at this end of the arrow?

q2: 1is there an I or T connection at the other end of the arrow?

q3: 1if therc is exactly one E or T: is this a T? (otherwisec,
conventions arc arbitrary).

However, thesec interpretations only apply to the case 6f single

representation of Aa and Ee,.

Let us now introducc one nmore opcration on the q, besides Rev

and Meg. With given operators q and q', we shall writec g + q' for
that operator for which <q, q', q+q}> is a forbidden opcrator
triangle. g+q' may have no, onc, or two valuecs, and is given in

the following table (figure 8):

q' = 000 111 011 100 010 101
Aa e At La Le Ta
q =
000 La Ae,At Ee Le
111 Ee Ea,Ta Aa Aa
011 At Ee Ac Ae,At
100 Ea Aa Ea,Ta La,Ta
010 Le Lie Ae, At Acy,At
101 Ta La La,Ta Ta

I'igure 8: Table for q + qf

As we see, we sometimes obtain both Ae and At, or both Ba and Ta

20,

as a "sum", We shall make the + operation unambigous by defining
g+ q' as At viz, Ta in thesc cascs, This convention will be

explained below.

Blank squares in the table indicatc that no sum exists. It is
casily verified that with our encodcment of the g (with the single

renresentation for Aa and Ee), we obtain

<q1’q2:q3> + <q1':q2'1q3!> =
if g2 = ql! then wundefincd

clsc <-1 a2'y=1aly, — (g1 A q2' v a3 A q3')>

It follows that

meg(Rev({a1,a2,a3) + {al',q2',03")) =

if g2 = q1! then undefined

clsc <q1, Q2', (a1 A 2" v 43 /\<13')>

We now have all the preliminarices for the chaining proccdurc. Given

a question bGd, wec attempt to disprove

a[leg(rev(c))]b

Let this relation be rcepresented by assigning the tuple

<Q1,q2,q3,d,s,R,b>

to d, as usual. For cach property

<q1',q2',q3',d',s',R',C>

that b has in the data base, we shall clearly do the following:

Sct level chaining procedurec (dctails):

(1) Determinc & suitable ground level forbidden triangle. This is
essentially an "addition" of <ﬁ,s,r> and <d',s',r'> . It will

have to be handled by a programmed routine, or by table

look-up.
Examples The ground level chaining rule
RxI —- R

is handled by the function

21.

<d,s,r> + <d',s',r'> =

if r=1! and 4 # 4t and s # s! then 0,1,I
elscif r=1I and s =1 then <"1d', —st, r'>
elsecif r' =1 and s' =1 then <'1d, —1s,:r>

else undefincd

We assume herc that s = lleg is stored as O, and s = Id is storecd

as 1 We assume herc that s = HNeg is stored as 0, and s = Id is

stored as 1.

(2) If one or more ground level triangles exist, determinc an

operator triangle <q1,q2,q3> + <q‘1',q2‘,q5‘> that can

be applied to it.

(3) Combinc the third side of the ground level trianglc and the
operator triangle (this is cessentially a concatenation of the
bit soquences). Ve wish to prove that the resulting relation G!
satisfics c[@i]d . To prove this, attempt to disprove
d[ﬁeg(Rev(G‘)i}c. This is donc by running throush steps (1) - (3)

again for cach property that c has.

Ve can now sece why + could be disambiguated in figurc 8, The +
opecration is used to construct something that we are to prove, and
it is always casier to prove a rclation of the type At(P) than of
the type Ae(P). Let us sce what happens in the two cascs! After
neg-reversion, Ac has gone into At, and At into Ae., Thus our
strategy tells us to disprove Ac(P) type rclations, and to ignore
At(P) types. This is all right, becaouse if <ﬁt,B,C> is a for-
bidden triangle, so is <he,B,C> o When we use the disambiguated
table for +, we nced only do one thing to account for the double sunm
that was removed: modify the termination criterion for the chaining

proccdurcec, It shall now go as follows:

Termination of set level chaining., The chaining procedure terminates

successfully if either of the following things happen:

(a) we are told to prove cHd, and this relation is alrcady stored
in the data basc (explicitly);

(b) we arc told to prove o[ﬁt(PX]d, and oEAe(PX]d is alrcady in
the data basc;

22.

(¢) we arc told to prove c[@a(Pi]d , and c[@a(Pi]d is alrcady

in the data basc,.

The proccdure terminates with failurc when there are no new sub-

problcms,

With the above chaining procedure, we will perform addition on the
<d,s,é> and the g independently, concatenate the results, and then
perform the Neg-Rev operations on the cntire relation. Since the
Neg and Rev operations go independently on q and s, viz, on g and d,
we can perform the Heg-Rev operation immediately after addition

in steps (1) and (2), and concatenatc the results after Heg-Rev-ing.
This is attractive because the opcration HNeg(Rev(qg+q')) looks
simpler than q+q' , when expressed in terms of bit operations. The
same thing holds for the addition cf <§,s,€>; the exanple in

step (1) above can be re-written as

Neg(Rev(<ﬁ,s,€> + <§',s',r'>)) =

i r r' and d # d' and s % s! then <p,O,I>

]

elgseif r

Il

I and s =1 +then <d,s,r>

clseif r' = I and s!' =1 then <d',s',r'>

elsc undefincd

(Ilotice that direction d is immaterial for cquality). Unfortunately,
it is difficult to manage completely without the "clean (non-Neg—
Rev-cd) sums, since they are needed in the termination
criterione. Therefore, wec either nced to do a Neg-Reversion operation
in cach cycle of the chaining proccdure, or to store both a

"'clean" and a "neg-rcversed" copy of the ‘relation in cach property

in the data base,

230

6. Representation of more complex logical relationships

Although the introduction of opcrators Aa, Ae, etc. incrcases

the expressive power of property structure notation, it still docs
not approach the power of predicate calculus, In this section we
shall say a few words about how more complex logical relationships

can be represcnted.

Let us assume that the system which uscs the SPB data basc (usually,
a question-answering system) has a fixed sct A of ground level
relations, and that only constants (for subscts of U) may be added
to the system while it is running., This assunption is usually valid.
It is then reasonablc to distinguish between two types of logical

rxpressions:

(a) 1Exprcssions that do not contain any constant

Lxample 1. Ve may have ground rclations P and Q for which uPv always

implics uQve.

IDxamplc 2, On the set lcvel, we have two rules that arise from the

forbidden situation

bEe(rR)Ja , d[sa(teg(T))]a

where I is the cquality relation and R is any ground level rclation,

Example 3, Again on the set level, we have the general rule that
b[ae(R)]d implics b[At(R)]A .

Bxpressions of this kind clearly should not have to be added to the
system's data basc at run time, since all such cxpressions can be
analyzed at system desion time, when the set of relations A is
selected, For cefficicncy rcasons, such deduction rules should be
represcented implicitly in the deduction procedure, c.g. as spccialized
sub-goal gencrators that cooperate with the chaining procedurc. Ve
have alrcady carricd tnis out for example 3, The other cxamplces can

be handled in a similar fashion., There is then no nced to design a

property-structure reprcesentation for such expressions.

(b) Ixpressions that do contain constants

Example: "If you drop an object, it will kit the ground". (VVith the

i

24,

representation of natural-language information that we usc in our

project, and that was outlined in section 1, "drop", "object",

"hit", and "the ground" will be taken as constants here).

It
to
is

T

2

S

must certainly be possible to add statements such as this one
an SPB data basc during a conversation, It is proposed that this

done in the following way:

Nodes in the SPB data base may be of two kinds: constants and
variables, Constants behave as we arc used to from previous
sections in this paper; for variables therc are some new

conventions,

Variables have arcs coming and going, just like other nodes. How-
ever, we introduce one morc connection code besides A, L, and T
(cf. section 2). The new code is written D, which stands for
Definition, Correspondingly, we introduce ncew operators Ad, Da,

Dd, Dt, and Td.

The use of wvariables is outline by the following examples the

rule

(Vo) o« [ate]e A afa(@)]e = «[aa(n)la

(where b, ¢, and d arc constants) is represented in the SPB data

base by a variable a, which is a nodec in the arcs (or "rclations")
a[Dt(P)]b
a[Da(Q)]ec
afaa(r)]a
In this case, the variable a can be interpreted as the lowest
upper bound of all sets o vhich satisfy %[At(P)]b and
°‘[}a(QI]c. It follows that it is mecaningful to consider the

set of all the D-connccted arcs that go to a variable node, but

not a D-connected arc in isolation,.

The idea of using variables in this way has one important advantage:

it

integrates well with the chaining procedure and other deduction

nethods in the SPB data base. Thus in a simple case, the variable a

may be used as follows:

Lo

B,

It is desired to prove that cI@a(R) d.

Through chaining, we cstablish the sub~goal to prove that e is

25

a subset of a.

Ce The deduction procedure notices that a is a vaTiable, and
generates the two AllD-connectcd subgoals: prove that e[@a(Qi]c

and eEAt(PX]b. (These are the D~conneccted arcs in a, with an

A inserted instead of the D).

A more systematic trcatment of the use of variables will be given in

later papcers,

Acknowledgenents

This research has been supported in part by the Swedish Natural
Science Rescarch Council (contract Dnr 2711-6) and by the (Swedish)

Rescarch Institute of National Defense (bestdllne. 719925).

27«
References

Green 1968a C C Green, B Raphael
The use of theorem-proving techniques in question-
answering systenms

Paper at 1968 ACII Conference, Las Vegas

Levien 1965a R Levien, 1I E llaron
Relational Data File: A tool for mechanized
inference execution and data rctrieval

Rl-4793-PR (RAKD Corp., Santa lonica, Calif.)

Lindsay 1962a R K Lindsay
A program for parsing scntences and making inferences
about kinship rclations
Proc of Vestern llanagement Science Conference on

Simulation (A Hoggatt, cd.)

Nilsson 1969a I J Nilsson
Predicate Calculus Thecorem Proving

SRI, lienlo Park, Calif.,

Raphacl 1964a B Raphacl
SIR - A computer program for scmantic information
retrieval
LIT liath dept., Ph D thesis, 1964

Robinson 1965a J A Robinson
A machinc oriented logic bascd on the resolution
principle

Journal of ACH, January, 1965

Slagle 1965b J R Slagle
A proposcd prefercnce strategy using sufficicncy-
resolution for answering questions

UCRL-143%61 (Lawrcnce Radiation Labs, Calif,)

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

