A pmg@ﬁynliéﬁ representation
for certain formulas
in predicste cslculus

by
Erik J Sandewall

UPPBALA UNIVERSITY
COMPUTER SCIENCES DEPARTMENT
REPORT NR 18
JANUARY, 1969

A property-liét representation
for certain formulas
in predicate calculus

by
- Erik J Sandewall

(for en abstract, see next page)

Documentation page.

Title A property-list representation for
certain formulas in predicate calculus

Author name Erik J Sandewall

Research performed at: Uppsala University, Uppsels, Sweden™

Abstract This paper describes

(1) a logical langusge for use in property-list-type data
bases in guestion-answering systems. The languege can
hendle binery relations, universal and existentiel gquanti-

fiers, " ¢ -quantifiers"”, and some implicstions.

(2) inference rules for this language.

(3) a proof procedure specially designed for property-list
type representaticns. The procedure is complete at least
with respect to & certain subset of the inference rules.
It is & rather simple AND/CR tree search, so that previous
work ir heuristics is immediately applicable to it.

Key words and phrases: AND/OR tree, data base, decision procedure,
proof procedure, property-list, property-sset, question-answering.

CR categories: 3.64, 3.66, 5.21

% Mail address: Sturegatan 43 2 tr
752 23 Uppsala, Sweden

Sponsors: This research was supported in pert by the Swedish
Naturel Science Research Council {contract Dar 2711-6) and
by the (Swedish) Research Institute of National Defense
(bestdiln. 715411, T19925).

Introduction.

Early question~answering systems often used ad hoc representations
for their date bases, and corresponding ad hoc inference methods
for the question answering. For example, the SIR system

({Raphael 196ka}) represents binary relatiors on property-lists

(this term will be defined below). In recent years, it has been
argued (e.g. in {Slagle 1955b)} end {Green 1968a}) that & dialect
of predicate calculus should be used instead. This would have two
advantages: (1) predicate celcuvlus is a richer langvege, i.e. nore
things can be said in it; (2) for predicate caleulus, one knows
reasonably efficient proof procedures, e.g. resolution (for an

introduction to resolution, see {Robinson 1965a}).

The distinction between these two approaches is of course not per-
fectly clear-cut. Even if one uses predicate calculus notation, he

may f£ind it useful as the data base grows to construct, for each

object symbol ¢, a chained list of all literals or clauses where ¢
occurs. This chained list is then a prcperty-list for c. However, it
remains that predicate calculus is not a particularly computer-oriented
language in itself. One should therefore continue to give at lzast

some attention to the possible use of other representations.

The purpose of the present paper is to demonstrate how property-list
notation can be used in a more systematic menner than before. Ve shall
consider both the epistemological problem ("how much can be said in

& property-list-type notation?) and the inference problem ("how should
the computer prove fects and answer questions from information expressed
in property-list notation?"). An ultimate goal is that property-list

notation shall no longer be considered as an ad hoc notation.

Corrections to "A property-list representation for certail

formulas in predicate calculus"

page line says change to
A5 8 I7 I8
18 I9

10 19 110

then insert between lines 7 and 8 the following line:

(17) Re » &

~-10 I9 110
16 10 I9 110

-5 48 56

-2 ees 5 or (I9) ... cee 5 (I9), or (110)

3.

1. Conventional property-list langusge

Let 0 = (4, ¥, ¥ ,,,} be a set of objects, and let 3 = {F, R, ...}
be a set of binary relations on U, i.e. subsets of U{. Let

U= {u,v,w ...} be a set of distinguisheble symbols, and let there
be a mapping which assigns a member of U to each symbol. We shall
understand that u is sssigned to u, etc. Define A , P, R, ... in

(=)

& corresponding menner' ',

Each member of UxAxJ is called a sentence. A sentence uRv is
called a fact iff <u,v> & R. Consider now the problem of
representing a set of facts in computer memory on such a form that
they can easily be retrieved (e.g. in order to compute the answer to

a question).

This problem has been encountered by various workers in the question-
answering fieid. When Lindsay saw it ({Lindsay 1963a}), U was a set
of pecple and families, and the relations were "u is the husband in
the family v", "u is an offspring in the family v", etc. Raphael
encountered the same problem ({Raphael 196ka}), with U being a set

of objects and people, and the relations being e,g. "u is physically
part of w", "v is the owner of x", etc. Levien saw it ({Levien 1965a})
with 0 a set of people, meetings, institutions, and documents, and
relations such as "u is the author of v',"u is employed by w", etc.
We met the same problem ovtselves when we decided to translate

natural-language sentences like "A gave B to C" into an expression

(3 x) R (x,4) A Ry(x,Give) A R3(x,B) A Ry, (x,C)

(=)

The bar will sometimes be omitted, if no confusicn can arise.

L,

where x is the activity described ty the sentence, Rl can crudely
b e described as an "activity~-to-its-subject" relation, R, is

the "activity-to-its-verb" relation, etc.

One standard wey of representing binary relations in the computer

is through property structures. We formally define a property

structure as a mepping

o : u = 2MU

i.e. a mapping which assigns a set of pairs Rv to each member u of U.

A property structure o corresponds to a set ¢ of facts iff

Rv € o(u)

1}

uRv € ¢

If ¢ is & property structure and Rv ¢ o(u), we shall sey that u has

the property Rv in o .

To represent a property structure in memory, one usually dces as
follows: a unique cell is associated with each member of U. A cell
which is so associated is called an atom. The atom associated with u
will itself be called u. A property Rv is represented as an indicator
for R plus the address of v. All the properties that an atom u has
are stored in such a way that they can be accessed from u as easily
as possible. This may be done using a sequential list (in which case

each o(u) is represented as a property-list), through hetch-co ding,

or by other means.

If property structures are used, one should see to it that the set

of relations is closed under reversion, i.e, that for each R ¢ A

there exists some % € A such that uRv is a fact iff vHa is,
known/

Also, it is desirable that the set ¢ of/facts is closed under rever-

sion in a similar manner. The property structure o corresponding

to ¢ will then satisfy

Rv € o(u) = Au e olv)

If R is a symmetric relation, then R ard 3 are the some
relation. We shell use symmetric symbols (V,D,...) for symmetric

relations.

Figure 1 illustrates how ¢ = {uPv, vqu, vRw, wiv} can be
represented as & property-list structure. Arrows stand for address

references.

This terminates our description of conventional property-set and
property-list representation. The reader will notice that nothing

has been said about the problem of inference from property-set
represented information. This mirrors the fact that, although

several authors have utilized property-set representation for their
programs, there does not (to our knowledge) exist any work on the
general problem of inference from property-set represented information.
But as we shell see in this report, some general techniques can be

given.

e e e S e
——

A QO

) 5230d 0l

—> -~ >

T

Figure 1.

7.

2. Notation and approach

In this section, we shall first introduce some notation that will
be needed for succeeding sections, and then give a summary of those

sections, using the notation.

Throughout the report, we shall concentrate on irference rules on

the form

xRy, yPz |~ xQz

vhere x,y, and z are variables for members of U, and R, P, and Q
are constant, not necessarily distinct relations. Inference rules

that take this form will be called cheining rules. For chaining

rules, we shall use the more compact notation,
RP -+ @

In terms of properties, this chaining'rule says that if u has pro-
perty Rv and v has property Pw, then u can be agssigned property
Qw. Q is called g product of R and P. A pair R P of relations

may have no, one, or several products.

Our preference for chaining rules will become apparent both in

the epistemological parts (we shall prefer relations whose properties

can be characterized by such rules) and the inferential parts (we
shall give proof methods which assume all inference rules to be on
this form, and which have to be "patched" for each inference rule

that takes on another form).

Let a set I' of chaining rules be given. If RP + Q is in T .

we write

Ql Q2 see Qj—l RP Qj+l e Qk => Ql o Qj—l Q Qj+l ves

Moreover, we write I =X, ; iff § and I are sequences of

relations, and either of the following holds:

(a) n=¢
(b) n= 3

(c) there exists some T such that 1§ =>T and T =5 % .

Let Pivi € O(vi—l) for i =1,2,... k. We then say that

A/

0 has the 1lmplicit property P.P, ... PV, 1o o.

12

This is all notation we need for the moment. We shall now use it

to give a short and rather abstract summary of what will be done in
the next few sections. The summary will use the concepts and the
notation of {Ginsburg 1966a}. However, the following sections will
not be based on Ginsburg nor on this summary. Readers who so desire
can therefore safely skip from here to the beginning of next

section.

Let U, A, ¢, and T be given as before; let vQw be an arbitrary

sentence, and consider the decision probler

Does ¢ }—r vQw ?

If o is the properf& structure associated with ¢ , this problem can
be phrased: Does v have any (possibly implicit) property Mw in o
such that @l ==>Q ? Let L be the set of all T such that I == Q.
It is easily seen that L is a context-free language, gemerated by

the following grammar:

terminal symbols: members of A
non-terminal symbols: R, for each R in A
productions: S + RP, foreech RP+ S in T

R » R, foreachRinA

9.

initial symbol: Q

The given decision problem, i.e. "Does v have any (possibly
implicit) property mw such that ©T is in the language 12" is
clearly a parsing probl em. Since the implicit properties Jix of
can be scanned from left to right in the property structure, one can
use conventional parsing schemes (which are essentially push-down

acceptors) for solving the decision problam.

Consider now the right-linear language (= regular set) L' which
is genmerated by the grammar of L, except that productions

8 ~ RP
have been changed into

S + RP.
Clearly, L'< L. If L' =1L, i.,e. if L is a regular set, then the
decision problem cen be solved using a finite-state acceptor. This
speeds up the parsing process considerably. In a vocabulary familiar

to LISPers, we have eliminated a case of "double recursion'.

In sections 3-6 of this report, we shall do two things:

(1) Give a class of relations and associated inference rules for

which we do have L' = L;

(2) Work out the details of the finite-state acceptor that will answer

questions in these relations.

In order to reach a wider cless of readers, we shall not use acceptors
and formal languages in our description, but torn to a more direct

notation,

Sections 7 and 9 will be devoted to extending the property structure

"la.nguage“.

10.

3. How to handle common subsets of proverties

Let u and w be two objects which have & considerable number of

properties in common, i.e., we have

uRv, uPy, 2Qu, ...

as well as

wRv, WPy, 20w, ...

To avoid dublication of the common subset of properties (Rv, Py,
0z, «e.), we would like to bresk it out as a common sublist of
the property-lists of u and w (or *o have a similar device if other
than property-list representations of the property structure are
used). Of course, we also want to do this when rore than two cbjects

have common properties.

A correct way of obtaining such sublists would be the following:

(1) Permit atoms for subsets of U, not mercly for members of U

(2) Introduce ¢ (set membership) as one more binary relations

(3) For each binery relation R, Introduce a new relation R+
defined through

+
aR v = sef (Y x e a) xRv

. + . .
In particular, € iz the subset relaticn.

The common sublist of u and w can then be obtained by intrcoducing a

new atom m for which
Co o+ + +
om) = {Rv, Py, Dz, 3u, 3wl

so that u e m, w € m« All the common properties that u has can be

substituted by the property em, and similerly for w. We need

inference rules lile

and

Neturally, such inference rules would te used in en implicit manner
when a question is being snswered, rather then explicitly by

edding more properties to the property-lists.

If this epproach were tc be used in a systematic way, we would need,

. + .
besides R , relations for

(VY ved) vRy
and for

(Vxee.)(Vyeb) ZRy

The number of relations end corresponding inference rules would be
unnecessarily large. We shall therefore adopt a modified approach,

which will also be defined slightly more strictly than the above.

Let T and & be given like at the beginning of section 1. Let V be
e set of symbcls, end let there be a mapping which assigns a subsel
a of T to each symbol a. Let 4 be a éet of symbols which consists
C., O, end (for each symbol R in 4) R, fi, A, and & . Every member
of V<AXV is called = sentence. A sentence is called a fact iff it

satisfies some of the following conditions:

(a) The sentence a ©€b is a fact iff & is a subset of b, and
similarly for b C &3

(b) The sentence aRb is a faet iff

(V xea)(Vyeb) xvy

12,

(c) The sentence aRb is o fact iff

(¥ xe a){(%Y y ¢ bd) ~ xRy

(a) A genotes the reverse relation of R, and similarly for 3 .

The members of A except C eand D will be called regular relations.

For each fact in our o0ld sense of the word, there exists a
corresponding fact in the new sense. Let 8 in V denote the set

vhose only mexber 1 is. Then URV is a fact iff uRv is.

If R is regular and & or b is an empty set, then both aRb and aRb
are facts. Moreover, if aRb and ¢Rb are facts, and a, b, and ¢

are non-empty sets, then neither (auc)Rb nor (au/c)ﬁb is

a fact. The ; superscript is not ordinary negation, therefore. The
semantics of this logic can be worked out correctly using four truth-

values, {t}, {f}, {t,f}, and § (the empty set). If t(A) stands

for "the truth-value of A", we have

t(8rv) = {1(uBv)}

t{{ave)Rb) = 1(aRb) v 1(cRb)

A formula is then said to be a fact iff its truthvalue is {t} or &.

- Such systematic treatment of the semantics lies beyond the scope

of the present repcrt. Let us remark, however, that the same four-valued
logic has been used as the basis of the author”s LISP A, an incremen-
tal computer languege (see {Sandewall 1968c}) . Notice also that

the logic here vaguely resembles the logic of Quine”s 1 operator.

In what follows, all relations are therefore restricted to taking schs

as arguments.

13.

We immediately obta in the following inference rules:

(11) cCc » <
(11*) DD+ D
(12) CR =+ R
(121) R® + R

In (I2) and (I2'), R is an arbitrary regular relation. The prim'ed

rules can be dispensed with if we motice the following meta-rule:

Rule of reversion. If P, Q, and R are arbitrary relations, and if

RP = Q

then

-0
'S
v

©

1k,

k. Notation for existence.

In the preceeding section, we introduced a property-oriented
notation that took care of some cases where predicate calculus would
use universal quantifiers. In the present section, we shall intro-
duce notation (1) for saying "this set is (is not) empty" and

(2) for handling some cases where predicate calculus would use

existential quantifiers.

The relation [0 is defined as follows: allb is true iff
and is the empty set, and false otherwise, In particular, aDa
is true iff a is the empty set. The relatio:n 5 is defined by
abb zdef ~ (an)
It immediately tollows that both O and O are symmetric, and that

we have the inference rules
(13) = O -» O

(1k) EJC, —95

as well as
(31) 20 [bﬁb
(72) ala }— aRb
(33) ala |~ elb
(J4) alla | ach

Rules (J1) to () fail to fit into the desired pattern for inference
rules and will largely be ignored. Let us now proceed to the counter-

part of the existential quantifier. Let R be a regular relstion. We

15o

define the relstions R, R, and R~ as follows:

afb =er (Vxea)(3yen) 2Ry
b = . (Vyed)(Ixeca) 5§
a6 =, (Ixcad(Dyecd) WY

and obtain the inference rules:
(15) c® + ®
(16) ﬁ C - ﬁ

(1I7) REI + B
(18) Of » &
(19) £q - O

(I5) eja aRb
(76) %I SRR o B

(37) ab, v0b ¥ ala

When using the rule of reversion, we notice that % is the
reverse of K, and 3 is the reverse of &. When using (I9)

for R = P, we naturally teke R to mean P.

With these conventions, we manage to express existence within the
framework of property-sets, and in such a way that the important

inference rules are chainipg rules.

Remark 1. For each relation Q, either of the rules
ce »+ Q
oQ + Q

holds. Therefore, it is sufficient to express equality a=b as acb,
aob.

16.
> .

Remark 2. The relations aRb, aﬁb, aRb, aRb can be characterized
" as "each member of the set a is the relation R to all/some/
not all/no members of the set b". It would be naturel to extend
the notation to other quentities, like "exactly one" (which is
sometimes written in predicate calculus as 331) or "exactiy five®
(compare Raphael”s representation of "every hand has exactly five
fingers as part"). If such specific quantities are accepted, remark 1

no longer holds.

>
Remark 3. For the fun of it, we can write C as []. Rules (I5)
and (I6) the both specialize as (I1); (I9) specializes as (I3),

and (J5) specislizes as (JL).

After this new notation has been introduced, we must update some
of the old definitions. Let A be a set of relations like in
previous sections, and let it have L members. The set V and I' are

defined as follows:

V .is the set of b + 16 L relation syubols obtained as follows:

() ¢ , D>, 0 , and [eare members of ¥

s

. . . > < <=
(b) If R is a regular relation in A , then R, R, R, and R

are members of V .

T 1is the set of 6 + 48 L inference rules obteincd as follows:
(&) (I1), (13), anc (Ik) are members of T

(b) If K is a regular relation in 4 , then each inference rule
obtained from (I2), (15), (16), (17}, (18), or (I9) by

substituting K for R, is a member of T ;

17.

(e} 1If is an inference rvle in I and +' is obtained
Y Y

from y by the rule of reversion, them y' is in T .

Any member of VxUxV will be called a sentence. A sentence is
called a fect iff it satisfies the definitions on page 11/12

viz 14/15. A property structure is a mapping

o v - 2VxV

Other definitions remair unchanged.

If ¢ is = set of sentences and eQb 1is o sentence, ¢ fw-aQb
will mean "aQb can be inferred from ¢ using the inference

rules in I . (Notiee that the rules (J1) to (JT) ere iguored).

Let us now proceed to the problem of using the inference rules I

on a property structure o .

18,

5. Verification of properties.

Let V, v, I',and ¢ be given as before. If aQb is an arbitrary

sentence, then the expression
a@b ?

will be celled a guestion. The answer to the question is either
of the symbols Yes, No, or Nil (~ I do not know), and is

defined as follows:

If ¢ | aQd the answer is Yes
If ¢ | ~ aQb the ensver is WNo

Otherwise the answer is Nil

If @ is <, DO , ﬁ, or ﬁ, then ~ aQb can not be represen-~
ted as a single relation in the language of the last two sections.
We shall therefore need two question-answering procedures: one

verification procedure which determines whether the answer mey

be Yes, and one rejection procedure which determines whether

the enswer mey be No. Th’s section will be concerned with the

verification procedure.

Remark. Our use of Nil for "Don't know® is motivated by LISP con-
ventions. Let ¥ ? be a question, let wverif(y) have Yes or Wil
as velue, and let rejec(y) have No or Nil as value. If V is

the generalized LISP 'OR', the enswer to vy ? is

verif(y) Vv rejec(y)

Let o be the property structure corresponding to ¢ . The following

would seem to be a reasonable verification procedure for the

P

- - oy N - - . y z 1 °
guestion efQbh ¢ : Tirst check whether Qbe olalt, and if

er

5

ansver Yes. Otherwise, for each inference rule P § » 3, work

through all properties Pc that a has or can be inferred to have,

and ask whether the referred-to ¢ has or can be inferred 10 have

the property Sb.

This method will soon explode, mainly due to the "double recursion’
represented by the double occurrence of “or can be inferred +o
have" in the description., For an extreme example, suppose Q is
trensitive, so that Q@ -+ Q. Also, suppose aQal, alQa 3 cea
ak—lQak are stored in ¢ , but not anb for any j. The =bove
method will run through 2k branches in the search tree before it

gives up trying to prove aQb.

However, it is easily verified (e.g. by having & computer progran
run through all possible choices of P, Q, and R) that the set I

satisfies the following

Associativity condition: Each produect ((P Q) R) is also o

product (P (Q R)), and vice versa.

Because of this, we can remove the first (but not both the first
and the second) occurrence of "or can be inferred to have" in the
above method without weakening it at all. We shall prove this
result by specifying a verification method which utilizes the
associativity condition, end which clearly does not perform double

recursion. - The procedure is specified as follows:

A. The question aQb ? is expressed by assigning the verification

Erogertx ,Ba to b.

20.

. ¥Ye use the inference schena
x
(a1) NA ST)

(vhere Q is an arbitrary member of v), end all rules

obtained by the meta-rule

ox

Rule of verification: If PS - @, then ,ﬁ P

C. To verify the question, use the verification property and
the inference rules to generate more properties for b. If

it obteins the property Ib, then the answer is Yes(m),

It is clear that this method does not perform double recursion. Tn
the above exemple with transitive Q, it will assign the property
_ﬁb to a, Bys vee By i.e. search k+l branches in the tree instead
of 2k. Let us now see how 1t works for tbe guestion aGb ? in a

couple of cases.

1. Q@b e o(a). Inference rule (Ql) immediately gives the snswer

Yes.

2. & has property Pc, c has property Sb, end PS » Q is
in I' . By the rule of verification, we have ,5 P o~ % s

S0 b successively obtains the properties _ﬁa, éc, Ib.

3. a has property cCc, ¢ has Qd, d has Db, and Q is a
regular relation. B successively obtains the properties
_ﬁa,_ﬁc, Id (which is useless), o d, Ib (which yields the
answer Yes). HNotice that (I2) and the rule of verification

. x
give Q@Q - cé » SO _EQ has two products.

* . .
(x) In a computer implementation of the verification procedure, it
1s possible but not nzcessary to store verification properties
among other properties. It will usually be more cfficient “o

represent them as subroutine calls, i.e. on & push-down list.

21.

4. & has property Rd, d has Ve, e has Sb, and PS -+ Q,
RV + P arein T . By the rule of verification,
‘5 P+ 2 and SR - T However, since we do not have
any rule on the form kﬁ R -+ ... , it seems that we have

got stuck.

This is where the sssociativity condition comes in. It
guarantees that there exists some 2 in V such that the
following ave in I :

vs -+ .Z

RZ -» @

These rules can be summarized as follows:

The rules derived by the rule of verification give to b thz

. . X X X
successlve properties Pa, =xd, 2e, Ib,

It is trivial that if the associativity condition holds for

ell sequences of three relations, then it alsc holds for any
longer sequence. Therefore, the method given in steps (A) to (C)
is complete with resp=zct to the rules in T , i,e. it will answer

Yes to the question y iff ¢ |-y .

It should be noticed that the verification method here works for
any set of rules that satisfy the associativity condition. It is
therefore a proof method for property-set represented information

in general.

22,

6. Rejection of properties.

A sequence Il of relation symbols is said to be contradictory

iff it is a contradiction that a set b should have the implicit
property Ib. For the set V of relation symbols, there are no
contradictory sequences of length 1, but the following four types of

sequences of length 2:

aln! o
- -
R A R £

. . « . X
where R is an arbitrary, regular relation. Moreover, if I ==> I

and I is contradictory, so is I . We believe in the following

Hypothesis: Every contradictory sequence I in V satisfies
$ == I s Wwhere 11 is one of the four contradictory sequence

schemas given above.

The following are erxamples of contradictory sequences which agree

with the hypothesis:

98 RTJ
§Rr O
ﬂDat’f};
0 #a

The following method will answer No to the question aQb ? in some
of the cases where ¢ }— ~ aQb. If the hypothesis is correct, it

will answer No in all cases where

¢ , aQb }— (a has en implicit property Ia)

vhere I 1is a contradictory sequence.

c.

D.

E.

23.

The question aQb ? is expressed by assigning the property

ﬁh to b.

In general, Da ¢ o(b) is teken to mesn "assume that b has

the property 0a". Oa is called an assumed property.

The statement ":Rb is sufficient for rejecting the original

question" is expressed by sssigning the rejection property ﬁc

to b.

We use the inference schema
faq * I
end all inference rules cbtained by the meta-rules

[+.2]

Rule of assumption: If PS - Q, then BPS - G&.

Rule of redoubt: If P S is a contradictory sequence,

L34

o
then P =

o3

Rule of rejection: If PS -+ Q, then ~5 P

To reject the question aQb ?, use the originally assigned

property \Qa and the inference rules to generate more properties

for b. If b obtains the property Ib, then the answer is lo.

The idea behir4 the method is as follows: suppose e has some

implicit property Ib such that PN is contradictory. By cur

hypothesis, there exist sequences 1. and H2 such that

I,

1

= pI and such that . has a product P. and I

1 1 p 188

a product P2, where P 1P2 is a contradiction. Using asscciativit)

LRI can therefore be written
™
((°°'((P11 12) P) ees JP)(,21(cos (Pz,j—l Pej}u,.))
where of course the Pli constitute Hl and the PEi constitute Hg.

2k,

The method given in steps A to E eats the first sub-sequence using
assumed properties and the rule of assumption; uses the rule of
redoubt to switch to rejection properties; and then works through

the second sub-sequence using the rule of rejection.

Remsrk: One might De tempted to eliminate the use of rejection pro-
perties by writing simply

Bs » 1
for each contredictory sequence P S. Unfortunately, this does not
work since the resulting, extended set of inference rules is not

associative. For example, such a method would not recognize the

contradictory sequence

02

o g

[»]
>+

because the parsing ((RD1) &) gives R A which is not a

contradiction. Using rejection properties, we recognize this as
[+

a contradiction through the parsing (R (O ;)).

25.

T. Defined syrbols.

A relation R is said to be distributive in its first argument iff

the following two requirements hold:
1. If cca and aRb are facts, then chb is a fact;

2. If aRb end cRb are facts, then (awc)Rb shall be a fact.

Distributivity in the secon? argument is defined similerly. Of the
relations in v, C and R are distributive in their first argu-
ments, whereas [J and regular relations R are distributive in both

arguments.

Let P, S, and Q be distributive in their first arguments, and consi-

der the implication
(\f x) %pa A e o Saf

In terms of properties, this implication can be expressed: "If a
property set includes the properties P4 and Se, then Qf can be
added to it". We shall now generalize the groperty structure so that

such implications can be expressed in it.

For each implication of the above form, we intrcduce a new symbol §
which stands for "the set of all x for which xPd and %Se" (in
lattice terms, & is the l.u.b. of all sets a such that

aPd A aSe). We clearly have

o(g) = {Pd, Se, Qf}

Alsoc, it is & rule that "if s property set includes the properties

Pd and Se, then T £ can e sdded to it". Qf can then be added

through cheining. It remains to provide a notation for the underiiuned

rule,

26.

We accomplish this by defining & mapping rt similar to g, 1l.€.
we have

T ¢ Vv - 2VxV

T shall be the mapping that assigns definitions to symbols
like g . For conventional ¢ in V which do not have any definition,

t{c) is the empty set. Therefore,
wa) < of(a) for every a in V.
In the example given for introduction, we have

o(g) = {pa, Se, Qr}

t(g) = {Pa, Se}

Naturally, we also have

9t € o(d)

vhereas t(d) is the empty set; and similarly for e end for f. - If
0 and Tt have been constructed in this way from a set ¢ of
sentences and inference rules, then the pair < ,1> is called

& (generalized) property structure. If 1(g) is not empty, ¢ is

called a defined symbol.

So much for notation. Let us now tackle the problem of inference

using defined symbols. We start with the easiest case.

Example. &£ 1is defined like above, and ¢ has properties Pd end
Se. It is asked whether f has property jpec, i.e. ¢ has been assigned
the verification property G&f. Conventional chaining gives ¢ the

property <§€. We immediately see that the following rule is sound:

(D1') If ¢ has property ot » and if t(g) is not empty, then o

can be assigned the property Ba for each Pd in (g).

27.

There is a complication. In previous sections, if a symbol c¢ had
severel verification properties, these used to be "OR-connected",
i.e. it was sufficient that some of them could be reduced to the
property Ib or the answer Yes. But in rule (D1'), all the
properties Pd in +t(f) must be verified. The verificastion proce-
dure therefore gives and AND-OR tree, rather than a simple OR tree.
Fortunately, such AND-OR trees have previously been studied, e.g.
in {Slagle 1963a}, {Slagle 1968a}, and {Sandewall 1968a}. They
do not present any difficulties in principle, but it does take

some book-keeping to account for the obvious distributive ete. laws.
Also, the heuristic problem of searchirg AND-OR search trees in

an efficient way has been studied ({Slagle 19682}). We shall not
delve into such matters here, but merely assume that"the system"

keeps track of AND-OR connections automatically.

Let us now modify the above example and assume that the same question
had been formulated by giving f +the property _ﬁc instead. The
only way to handle this situation seems to be through the following

rather general rule:

(D2) If f has property ~,Bc and ¢ is a defined symbols
and if Jﬁc: +> 8 , then we can

wosign two AND-connected properties: & o £, and é;s to c.

Because of its wide scope, this rule can of course not be applied
indiscriminately. One must use heuristic criteria to determine for
which ,ﬁc and which & it shall be used. Notice, in this context,
that if it takes much effort to reduce o £ to a Yes (i.e. to prove
that the implication that corresponds to £ can be used), but only
a little effort to prove that 5b cannot reduce to Yes (i.e. that

the implication is useless in the situation), then sny reasonsbly

sophisticated heuristic system for handling fhe AND-OR connections

would process % rather soon and then sbendon work on é&g.

Are rules (D1') and (D2) sufficient? Suppose b hes a verification
property ,5&, and suppose a has an implicit property Ib, where

I == Q, which will yield en answer Yes to the question. When
working with defined symbols, we are concerned about the following

two cases, and need not be concerned sbout any other:

(1) m=(m DI,), where the 3 should be derived by using
o defined symbol. Fule (D1') cleerly takes care of such

cases exactly when H2 is the empty sequence.

(2) n=(I, C 1,), where the < should be derived by using
e defined symbol. Rule (D2) takes care of such cases for
arbitrary m, end I, (except of eocurse I, and I, which
contain an O where (D1') fails). F)

Thus it remain. to take care of case (1) for arbitrary s The

following is a crude method:

(D1} If ¢ has property Nég » if (£} is not empty, if g
is an arbitrary symbol, and if
% é . . e
PO T Oy then we can assign two AND-connected verifi-

cation prorcrties: §g to ¢, and.é&g to B

This method is of course even more generous than (D2), and we will

be interested in methods to restrict the choice of £

(%)

To account for the case where He is empty, we must porait
x

8 = I in the specification of (D2).

8., WH quegtions.

Question-answering computer programs need to deal not only with
YES/NO questions, but also with questions of the type Wwhich «..
have the properties L L 17 the data base is a property

structure o , such questicns can be answered by the following

Retrieval procedure. lLet a set T = {Plel, P2e2, ceo Pkek}

of properties be given, and let it be our task to retrieve symbols g
in the data base, such that every g has, for i = 1,2, <. k an
implicit/ "

property Hiei where ni ==> Pi' Such g are retrieved

by the following procedure:
A. Introduce a symbol £ for which t(g) = T.

B. Assign to & the verification property B.e., and let the

1y

verification prccedure run.

C. To each g excest & such that the property Ig is
assigned to £ in step B, assign the AND-connected veri-
fication properties qug’ cne ﬁkek' If all these verification
properties lead to Ig, then g is an answer to the task.

Thus the verificetion procedure is useful for a?wering WH questions.
Conversely, the sbove retrieval procedure is useful for heuristic
purposes in the verification procedure, e.g. to restrict the

choice of g in (D1). In order to make full use of the associa~
tivity of the AND's of (Dl) and the retrieval procedure, we

merge them into the following rule:

(D1 improved) If c¢ has property _ﬁg, where £ is a defined

symbol, if o(g) = { Pie,, ... Pe} , and if Bo + B,

29.5

then we can run the following procedure:

A.

B.

Step B of the retrieval procedure. The verificetion
properties that occur are unrelated (neither AND- nor
OR-relat2c) to all other verification properties in the

system.

To each g except £ such that the property Ig is
assigned to £ in step A, assign the AND-connected
properties §2e2, vue ﬁkek, fc. This bundle of

. . - X
AND-connected properties is OR-connected with Qf.

30.

9. A remark on systems of definitions.

The notetion of previous section can handle some but not all

expressions with two or more quantified variables. An example

(%)

of an expression which it can handle, is

(\V’x)(\/y) ®pa A ?rSe A SRY > %er

which can be re-written as
(V x) [(Ely) §se A ?m?r] A %pd D fef

and then expressed through

w(n) = {Se}
() = {pd, Rn}
o(g) = {Qf, ... }

An example of an expression which cannot be handled is
(V) (Yy) a4 $se 4 WG o 2§

We shall not here introduce any notation for such expressions in
a systematic menner, but merely indicate the principles for such

a notation.

Let a end b be two sets which satisfy

aPd A bSe A eRb A abb

It is easily verified that there exists & unique l.u.b. £ for all
such sets &, end similarly a unique l.u.b. n for all such
sets b. These £ and n can be used is defined sets, like in

the previocus section. Possibly, one could write

(%)

We assume that P, S, R, and Q are distributive where necessary.

t(g)
o(¢)

t(n)
o(n)

31.

{pd, Bo)

{rd, ®b, Rb, ... }

{Se, Fa)

{Se, §é, ﬁé, eee }

. . . 0,0
However, some new devi e is needed to represent the relation XZy

'in a correct manner. It seems natural to introduce & third function

besides ¢ and 1 for this purpose. Accordingly, some further

inference rules and some extensions to the verification and

refutation procedures are needed.

10. A remark on non-chsining inference rules.

In sections 5 through 9, only chaining rules I have been used.
We have teken the liberty to ignore rules (J1) to (J7), claiming
that these can be accounted for by smell modifications, "patches",
to the verification and rejection procedures. In partial support
of this claim, we shall give here the extra rules which are

necessary in the verification procedure.

(J1) If some c has property ﬁe, e has property M a,

and ﬁD > 3 » then c can be assigned the property de.

(32 - 35, first rulel If ¢ has property ﬁa, if _[’J‘S > é,
and eaDa f—» ASb, then for each object symbol b, two

AND~connec 3d verification properties can be introduced:

fﬁa e ofa) and 9 e ole)

(72 - 35, second rule) If ¢ has property Ba, it 8 - é; .
and bODb |~ aSb, then for each object symbol b, two

AND-connected verification properties can be introduced:

E’Jb e a(b) and b ¢ ofec)

(36, first rule) If c¢ has property _ﬁe, e has property §+&,

x ~
and PO - C)f, then ¢ can be assigned the property Cfe.

(36, second rule) If ¢ has property ﬁe, e has property :5&,
. -
and QO[] =+ C’i, then two AND-connected properties can be

introduced:

E‘_}a e ofa) and de ¢ ole)

33.

(J7) If ¢ hes property ﬁe., ﬁD-* 4, and a has property Rb,

then two AND-connected properties can be introduced:

da ¢ ole) and (b ¢ o(b)

We notice that the complications that have already appeared with
the handling of defined symbols (i.e. AND-connected verification
properties, and rules of the type "for each object symbol b, ... ")
re-gppear in the handling of non-chaining inference rules. How-
ever, there are no new complications. This means that the none-
chaining rules do not disturb the structufe of the verirication
procedure. In fact, a corresponding statement holds for the

rejection procedure.

11. Conclusion.

This report has resulted in the following:

(1} Specificeiion of a logical langusge for use in property
stretures (e.g. property lists). The language cen hendle
binary relations, universal and existential quantifiers,

" ¢ -~quantifiers", and some implications;

(2) Inference rules for this language (I1-I9, J1~J7, etc.);

(3) Proof procedures ("rejection" and "verification" procedures)
which are sound with respect to all inference rules, and
complete with respect to a subset of the inference rules.
These procedures perform (in principle) a search on an

AND-OR tree, which is & relatively well-known type of search.

These results are interesting together but not taken independently.
Our motivation for studying a property struecture oriented language
was to find a notation where inference can be performed efficiently,
which means we must present a proof procedure together with the
language. Similarly, the proof procedures are based on an
associativity condition, so they are not interesting unless we can
give a languapge which satisfies this condition. - These are the
regsons why the above three results have been presented in the sane
paper. It is also an excuse for the lack of detail in this paper:
we have tried to outline the results and their interrelationship.
It is expected that later pepers should concentrate on each of

the three results, and go deeper into the details. The following

tasks remain to be done:

(1) Extend the langumge, &t least to include "systems of definitions"

11. Conclusion.

This report has resulted in the following:

(1) Specification of a logical language for use in property
strctures (e.g. property lists). The language can handle
binery relations, universal and existential quantifiers,

" ¢ -quantifiers", and some implications;
(2) Inference rules for this language (I1-19, J1-JT, etc.);

(3) Proof procedures ("rejection" and "verification" procedures)
which are sound with respect to all inference rules, and
complete with respect to a subset of the inference rules.
These procedures perform (in principle) a search on an

AND-OR tree, which is a relatively well-known type of search.

These results are interesting together but not taken independently.
Our motivation for studying a property structure oriented language
was to find a notatiou where inference can be performed efficiently,
which means we must present a proof procedure together with the
language. Similarly, the proof procedures are based on an
associativity condition, so they are not interesting unless we can
give a language which satisfies this condition. - These are the
reasons why the above three results have been presented in the sanme
peper. It is also an excuse for the lack of detail in this peper:
we have tried to outline the results and their interrelationship.
It is expected that later papers should concentrate on each of

the three results, and go deeper into the details. The following

tasks remain to be done:

(1) Extend the langusge, at least to include “systems of definitions"

14)
AN
®

(see section 9). Then describe the richness of the property
structure language, e.g. by specifying a subset L' of the set
b

of all wff in predicate calculus, such that eech formula in L

can be expressed in property structure langusge, and vice versa,

(2) Give o complete set of inference rules for the extended

language, together with a proof of completeness.

(3) Extend the proof procedures and prove their completzness.

However, we do not have to wait for these extensions and complete~
ness proofs before we start to use the language. The material
given in this paper is believed to be quite sufficient for a

useful question-snswering systemn.

References.

Ginsburg 1966a

Green 1968a

Levien 1965a

Lindsay 1962sa

Raphael 196ka

36.

S Ginsburg
The mathematical theory of context-free

languages
MeGraw-Hill

C C Green, B Raphael
The use of theorem-proving eechniques
in question-answering systems

Paper at 1968 ACM Conference, Las Vegas

R Levien, M E Maron
Relational Data File: A tool for mechanized
inference execution and data retrieval

RM-4793-PR (RAND Corp, Santa Monica, Cal.)

R K Lindsay

A program for parsing sentences and
meking inferences sbout kinship relations
Proceedings of Western Management Science

Conference on 8imulation (A Hoggsatt, ed.)

B Raphsael
SIR - a computer program for semantic infor-
mation retrieval

MIT math dept., Ph D thesis, 196k

Robinson 1965a

Sandewall 1968¢

Sandewall 19684

Slagle 1963a

Slegle 1965b

Slagle 1968a

37.

J A Robinson
A machine oriented logic based on the
resolution principle

Journal of the ACM, January, 1965

E J Sandewall
LISP A: A LISP-like system for incre-
mental computing -

Proc. Spring Joint Computer Conf., 1968

E J Sandewall
Concepts and methods for heuristic search
Uppsala University, Computer Sciences Dept.,

Report nr 16

J R Slagle
A heuristic program that solves symbolic
integration problems in freshman calculus
in E A Feigenbaum (ed), Computers and

Thought

J R Slagle
A proposed preference strategy using suffici-
ency-resolution for answering questions

UCRL-14361 (Lawrence Radiation Labs, Cal.)

J R Slagle, Ph Bursky
Experiments with a multi-purpose, theorem~
proving heuristic progranm

in Journal of the ACM, January, 1968

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

