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Computer methods for analysis of iron kinetics on the basis of specified models are presented. One method is
basec on direct simulation of the processes in the model, whereas the other method uses a standard fourth-order
Runge — Kutta integration of the system of differential equations describing the model.

Simulation

1. Introduction and computational methods

Observation of the behaviour in plasma and red
cells of intravenously injected radioiron form a basis
for the study of iron-kinetics in man. The theoretical
interpretation of the experimental data can be derived
from different ferrokinetic models consisting of vari-
ous iron pools and flows connected to the plasma
compartment in various manners. In the original paper
by Garby et al. [1] a relatively simple model was pre-
sented which could be formulated mathematically in
terms of analytically solvable differential equations.
This model was in many respects similar to that pro-
posed in 1961 by Pollycove and Mortimer [2]. Furth-
er investigations [3,4] , however, especially on the
bone marrow part of the model, demonstrated the
necessity of analysing models of different basic struc-
ture. The introduction of more sophisticated mecha-
nisms, simulating maturation of and iron uptake by
red cell precursors in the bone marrow, as well as pre-
mature death of newly formed red cells, necessitated

* This work was supported in part by the Swedish Natural
Science Research Council.

Ferrokinetic Models

the use of new computer techniques, since it was no
longer possible to solve the differential equations ana-
lytically. The purpose of this paper is to illustrate two
suitable computer methods for the simulation of this
kind of process, to be used in the cyclic search for
adequate models, including experiments, data reduc-
tion, formulation of models, parameter estimation and
simulation of new experiments.

In the first method (A) the simulation is per-
formed in small time intervals At and the change Ax
in each compartment x is calculated from the system
of differential equations describing the system by ap-
proximating the derivatives by quotients of differ-
ences Ax/At. The other method (B) is based on the
solution of the system of differential equations by a
standard fourth order Runge — Kutta algorithm. For
a detailde review of different methods for the simula-
tion of continuous systems see ref. [5] .

Method A has two interdependent drawbacks
for routine use. In order to obtain high accuracy, the
time intervals used in the simulation procedure must
be very small, a requirement which increases the com-
puter time needed for the production of one set of
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theoretical curves. Using method B larger time inter-
vals can be chosen for the same level of accuracy,
thereby reducing the total number of steps at which
calculations have to be performed.

Both methods are able to yield valid theoretical
curves for a specified model, but it may be recom-
mended to use the simple procedure of method A
when several models are to be studied, e.g. with res-
pect to their compatibility with experimental data.
Once a specified model is accepted for further work,
which often implies the production of a large number
of theoretical curves (parameter estimation by curve
fitting), a more powerful procedure like method B
should be applied. From the point of view of the ease
and the flexibility of the programming technique,
however, method A is clearly superior to method
B. Available general programs for the analysis of
multi-compartment systems, e.g. [6,7] (for an excel-
lent review see [5]), have not been used, in order to
preserve full flexibility in the simulation of the sophis-
ticated mechanisms of maturation in the bone marrow
and premature death of newly formed red cells. Auto-
matic choice of step length in the integration to ob-
tain a desired accuracy has not been implemented in
the programs because of the relative ease to make this
choice manually in this kind of problem.

In order to compare the results obtained by the
methods of numerical integration with analytical so-
lutions, the simple but “incompatible” model of
Garby et al. [1] has been used. In the present paper
this model will be called model 1 (see fig. 1). The
“compatible” model IIc according to Vuille [3] will
be called model 2 (see fig. 2). The interpretation of
the symbols is given below. It is to be noticed that
the exchange between the red cell compartment C
and the S-compartment is very slow (the normal life
span of red cells is c. 120 days) and has not been con-
sidered in the model that concerns the evaluation of
rate constants. For further details, the reader is re-
ferred to the previous papers [1,3,4]. The process of
premature death of newly formed red cells deserves
some further comment. This process occurs both in
normal individuals and haematological disorders [8-10],
but the detailed mechanisms leading to early destruc-
tion of cells are not well known. It seems reasonable
to assume that the red cell precursors destined for pre-
mature death represent a population that differs in
certain respects from “normal” cells already at the
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Figs. 1-3. Models 1-3. For explanation of symbols see text.

Figure 3

earliest stages of maturation. If this assumption is
correct, this population of precursors should be sepa-
rated in the model from the population of cells that
survive normally. Such a model, including two differ-
ent populations of red cell precursors, will be treated
as well in the present paper (model 3, fig. 3).

The following variables will be used:
: Time after injection of the tracer.

v : Time variable, indicating the time of delivery
to the circulation of a certain set of pre-
CUTSOIS.

E(?) : Amount of radioiron excreted from the

body and/or fixed irreversibly in storage.

S(1) : Amount of radioiron stored reversibly in
liver, spleen etc.

P(t) : Amount of radioiron in plasma.

o0)) : Amount of radioiron in circulating red cells.
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m(tw) : Amount of haem-radioiron (at time ¢) in
the precursors that will be delivered to the
circulation (C) at time v.

u(t,v)  : Amount of exchangeable non-haem-radio-
iron (at time ¢) in the precursors that will
be delivered to the circulation (C) at time v.

n(t) : Corresponding quantities for precursors

u(tw) that will die prematurely and deliver their
iron content directly to the plasma.
(In the following called “‘sick” precursors
in contrast to “normal” precursors.)

0 : Maturation time for normal precursors.

0 : Maturation time for “sick” precursors.

w(t-v) : Distribution function for the iron flow
from P to u. Note that ¢ - v is the age of the
corpuscle, being - Q when the precursor is
“created” and O when the precursor enters
the blood stream. It follows that w # O for
arguments between - Q and 0.

w(t-v) : Corresponding distribution function for
flow from P to u. w # O for arguments be-
tween - Q and O.

R= : denotes the fraction of the iron flowing

S 0 &(¢)d¢t from P to the swk precursors. Moreover,

-0 it follows that f w()dt=1-R.
. -0
K; : Rate constants.

1
Subscripts according to the numbers of the

arrows in fig. 2 and fig. 3. K5 and K, are in
the present context assumed to be identical
for “normal” and “sick” precursors, though
this is not a requirement for the theoretical
analysis.

In the 51mp11f1ed model 2, no dlStlﬂCthl’l is made
between u and u, or between 7 and 7. Instead, a frac-
tion R of the precursors ready to leave the bone mar-
row are destroyed, and their iron is returned to P. In
this case, we obtain the following system of differen-
tial equations:

dE '
2.1

o - kS (2.1
‘ji—f = KyP-(Ky+K3)S. 2.2)
dn

an _ 2.3
ar Kqu . (2.3)
du

- = K4 Pw(t-v)-(Ks +Kp)p . (2.5

d:

=(1-R) [u@t,) +n(10)] . (2.7)
& —KyS - (K + KPR [u(t0) + 1(10)] +
+K; ft”Q u(tv)dv . (2.8)

Model 3 yields the following differential equations:

dE

o - Kis- 3.1)

& = KP- (K +K)S. (.2)

dr [ —— (33)

ar "R =K (3.4)

du _ P

T Ky Pow(t-v) — (K + Ky . 3.5)

du - _

c(ll_C = u(tH) +n(ty). 3.7
t

dpP — _

T K3S-(Ky+Ky)P+p (t,t)v+ () +

+Ks0, "2 newydo+ [T EG0w] . (3.8)
It should be noted that if w (7 - v) = aw (¢ - v), where a
is a constant, the systems (2) and (3) are equivalent.
In this case, we must have Q = Q. The systems of dif-
ferential equations (2.1)—(2.8) and (3.1)—(3.8) cannot
be solved to yield analytical expressions for the
amount of radioiron contained in each compartment
at any time ¢ (as was the case for model 1, cf. [1]).
The systems may be solved, however, by conventional
methods of numerical integration [5], e.g. Runge —
Kutta algorithms of different orders. Suppose that for
a given ¢, we know the values of £, S, C and P, and
that the values of y and = for this # and all v = pk (p is
an integer) are known. Moreover, suppose w can be
evaluated for any argument (according to an arbitrary
function specified as input data). Checking through
the systems of equations, we easily verify that the deri-
vatives with respect to ¢ of all involved quantities can
be computed.

Using method B, the handling of the parameter v is



COMPUTER SIMULATION OF FERROKINETIC MODELS 93

-

Q v

Fig. 4. The functions u, 7, @ and 7 are defined to satisfy the
conditions u(0w) = 7(0,w) = G(0,v) = ’11(0,0) = 0 and u(t,t+Q)
= (t,t+Q) = att,t+Q) = 7(t,t+Q) = 0 (fat lines). .
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Fig. 5. To get an optimal compromise between accuracy and

computer time, the intervals k are made greater than the in-

tervals 4 in the z-direction. The dot represents the point
(nh,nh), which is found by interpolation.
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Fig. 6. The shadowed area represents the integral
=0
[ wwaw.

t
The heavy dots indicate known values of p.
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Fig. 7. The weights used in the fourth-order quadrature for-
mula for k = Q/9.

not quite trivial. The functions u and 7 are defined on
the strip 0 <wv - t < Q (see fig. 4). Restricting the dis-
cussion to u, we have u(0,v) = 0 and u(t,£+Q) = 0 (fat
lines in fig. 4). The case u(0,v) describes the initial si-

tuation; the case u(t,¢+(Q) the initiation of new pre-
cursors. A horizontal cross section in the figure de-
scribes the state of the u pool at a fixed time ¢, for
varying time of delivery v. A vertical cross section, on
the other hand, describes the development through ¢
of precursors with a certain time of delivery v. Refer-
ring to the system (2), we see that eq. (2.5) describes
the development of u along such a vertical cross sec-
tion. Egs. (2.7) and (2.8) utilize the value of u on the
line ¢ = v. Eq. (2.8) also uses the integral of u over a
horizontal cross section. In the procedure of numerical
integration, u has to be handled in discrete points. In
order to obtain an optimal compromise between accu-
racy and computer time it is desirable that the inter-
vals k in the v direction are greater than the intervals
h in the ¢ direction. This condition is shown sche-
matically in fig. 5. At a fixed point £, = nh we may
know the value of u in points (k,nh), (2k,nh), (3k,nh),
..., but due to the difference in interval length, we do
not know explicitly the values of u in the point
(nh,nk) which is used in egs. (2.7) and (2.8). Of course,
we can obtain the value of u(nk,nh) by interpolation
in the v direction. In order to make this interpolation
efficient, we have to integrate u by (2.5) beyond the
line ¢ = v. The vertical lines in figure k indicate how
far we integrate. It should be noted that the value of
u(t,v) for £ > v has no physical significance, but that
it is perfectly possible to use it in the computations.
In equation (2.8) we need

t+Q
f u(tv)dv.
t

Considering a horizontal cross-section for ¢ = ¢,, in fig.
5 we obtain the desired integral as the shadowed
area in fig. 6, where heavy dots indicate known val-
ues of u. A special fourth-order quadrature formula
has been designed for the calculation of the desired
integral. Let A be a measure of the skewness, defined
by ¢t = (p+A)k, where p is an integer and 0 < A < 1.
For example, A = 0.5 for £, = 3/2k.

Next, define

a=3+6A2,3=8A+4A3,y=9-6A%, 5 =12A3,
(3.9)
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and
a=g(@—p), b=F(y+5),
c=5(r-8),d=g(a+p),
it is emsily verified that the formula

v+3h+Ah
f(©)dt ~ af(v) + bf(v+h) + cf(v+ 2h) +

(3.10)

vtAh

+df (v +3h) (3.11)

gives the exact result if fis a polynomial of order < 3.
By iterated use of this formula we can obtain good
approximation of

t+Q
u(tv)dv
t

if Q/k (the number of steps in the v direction) is a
multiple of 3. For instance, if k = Q/9 we must use
the weights indicated in fig. 7. (Note that d + a = 3.
The function 7 and the corresponding functions i and
7 are handled in the same way as . As a check of the
integretion, the total sum of all the compartments is
used in every timestep (conservation of amount of in-
jecred radioiron). Deviations greater than a specified
size are printed out as error messages.

2. Basic flowcharts

The basic flowchart for method A is shown in fig.8.
This flowchart applies to all three models in general.
The bone marrow processers are, however, illustrated
for model 1 and the last box in fig. 8 has to be modified
in order to cover the details of models 2 and 3 (see
figs. 1,2 and 3). As a detailed complement and in order
to illustrate the simplicity of method A the corres-
ponding FORTRAN program for model 3 is listed at
the end of this paper. In fig. 9 a brief flowchart is
given for method B as applied to model 3.

3. Typical sample runs
Sample runs will be given at the end of this paper

for methods A and B. Model 3 has been chosen.
Table 1 gives the parameters used in the computations.

Table 1
Parameters used in the computations
Parameters Model 1 Model 3
ky 0.0000 0.05
ks 0.5482 1.50
k3 0.0555 0.15
kg 9.2478 7.50
ks 0.2064 2.00
kq 0.2920 9.00
R 0.100
(4] 6 7.50
0 - -
w Rectangular Triangular
distribution distribution
function function
w
|
|
|
| > 0
) (073
Ql = 0.5 X Q2
()
[ w(u)du =1
0

The theoretical radioiron cutves in compartments P
(disappearance curve) and C (appearance curve) are
shown in figs. 10 and 11. As a visual illustration of

the rate of convergence the disappearance curve is
given as calculated with methods A and B using various
step lengths. From these figures it can be seen that:

1. Both methods converge towards the same limit
curve.

2. The Runge — Kutta method converges, as ex-
pected, more rapidly than the simulation method. In
fact, the differences between the curves obtained with
the Runge — Kutta method and step lengths from
0.001 to 0.05 day were so small that they could not
be drawn in the figure.

3. The deviation between the two methods and be-
tween two curves with different steplengths is largest
within the interval 0 — 1 day, while the differences are
negligible after # = 2 days. The problem of accuracy
in the integration can of course be managed by auto-
matic step length control, but in order to reduce com-
puter time needed in the calculation of a large num-
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START

READ INPUT DATA: NUMBER OF BONE MARROW SUBCOMPARTMENTS
TIME STEP DT
RATE CONSTANTS Kij

MATURATION TIME Q
TOTAL LENGTH OF CURVES TO BE PRODUCED. T MAX

I
EVALUATE UPTAKE RATE FOR EACH SUBCOMPARTMENT
ACCORDING TO THE DISTRIBUTION CURVE

SET INITIAL CONDITIONS

ALL POOLS (X;)=0
TIME VARIABLE T:0

i

‘INJECT” RADIOIRON .(TOTAL AMOUNT=1)
INTO PLASMAPOOL P

INCREASE T BY DT

CALCULATE AMOUNT OF RADIOIRON

STOP

FLOWING FROM COMPARTM I TO
COMPARTM J DURING THE INTERVAL DT

FJItKJl . XI - DT

ADD AMOUNTS FLOWING TO X;
SUBTRACT AMOUNTS LEAVING X|

1

DISTRIBUTE AMOUNT FLOWING TO PR

AMONG SUBCOMPARTMENTS ACCORDIN
TO THE RESPECTIVE UPTAKE RATES

i

LET SUBCOMPARTMENTS PROGRESS
1 STEP ALONG THE Q-AXIS

|2V VR VE VR VE VS

ADD CONTENT
OF LAST SUBCOMPARTMENT CREATE
TO CIRCULATING BLOOD NEW SUBCOMP

Fig. 8. The general principles of method A presented as a block-diagram.
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START I

READ INPUT DATA RATE CONSTANTS
AND DEFINE: TOTAL LENGTH OF CURVES TC BE PRODUCED: TMAX

MATURATION TIME OF PRECURSORS: Q
TIME SPACING OF SUBCOMPARTMENTS IN THE BONE
MARROW: DV
TIME STEP: H

(DV=Q/N13 H=DV/N2; N1, N2
INTEGERS AND N1=MULTIPLE OF 3)

3

SET
ALL

TIME T=0

INITIAL CONDITIONS E=S=C=0, P=1 ("INJECTION" OF RADIOIRON)
SUBCOMPARTMENTS ) =ft==7=0

_ ]

FIRST R~K STEP: t=T

SECOND R-K STEP: t=T+H/2 REPEAT EVALUATIONS IN THE FIRST STEP
THIRD R-K STEP: t=T+H/2 REPEAT EVALUATIONS ABOVE ,PROCEED H
FOURTH R-K STEP: - t=T+H REPEAT EVALUATIONS ABOVE EXCEPT THE

t+Q ta
EVALUATE f u(t,v)dv AND f u(t,v)av ACCORDING TO (3.09-3.11)

AND u(t,t), =(t,t),u(t,t), n(t,t) BY INTERPOLATION
EVALUATE THE DERIVATIVES

4E 45 4P dC du dx dy . dn
dt’ dt’ at’ dt’ g%’ a at A xi
ACCORDING T0 (2.1-2.8)

EVALUATE NEW VALUES OF E, S, P, C, u, u AND x, x FOR TIME
t+H/2 BY PROCEEDING HALF A TIME STEP ALONG THE TAWGENT.

LAST POINT.

THE VALUES OF E, S, P, C, 4, Ul AND x, % ARE EVALUATED IN t=T+H
FROM THE CORRESPONDING VALUES IN t=T AND A WEIGHTED SUM OF THE
DERIVATIVES IN THE FOUR R-K STEPS.
E.G.

4 o
+H) = + H/6 w &
S(T+E) = S(1) + /6 ® (),

wi-1,2,2,1
T=T+H
LET SUBCOMPARTMENTS
%, U, %, W PROGRESS
1 STEP DV ALONG THE
PROCEED ONE Q-AXIS, CREATE NEW
TIME STEP SUBCOMPARTMENTS .

Fig. 9. The general principles of method B presented as a block-diagram.
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%

radioiron
in plasma Curve Ste
100 number  Method Ieng%h
1 Runge-Kutta 01250
2 - 005-0001
3 Simulation 00025
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Fig. 10a. The disappearance curve as calculated with various step-lengths and parameters according to table 1. = 0 — 0.8 days.
Fig. 10b.The disappearance curve as calculated with various step-lengths and parameters according to table 1. z= 1 — 16 days.
Curve numbers as in fig, 10a.

%
radioiron
in red cells

100

50

0 - — ———
01 23 456 789101 1213141516
days after injection

Fig. 11. The appearance curve.

ber of similar curves (parameter estimation) it is sui-
table to choose two different step lengths and switch
the step length after a certain time. In the present
case, t = 1 day was found to be optimal for switching
the steplength. The optimal “switch-point” may be
different for different models and different parameter
combinations, but can easily be found empirically.

The convergence properties of the two methods can
suitably be investigated using model 1, for which “true”

Table 2
Accuracy of the two methods on the basis of model 1. The
disappearance curve. “True’ curve obtained from analytical

expression.
Method Step length Maximum deviation
(days) (%) from “true” dis-
appearance curve.
A 0.005 5.5
i 0.002 3.0
0.001 1.5
B 0.01 4.5
0.05 0.2

reference curves can be obtained from the analytical
expressions in reference [1]. It was found that with
decreasing df both methods yielded curves that in
every part converged towards the “true” curves. For
the disappearance curve, the maximum deviation
from the true curve is shown in table 2. Table 3 shows
the corresponding results for the appearance curve;
for this curve, the accuracy is defined as the deviation
at ¢ = 1 day, since the maximum deviation always oc-
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Table 3
Corresponding data to those in table 2 for the
appearance curve

Method Step length Deviation (%) from
“true” appearance
curve at ¢t = 1 day

A 0.005 2.0
0.002 1.5
0.001 1.0
B 0.1 0.2

curred at < 1 day, a region of the curve with no
practical importance. From these tables it can also be
seen that method B converges much more rapidly to-
wards the “true” curve than method A, requiring con-
siderably less computer time. With the conditions

that 0= Q and @ = w, model 2 and model 3 yield
identical curves. Because of the double number of
subcompartments u and « in model 3, however, the
computer time needed for the production of one set.
of curves is increased by a factor of almost 2. Therefore
model 3 should only be applied in cases, where the
experimentator has got a wellfounded hypothesis
concerning the kinetics of maturation of “sick” pre-
cursors. In this case, the same conclusions as regards
computer economy of the methods A and B will ap-
ply, as were obtained on the basis of model 2.

4. Hardware and software specifications

All the programs are coded in FORTRAN IV for
the CD 3600 computer at the Uppsala University

Data Center, Uppsala, Sweden. The computer is a
32K, 48 bits/word computer equipped with 2 mag-
netic drum storages (524K each) and 6 tape drives.
Storage requirements and time for sample runs:

Model 3: Method A ~ 10K, c. 4 sec.

Method B ~ 5K, c. 90 sec.

The storage requirements are highly dependent on the
number of subcompartments in the bone marrow
compartment.

5. Mode of availability

The programs are available from Uppsala University
Data Center Box 2103, 750 02 Uppsala, Sweden.
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Program listing Method A:

PROGRAM MODFL 13
TRON-FLOW IN THZ HUMAN BODY,METHOD A
READ INPUT DATA TMAX=TOTAL LENGTH OF CURVES TO BE PRODUCED
TSHIFT=TIME FOR CHANGE OF TIMESTEP
DT1=TIME STEP BEFORE T=TSHIFT
DT3=TIME STEP AFTER T=TSHIFT
NF=NUMBER OF SUBCOMPARTMENTS IN BONE MARROW POOL
DT2=TIME INTERVAL IN WHICH B.MARROW POOL IS DIVIDED
*ROBSH# DT2=P2/NF
*#0BS*#* DT1 AND DT3 LESS OR EQUAL TO DT2
DT2/DT1 AND DT2/DT3 MUST BE INTEGERS
P2=Q IN PARAM,LIST=MATURATION TIME FOR PRECURSORS
Pl DFFINFS THE POSITION OF THE TOP OF TRIANGULAR
DISTRIBUTION FUNCTIONS
*#0BS**® INTHIS PROGRAM P1,P2 ARE THE SAME FOR SICK
AND NORMAL PRECURSORS WHEN OF INTEREST THIS MAY
EASILY BE CHANGFD
Sl.ooooooes7gRATE CONSTANTS
56=PART OF IRON FROM PLASMA 10 COMPARTM. SICK CELL
IXsIY ARE PRINT INDICATORS. PRINTING OCCURS EVERY
IX TH(BEFORE TSHIFT) RESP. IY TH(AFTER TSHIFT) STEP
DIMENSION AFACH(IGOO,,DD(1000)9EE(IOOO)QAFACHZ(1000)’002(1000),
1FF2(1000)
RFAN(6CI1INIZ) S1952953456955,56,S7
WRITF(61,1020)
FAFPMAT (1H1)
WRTTF(6191004)51552953954955556957
FOPMAT (5X s #RATE CONSTANTS*/(3F20610))
TF(57)161561,6?
FORMAT (8F10.0)
READ(6051001) IXs1Y
WRITF(6151005) 1XslY
FORMAT (5X s #PRINT TNDTICATORS*#,2110)
RFAD(6051000) TMAX4DT14DT2,TSHIFT,DT3
FORMAT(RF10,N)
WRITF(61s1007)TMAXsDT14DT2,TSHIFTSDT3
FORMAT (5X o %#T IME PARAMFTFRS*/(3E20,10))
RFAD{60s1NOB)INF4P1,P2
FORMATI(TING,?2F1Nn,0)
WRITF(6151009) NF,P1,P2
FORMAT (8Xs#DATA FOR DISTReFUNCTION*311092F1062)
WRITF(6151011)
FORMAT (/777
WRITF(61+10N6)
FORMAT (5X ¢ #1RCM=-FLCW IN THE HUMAN BODY,DIRECT SIMULATION4MODEL 3%)
FORMAT(3110)
WRITF(6151N010)
FORMAT(6X;3H T ,6X.1HE,7X.5H S ,4X.6HPLASMA,4X98HB.MARROW92X;
15HRILOOD )
DEFINF THF DISTRIBUTION FUNCTIONSsHFRE OF TRTIANGULAR FORM
DO 12 T=1,NF
AT=1
P=DT2%#(AT=0,5)
IF(P=P1)1iN,10,11
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10 AFACH(T)=2,%P*DT2/(P1#P2)%(1,-56)
AFACH2(T)=2,#P2*RT2/(P1*P2) %56
6o TH 12
11 AFACH(T)=2,%(P2-P)#DT2/(P2%(P2-P1)) *(1.~56)
AFFCH2(T1)=2,#(PP=P)#NT2/(P2%*(P2-P1)) %56
12 CANTINUF
DFFINF INITTAL CONDITIONS OF ALL POOLS
A=POOL F IN FIGURF 3
B=PONL S
c=POOL P
N=POOL M, DD=SUBCOMPARTMENTS IN D
F=POOL PR, EE=SUBCOMPARTMENTS OF E
DE=D+E= THE BONF MARROW COMPARTMENT

TNDEX 2 FOR SICK CELLS+E2sD2+EE2+DD2

F6G=POOL C
DFZINF TIMF,TIMESTFP,TIME FOR SHIFT OF SUBCOMPARTMENTS IN B.MARROW POOL
c TNJFCT RADIOIRON (TOTAL AMOUNT=1) INTO PLASMA POOL
NA 20 T=14NF
DNDIT)Y=0,
PN (T)y=N,
FF;'( 1Y=0e
2N FF(T1)=0,
NT=NT1
T=0n,
TVER=NT2
t=N,
R=0,
=1,
N=n,
F=n,
No2=n,
F2=9,
F=,
=0,
FG=0.
DF=0.
DF7=0,
PAOLS=1,
NR="
AUS=1,-(S5+457)#NT
FIN=ST#NT
30 IF(NR=NR/TX®*1X)140,32,4C
32 WRITF(61,10n3)T,A,B,CeBENM,FG
1003 FOPMAT(F1Ne2,6F1066)
IF(ABS(POOLS=1e)=1eE=-6) 40440,42
42 WRYITF(61,1012)P0OOLS
1012 FORMAT(5X,%#0BS SUM OF ALL COMPARTMENTS=#,F20.10)
C INCRFASE TIME BY DT
40 T=T+DT
RFIN=C#S4%DT
CAlL.CULATE AMOUNT FLOWING FROM AND TO THE VARIOUS COMPARTMENTS
AND ADD ~SUBTRACT FROM THE POOLS
DISTRIBUTE AMOUNT FLOWING TO PR AMONG SUBCOMPARTMENTS ACCORDING TO THE
RFSPF~TIVE UPTAKE RATES
PO 41 T1=1,4NF
FF2(1)=FE2(1)+DN2(T)*ETIN
DN2(1)=DD2(1)*AUS+AFACH2(1)#REIN
FFIT)=EF(T1)+DD(T}#FIN

o lal

aNalaNa!
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41 DDUT)=DC(1)*AUS+AFACH(T ) *RFIN
F=F+N®EIN
F2=F2+D2*EIN
DALT=D
DAL.T2=D2
ND=D#AUS+REIN*#{1,-56)
D2=N2#AUS+RFIN*S6
A=A+BRS1#DT
BALT=B
B=B4(C#S2-B#(S14+53))*DT
C=C+(DALT#SS+NDALT2#S5+BALT*S3-C*(52+54))*DT
44 1FITVFER=-T)46+456+52
LET SUBCOMPARTMENTS PROGRESS 1 STEP ALONG THE Q-AXISe. ADD CONTENT OF LAST
SUBCOMPARTMENTS EEsDDsEE2,DD2 TO CIRCULATING BLOOD AND PLASMA.CREATE NEW
SUBCOMPARTMFNTS
46 TVER=TVER+DT2
470 FEALT=EE(1)
DDALT=DD(1)
FFALT2=EE2(1)
DDAILT2=DD2(1)
47 DN 51 1=2,NF
FFEI=-1Y=EE(D)
EF2¢(1-1)=EF2(1)
DD2(1-1)=DD2{(1)

51 DD(I-1)=DD(1)
EE(NF)Y=0e
DD(NF)=0.
FE2(NF)Y=0.
DD2(NF)=0,

430 D=D=DDALT
D?2=D2-DDALT2
F2=F2-EEALT2
F=E£-FFALT
F=F+DNALT
G=G+FFALT
C=C+FEALT2+DDAIT2

52 DE=D+F
DFE2=D2+E2
BFNM=DE+DE?

FG=F+6

POOLS=A+B+C+DE+FG+DF2

NR=NR+]

TIMESTEP DT 1S CHANGFD WHEN T EQUAL TSHIFT
IF(ABS(T-TSHIFT)~1sE~8) 45445,59

4% DT7=NT3
AUS=1,~(S5+ST7)#DT
FIMaST#NT
IX=1Y
NR=0

59 IF(T-TMAX)30430+60

61 CALL FXIT
FND
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Method A.

RATE CONSTANTS
$,0000000006=002
7,5000000000#000
9,0000000000+000

PRINT INDICATORS

TIME PARAMETERS
2,0000000000+001
1,0000000000+000

DATA FOR DISTR,FUNCY]ON

JRONeFLOW IN THE

T
0,00
0,190
0,20
0,30
0,440
0,99
0,69
0,70
0,80
0,90
1,00
2,00
3,00
4,00
5,00
600
7,00
8,00
9,00

10,00
11,00
12,00
13,00
14500
15,00
16,00
17,00
18,00
19,00
20,00

E
0,000000
0,000241
0,000868
0,001655
0,002512
0,003396
0,004287
0,005175
0,006053
0,006920
0,007774
0,01%621
0,022327
0,028126
0,033204
N,037651
0,041513
0,044832
0,047659
0,050064
0,052109
0,053848
0,055324
04056577
0,057641
0.058543
0,059308
0059957
0,060507
0,060673

T.GROTH et al.

1,5000000000+000
2,0000000000+000

20

2,5000000006-002
5,0000000000~002

75

1,5000000000+001
1,0000000000~001

1,0000000000~00%

3,75

7.59

HUMAN BOLY,CIRECT SIMULATION,MODEL 3

S
0,000000
0,106748
0,149269
0,167821
0,175607
0,178122
0,177976
0,176489¢
0,174316
0,171834
0,169215
0,144847
0,123901
04107943
0.,094772
N,082619
N,071408
0,060993
n,051877
0,044128
0,037521
0,031879
0,027065
0,022966
0,019483
0,016%27
0,014018
0,011887
0,010082
0,008%51

PLASMA

1,000000
0,363824
0183945
0,093547
0,049869
0,027754
0,016105
0,010189
0,007109
0,005504
0,004668
0,003858
0,004043
0,004299
0,004751
0,003646
0,002530
0,003660
0,001420
0,00120%
0,001001
0,000829
0.,000690
c,000579
0,000488
0,000413
0,000350
0,000274
0,000232
0,000197

B,MARROW
0,000000
0,499028
0,665252
0,735384
0,769026
0,785861
0,796764
0,800903
0,802366
0,802171
0,800833
0,75035¢%
0,64110¢6
0,473140
0,287806
0,16948¢
0,09910¢
0,07417¢€
0,859000
0,04598%
0,035865
0,02851°%
0,023218
0,019240
0,016076
0,013461
0,01429%
0,009828
0,008269
0,006956

BLOOD

0,000000
0,000160
0,000665
0,001493
0,002986
0,004868
0,004868
0,007254
9,010153
0,013571
0,017510
0,086015
0,208623
0,386493
0,579466
0,706598
0,785447
0,818339
0,840044
0,858617
0,873504
0,884930
0,893703
0,900638
0,906312
0,911056
0,915029
0,918054
0,920910
0,923322



Method B

COMPUTER SIMULATION OF FERROKINETIC MODELS

RATE CONSTANTS
5,0000000000=002

7,500000
9,000000

0000+000
0300+000

TIME VAR]ABLES

300

Q,05,NEL,

1

TMAX, TSHIFT

IRON=FLOW [N THE HUMAMN

DV, H
7

£,000000
0,100000
0,100000
0,200000
0,200000
0,300000
0,300000
0,400000
0,400000
0,500000
0,500000
0,600000
0,600000
0,700000
0,700000
0,800000
0,800000
0,900000
0,900000
1,000000
1,000000
2,000000
2,000000
3,000000
3,000000
4,000000
4,000000
5,000000
5,000000
6,000000
6,000000
7,000000
7.,000000
8,000000
8,000000
9.,000000
9,000000
10,000000
10,000000
11,000000

2,50000
E

0,000235
0,000907
0,001681
0,002526
0,003401
0,004235
0,005167
0,006042
0,000906
0,007758
0,015579
0,022272
0,028006
6,033140
5,037579
6,041437
0,044756
0,047584
0,049992

0,052040

1.5000000000+000
2,0000000060+000

6n

7,5000000000¢000

4

2,0000000000+201

00000e002
S

0,099665
D,14385n2
0,163778
0,172902
0.176374
0,176885
0,175828
3.,173%47
0,171643
0,169135
0,144336
0,124%65
0,1086Q46
0,694936
0.082620
G,n71639
0,061246
3,052130
0.044371

0,037750

2,50000
HLOCD

u,900030
0,000450
0,001211
0,002416
0,004096
0,006270
0,008949
0,012141
0,015852
0,020084
0,091568
0,217270
0,397485
0,572745
0,702133
0,783328
0,817858
0,839723
0,858372
0,873294

1.5000000000=-001
1,0000000000-002

8

7,5000000000+000 1.0000000000+000

1,6000000000#000

00000-002
B MARROW
0,000000
0,463820
0,642485
0,72203¢
0,76116¢8
0,781402
0,794888
0,796991
0,798942
0,798921
0,797594
0,744294
0,634,673
0,46117¢
0,294955
0,17417%
0,103200
0,074537
0,059200

0,046107

BOLCY,MOCEL 3,RUNGE~KUTTA METHOD

PLASMA

0,436149
0,212655
N,111296
0,060985
0,034723
0,020669
0,013061
0,008925
0,006674
0,005453
0,004221
0,004605
0,005005
0,004223
0,003300
0,002365
0,001592
0,001352
0,001145

0,000957
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11,000000
12,000000
12,000000
13,000000
13,000000
14,000000
14,000000
15,006000
15,000000
16,000000
16,000000
17,000000
17,000000
18,000000
18,0000090
19,000000
19,0000u0
20,000000
20,000000

0,053783
0,055263
6,056521
0,057588
6,058494
0.059264
0,059916
0,060470

0,060941

T.GROTH et al.

0,032062
1.027263
0.023148
0.019649
0.016678
0.91?155
0.b1§013
0,010154

0.008650

0,884718
0,893485
0.900411
0.906076
0,910812
0,914779
0,918106
0,920905

0,923267

0,035945
0,028597
0.023310
0,019347
0,016199
0,013601
0,0114469
0,009663
0.008172

0,006920

0,000796
0,000065
0.000559
0,000473
0,000400
0,000339
0,000287
0,000243

0,000206



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


