

A Planning Problem Solver Based on Look-Ahead in

Stochastic Game Trees

ERIK J. SANDEWALL

Uppsala University,* Uppsala, Sweden

aBsTRACT. This paper demonstrates how methods from game-playing programs can be ap-
plied to heuristic search problems. The game program look-ahead corresponds to a planning
process for the heuristic search. Pruning methods, like the alpha-beta algorithm, carry over
with small modifications. These techniques are then applied to the General Problem Solver,
and an algorithm for a Planning Problem Solver is formulated. Sufficient conditions are given
which guarantee that the Planning Problem Solver always sprouts the solution tree in a direc-
tion that minimizes the expected length of the remaining solution.

KEY WORDS AND PHRASES: problem-solving, planning, look-ahead, game against nature,
stochastic

CR CATEGORIES: . 3.64, 3.66

Introduction

Tree searching is an important component in many artificial intelligence programs.
Two types of trees can be distinguished: (1) game trees, which oceur when the com-
puter is set to play a nonrandom game (e.g. chess or checkers); and (2) gameless
trees, which occur in labyrinth searches; problem-solving as exemplified by the
General Problem Solver (Newell 1960 [3], 1960 [4], 1961 [5]) ; heuristic proof-proce-
dures (Gelernter 1959 [1], Slagle 1968 [10]); etc.

Much work has been done on game-playing, and some hard-core results are
available. Most important, there is the alpha-beta method (for a concise description,
see, e.g. Slagle 1967 [9]) through which some branches in the tree can be ignored
(““pruned”) with a corresponding reduction in search time. There is also much ex-
perience with learning in game-playing programs; see, e.g. Samuel 1959 [6], 1967 [7].

The applications that require gameless trees seem to be much more general and
important than the board-game application. One would hope, therefore, that the
results from the study of game trees can be carried over to gameless trees. However,
no such extension has (to our knowledge) yet been performed.

The purpose of this paper is to demonstrate that one method involving gameless
trees (i.e. the General Problem Solver) can be reformulated in terms of generalized
game trees. This makes it possible to apply game-tree methods, e.g. the alpha-beta
method. Using the game-tree interpretation, we then proceed to include a planning
feature in the General Problem Solver and to formulate a Planning Problem Solver.
In Section 7 we will prove that under certain given conditions, the Planning
Problem Solver always sprouts the solution tree in a direction which minimizes the

* Computer Sciences Department. This research was supported by the (Swedish) Research
Institute of National Defense (bestdllning 700885, 714257).
Journal of the Association for Computing Machinery, Vol. 16, No. 3, July 1969, pp. 364-382.

Copyright © 1969, Association for Computing Machinery, Inc.

A Planning Problem Solver Based on Look-Ahead 365

expected length of the remaining solution. In the final section, Section 8, the practi-
cal use of the Planning Problem Solver is discussed.

1. The GPS Method
The following description of the General Problem Solver (GPS) has been extracted
from Newell 1960 [4], 1961 [5].

Consider a set P (possibly infinite) of objects and a finite set @ of operators. For
each operator ¢ € @, there is a set d(g), the domain of ¢, for which d(q) € P. Also,
for each ¢ € @ and each p € d(q), ¢(p) exists and is a member of P.

The purpose of the GPS is to solve the transformation problem, which can be
phrased as follows. Given p € P, m € P, find a sequence (g1, ¢z, * * *, qx) (where
each ¢; € @) such that

Ge(gea(- g(@a(p)) -+)) = m.

For a more concise formulation, we introduce the function £ where k(p) is the set
of all objects p, q(p), ¢(¢’(p)), - - - for arbitrary g, q, ete. Formally,

k(p) = {p} Ufg(z) | € Q A z € k(p)}.

The transformation problem can then (somewhat loosely) be formulated as: tdentify
m in k(p).

If nothing is known about the functions in @, then this problem can only be ap-
proached through exhaustive search. The GPS method assumes and utilizes the
following information:

(1) There is a finite set D of so-called differences.

(2) There is an (effectively computable) difference recognition function

r: P X P—D.

In other words, if p; and p, are members of P, then r(p;, p2) exists and is a member
of D.

(38) There is an ordering < on the set D. If d; and d;, are members of D, then
d; < dyis taken to mean “the difference d; is more easily resolved than the difference
d2)? ;

(4) There is an operator selection function

¢: D—2°

In other words, if d € D, then ¢(d) C Q.

These functions should in the ideal case be interrelated as follows: if p and m are
given objects and ¢ € ¢(r(p, m)), then there should exist some (easily retrievable)
object p" in k(p) N d(q) such that d(g(p’), m) < d(p, m). In the simplest case,
p = p’. Roughly speaking, if we take any member ¢ of c¢(r(p, m)) and apply it to
p (possibly after some preliminary transformations), then the result has taken us
some way toward the “target” m.

For practically arising sets P and @, this criterion can not always be satisfied.
This is especially true as we need explicit, easily computable expressions for the
functions r and ¢. Therefore we must be satisfied if the above ideal situation holds
for most p, m, and ¢q. The GPS includes a facility which takes care of the exceptions.

The GPS is a method for using these functions, 7 and ¢, to direct a search through

Journal of the Association for Computing Machinery, Vol. 16, No. 3, July 1969

366 ERIK J. SANDEWALL

k(p) to retrieve m. The method formulates three new problems (one of which is a
generalization of the transformation problem) and gives routines for solving them.
Let us first write out these three problems (‘‘goals,” in the vocabulary of Newell,
et al.):

1. Transformation problem (generalized). Given p € P, M C P, identify some
member of M in k(p).

Remark. This reduces to the original transformation problem if we select M =
{m}.

2. Reduction problem. Givenp € P, M C P, identify some p’ € k(p) such that
R(p', M) < R(p, M) where R(z, Y) = min,cy 7(z, y), with the obvious meaning
of “min.” It is assumed that R, or an approximation to R, is effectively computable
for the sets M that can arise.

3. Application problem. Given p € P, q € @, identify some member p’ of
k(p) N d(q) and return ¢(p’) as the solution to the problem.

The GPS gives the following interdependent routines for solving these three
problems:

1. Transformation problem from p to M. If p € M, then the problem is trivial.
Otherwise, find some solution to the reduction problem from p toward M. Then
solve the transformation problem from p" to M.

-2. Reduction problem from p toward M. Select some q € ¢(R(p, M)) and find
the solution to the application problem of ¢ on p.

3. Application problem of g on p. Find a solution p’ to the transformation prob-
lem from p to d(q). Then ¢(p) is the solution to the application problem.

These three routines call each other reeursively, and recursion can only terminate
in the degenerate case of the transformation problem. As we see, the GPS consists
of two parts: (a) an tterative part, which says: to solve the transformation problem
from p to M, select some ¢ and solve the transformation problem from ¢q(p) to M
instead; and (b) a recursive part, which says: in case ¢(p) should be undefined, then
obtain it from a solution to the transformation problem from p to d(q).

In Sections 2-5 we are exclusively concerned with the iterative part, i.e. with the
transformation and reduction problems. Only in Sections 6-7 is the recursive part
considered.

To close our eyes to the application problem, we introduce the following very
natural convention: If p is not a member of d(q), then ¢(p) denotes ‘“the” solution
to the application problem of ¢ on p. This solution may not be unique but that will
not cause any problems. To account for the case where there is no solution, we intro-
duce one more object p° € P and decide that in such cases, g(p) = p°. We also have

q(p°) = p’ for all q.

2. Look-Ahead in the GPS Method

Our routine for solving a reduction problem from p to M says: select some ¢ in
¢(R(p, M)) and - - - . The purpose of this section is to discuss methods for choosing
g. This gives us the first piece of the Planning Problem Solver.

In [5] (Newell 1961) this problem is managed by a heuristic rule which says,
“Never try a subproblem if it is harder than one of its superproblems.” In practice,
this means that if ¢(R(p, M)) = {q1, ¢z, - -+ , g}, then their GPS evaluates ¢:(p)
for all 7 and then identifies those ¢; which satisfy the ideal,

Journal of the Association for Computing Machinery, Vol. 16, No. 3, July 1969

A Planning Problem Solver Based on Look-Ahead 367

R(qip), M) < R(p, M).

All other ¢; are dropped. Although it is not explicitly stated, one would assume that
their GPS gives highest priority to the ¢g; which “minimizes” R(q:(p), M).

This method is “blind”’; it does not perform any look-ahead. By contrast, a human
problem-solver often makes a plan when he attempts to solve a complicated problem.
He says, “First I will do this (I think it is relevant, and I think I can do it); then
I will do that...,” etc. Only when the plan has been devised, does he set out to
solve the actual problem. He follows his plan and revises it when its predictions do
not fit in.

We will formulate such a planning process in strict terms so that it can be per-
formed by a computer. Our plan is set up not in terms of objects but in terms of
images, which contain some of the information of the original objects. In an actual
problem environment, each image might e.g. be a vector with Boolean components,
which indicate whether certain features are present in the object. Accordingly, we
assume a finite set I = {4, ', - -+ , 4"} of images, and an image extraction function
h: P — I, which assigns an image h(p) to each object p. The image ¢’ is only the
image of p°, i.e.

p=p e hp) =7,
but for objects other than p°, it is of course possible and normal that several objects
share the same image.

In the ideal situation, A(g(p)) is uniquely determined from A(p) for any p and ¢,
so that the operators ¢ can be considered as unambiguous operators on images. In
practice, we have to be satisfied with less. We introduce a probability function v as
follows: v(%, ¢, 7) is the probability that h(g(p)) = 4 if it is known that h(p) = 3,
while p itself is unknown. Obviously,

n

2 (i g 7)) = 1.

7=0

However, to retain the flavor of the ideal case, we assume that for most 7 and most
g, there exists some j such that v(4, ¢, 4’) is considerably larger than other v(4,q,7).

With our extended notation from Section 1, ¢(p) need not always be unambiguous.
In such cases we assume that it is possible to assign probabilities to the various solu-
tions, so that the function v is well-defined. Clearly, v(3°, ¢, ©°) = 1 for all q.

Consider now the following game, which is equivalent to the transformation
problem. T'wo players, A and B, move alternatingly. Initially, the board contains an
image 7. (There are no squares on the board.) 4 has the first move and puts an
arbitrary operator ¢ on the board. He exercises his own free will in selecting ¢. B
picks up 7 and ¢ and puts back another image ¢’ on the board. B is assumed to have
no free will; the probability that he will put back a given ¢ is exactly v(3, ¢, 7).
When B has moved, 4 puts another operator on the board and the game continues.
Any image or operator can be used any number of times. A wins the game when a
member of a prescribed set L € I comes on the board; he loses when ¢’ comes on
the board. B is impartial and does not try to help or hinder A.

This game will be called the lottery game from i to L. It is completely defined by
the quintuple (I, @, ¢’, L, v). We assume that A has complete knowledge of the
quintuple and ask how he should make his moves to maximize his chances of reaching
L, i.e. winning the game, or to reach L as quickly as possible.

Journal of the Association for Computing Machinery, Vol. 16, No. 3, July 1969

368 ERIK J. SANDEWALL

Clearly, the tree-search techniques usually applied to nonrandom games can be
applied to the lottery game. We assign the value 0 to each branch in the tree which
ends in a loss for A and the value 1 to each branch which gives a win for A.

Alternatively, if A is willing to trade a higher chance of winning for a slightly lower
chance of winning more quickly, we should assign something like n"ore " to an
n-step winning branch. Or we can generalize to ¢ ™", where h is a measure of A’s
haste.

As with ordinary games, it is impossible to search the tree to its end; in fact, the
tree is usually infinite in some branches. A’s expectation of a position must therefore
be estimated through look-ahead to a certain depth, where a static evaluation func-
tion is applied. Extrapolation from the experience with game-playing programs
would indicate that such look-ahead pays (i.e. that, we are badly off if we apply the
static evaluation function immediately), but this has to be tested in experiments.

The technique of searching a lottery tree (i.e. the tree of a lottery game) is studied
more closely in the next few sections. Let us now outline the iterative part of the
PPS and relate it to the GPS. For simplicity, we assume that D, r, and ¢ for the
GPS are given and use them for the PPS.

We select T as D + {1°, 5} where D is the set of differences, 4’ is the ficticious
image for failure, and 7* is an image for success (corresponding to the zero differ-
ence). The set D is very apt to be used as images, especially as Newell 1960 [4]
suggests that differences will have structure.

The image recognition function % is defined as h(p) = R(p, M), which includes
¢* if p € M. The static evaluation function, s, can be selected as we find suitable,
but we must have

d1 < d2 = S(dl) > S(dz).

The target set L is of course defined as {7*}. Finally, we assume that somebody has
given us a probability function ». The PPS then solves the GPS problems in the
following way: (

Reduction problem from p toward M. Perform look-ahead in the lottery tree
from h(p) to H(M). Select q as the best first move on the basis of this look-ahead
and determine ¢(p).

Remark. We have used the obvious notation H(M) = {h(m) |m € M}. This
function H will be used again.

Transformation problem from p to M. If p € M, return p and terminate.
Otherwise, find some solution p’ to the reduction problem from p toward M and
memorize the look-ahead tree that was then constructed. It is called our plan. Then
solve the transformation problem from p’ to M, using and updating the same plan.
Restriction: If we later discover that the static estimates in the original plan were
bad, and that another q seems to be more favorable, then back up in the solution
tree and use that other ¢ instead.

Application problem. Not considered until Section 6.

The precise formulation, including exact rules for when and how to back up, is
given in Section 5. This discussion was only to give the main ideas.

By comparison, the GPS routine essentially performs static evaluation on the B
player’s nodes in the tree to select the best first move for the A player. In very rough
terms, it could therefore be characterized as a one-ply look-ahead method.

Journal of the Association for Computing Machinery, Vol. 16, No. 3, July 1969

A Planning Problem Solver Based on Look-Ahead 369

3. The Value and Best First Move of a Lottery Tree

Our PPS routine for the reduction problem assumes that we can select the best
first move in the lottery game from A(p) to H(M). In this section, we strictly define
what this means. The definition comes via the definition of the expectation of a
lottery tree.

Two sets, I and @, are given as before. A node is a nonempty, finite sequence of the
form (i1, g1, %2, - -+). It is called an A-node if its last component is a member of I
and a B-node otherwise. If a node # is obtained from a node ¢, by deleting the last
component, then ¢, is the predecessor of &y , and ¢ is a successor of ¢ . The successor
of a node ¢ which is obtained by adding x is written f.(¢); the set of all successors
is written F(¢). The last element z of f,(¢) is called the face of f.(¢), and f,(¢) is
said to display =.

Let T be a set of nodes. A node in 7 is called a root in T iff its predecessor is not a
member of T'. T is called a branch iff it has only one root, and a tree iff it is a branch
whose root has only one component.

A branch is complete iff it contains all successors of all its nodes. It follows that
every complete branch is infinite, i.e. has infinitely many members. 4 branch 7"
whose root is ¢ is a subbranch of a branch T iff it is the largest possible subset of T'
which is a branch with ¢ as root. (Thus a subbranch of a complete branch is always
complete.) A branch 7" is a stump of a branch 7T iff it is a subset of T and has the
same root as 7.

The depth of a node is one less than its number of components. Thus the root of a
tree has depth zero.

Let T be a branch. A node in 7 is terminal iff none of its successors is a member of
T. T is said to be nicely pruned iff every node is either a terminal A-node or all its
successors are members of T'. In particular, every complete branch is nicely pruned.

Let T be a finite, nicely pruned branch. T is of depth k iff all its terminals are of
depth k.

A path is a sequence of nodes (# , 2, - - -) where each #, is a successor of #;_; .

We assume that L is a fixed subset of I and that 7° is a member of I — L. Also, we
assume a static evaluation function s which assigns values between 0 and 1 to each
member of I, and a probable successor function v as in the preceding section. These
two functions are generalized to A-nodes as follows:

8(<7:1,Q1,7:2, te ;ik>) = S(q:k)!
(B, qu, %, Ty Qe k) = V(Tk, Gy Thgr)-

Finally, we assume a real, monotonic function g of a real variable satisfying
g(0) = 1,g(») = 0. (Occasionally, we also consider the case where g(z) = 1.)

Let T be a finite, nicely pruned branch. The expectation e(t) of a node t € T is
defined by the first applicable case in the following table:

gk) if ¢ of depth k displays a member of L
0 if ¢ displays 2°
s(t)g (k) if ¢ of depth k is a terminal node
sup e(t’)
YEF() if ¢t is an A-node

or equivalently, sup e(f,(t))
a€Q

> v(te(’)
t)

t'EF(

or ;I v(fi())e(f:(t))

if ¢ is a B-node

Journal of the Association for Computing Machinery, Vol. 16, No. 3, July 1969

370 ERIK J. SANDEWALL

To indicate that the expectation has been computed on 7, we sometimes write
GT(t).

The expectation E(T) of T is the expectation e(f,) of the root & of T If ¢ is a non-
terminal 4-node, and § maximizes e(f,(¢)), then § is a best move to t. A best move to
to is called a best first move in T.

An actual PPS process operates in terms of finite branches and selects best first
moves according to this definition. For theoretical purposes, we also need a definition
of the best first move in a complete branch. For this we must first define the expecta-
tion of a complete branch and prove that it exists.

Let T' be a complete branch whose root is of depth J, andlet T, € T, € - - - be
an infinite sequence of stumps of 7' where each T'; is of depth J + 27, if the common
root of T', Ty, Ty, ete. is an A-node, and J — 1 4 27 otherwise. This guarantees
that all terminals are 4-nodes; so each 7' is nicely pruned. Let one arbitrary static
evaluation function s be given, and let also s, and s; be two alternative static evalua-
tion functions, whose values are identically zero and identically one, respectively.
Finally, let Eo(T';), E(T;), and E1(T;) denote the expectation of 7'; which is ob-
tained by using s, s, and s; , respectively.

With these assumptions, the following results hold for all j.

Lemma 3.1. Let e; and e; be two different expectation functions, derived for the same
function v, but possibly for different s and T. If t does not display < or an L, and

() el(fo()) < ex(fu(l)),
then

el(t) < eﬂ(t)a

and similarly for the relations <, > , > , and =.
Proor. The proof is immediate.
LemMA 3.2. For each subbranch T; of T},

E(T;) < E(T;) < Ex(T)).

Proor. The proof is by recursive application of Lemma 3.1.

LemMa 3.3. If subbranches T, of T, and T;-+1 of T ;i1 have the same root, then
E(T) < Bo(Tjn).

Proor. The proof is by recursive application of Lemma 3.1. In the first step of
recursion (i.e. when T ; consists only of a terminal), inequality can oceur as some
terminal of 7';,; displays a member of L.)

Levmma 3.4, With the assumptions of Lemma 3.3, Ey(T;) > Ey(T;j4).

Proor. The proof is as for Lemma 3.3. Inequality can occur as some terminal of
T, .+ displays 2.

These lemmas are used for only the special case where T; = T'; .

Lemma 3.5. E(T;) — Eo(T;) < g(29).

Proor. The proof is by recursive application of Lemma 3.1.

TaeEOREM 3.6. The following limits exist and are equal as j tends to infinity:

lim Bo(T;) = lim E(T;) = lim Ey(T;)
) J J

Proor. The proof is immediate.
This common limit is called the expectation of T' and is denoted E(T').

Journal of the Association for Computing Machinery, Vol. 16, No. 3, July 1969

A Planning Problem Solver Based on Look-Ahead 371

For use in Section 4, it is nice to have
LemMa 3.7. If T is a complete branch, T a finite stump of T, and 7 and k the mini-
mum viz. maximum depth of terminals of T', then

Ey(T;) < E(T') < Eo(Tx), EuT;) > Ei(T") > Ex(Th),

where T; is of depth j and Ty of depth k.
Proor. The proof is by recursive application of Lemmas 3.3 and 3.4.
CoRroLLARY 3.8. If T is a complete branch, and Tv, Ts , - - - is an infinite sequence
of finite stumps of T whose minimum terminal depth tends to infinity, then

lim B(T;) = E(T).

In Section 4, we look for finite stumps 7" such that E(T") approximates E(T).
Corollary 3.8 gives us full freedom in the selection of T

Let T be a complete branch, let ¢ be an arbitrary node in 7', and let T’ be the sub-
branch of 7 which has ¢ as root. The ultimate expectation E(t) of ¢ is defined as
E(T'). Tt follows that the expressions for e(¢) given earlier apply for E(¢) as well
if E is inserted for e throughout. (However, E(¢) is not computable from these
expressions.) In particular, if the root ¢ of T is an A-node, then

E(T) = E(t) = sup E(fi(t))-

A §in Q for which the supremum is attained is said to be a best first move in T. This
is what we need for the reduction routine in our PPS.

4. Practical Computation of Expectation
In practice, we must of course approximate E(¢) with e(¢) computed on som®
suitable finite stump when we select the best first move of a lottery tree. Because of
this approximation, some disturbances occur in the problem-solving process; that
is the topic of Section 5. The present section is devoted to methods for selecting the
stump which yields the best approximation for given computational resources. The
process of cutting off branches to obtain a good stump is referred to as pruning.
Adaptive depth. Stumps T'; of depth 2, which we used for theoretical purposes in
Section 3, are likely to be bad choices from the efficiency pomt of view. Con81der
some B-node ¢ and its successor A-node t, which satisfies v({) = 0. Such ¢ should
be quite common. Clearly, e(t) affects e(t) very little, and the expectation of the
total tree even less. It can therefore be computed with a very crude method, e.g.
as s(t'). More radically, it can be approximated w1th the weighted average of the
more probable successors of ¢. Formally, we select an n’ < n (where n is the number
of images) and use the approximation

olh) = 3 o(telts) & 35 o(t)e(ts)/ 300t

where ¢; is the jth successor of ¢; v(¢;) > u(#) for each j < n' and each k > n'.

Obviously, we do not have to specify the stump first and evaluate it afterward.
Instead, we can start out on the recursive, mﬁmte process for computlng E(t) and
decide to prune whenever we encounter a node ¢ for which E(¢) ~ 0. This pruning
method can be generalized.

Journal of the Association for Computing Machinery, Vol. 16, No. 3, July 1969

372 ERIK J. SANDEWALL

Pruning on probability. In principle, we desire that each »(¢) be close to either
0 or 1. In practice, we have to live with medium-sized probabilities as well. For them,
the above pruning criterion should not be applied. However, it is natural to prune
paths which contain several successive medium-sized probabilities.

To do this in a systematic fashion, we select a pruning level, which should be a
small positive number. As we work down recursively into the lottery tree, we keep
track of the access probabilities for the various branches and prune as this probabil-
ity falls below the pruning level. This scheme clearly contains the previous simple
pruning scheme as a special case.

“The pruning on probability scheme must be supplemented with a pruning on
maximum depth scheme, which says that whatever happens, we will not dig deeper
than nodes whose depth is K units larger than the depth of the root, for a fixed K.
Together, these are called schemes for forward pruning, in contradistinction to the
following scheme.

Backward pruning. This is a generalization of the alpha-beta method (cf., e.g.
Slagle 1967 [9]). Consider the evaluation of e(Z) for a nonterminal, not-in-L, not-z’
A-node i. E(?) is defined as the supremum over some e(t¢;,), 7 = 1,2, - -+, r. Under
favorable circumstances, it is not necessary to evaluate all e({(;), at least not com-
pletely, to find the value of e(Z). Suppose we already have the partial result

a = sup(e(tw), e(tw), - -, e(tw))

for some k¥ < r and intend to compute e(t) for ¢ = tx41 . (We have selected our
notation so that ¢ is a B-node, just as in the discussion of adaptive depth, above.)
If we have access to an upper bound on e¢(¢) and know that e(¢) < «, then the exact
value of e(?) is clearly irrelevant. Such an upper bound may be obtained in two ways:

(a) before the recursive evaluation of e(¢) has been commenced. For example,
we can make a quick estimate using some static evaluation function which applies
to B-nodes, and ignore e(¢) if the estimate is considerably smaller than «;

(b) during the recursive evaluation of e(¢). Let us define

m

Ym = j;e(tj)7
o = > 0(L) e(ty),

where ¢; is the jth successor of ¢, as before. We recall that » is the number of mem-
bers of 7 and conclude that y, = 1 and 2z, = e(¢). It follows that

e(t) = zm + 2 v(t;) e(t;)) S zm+ 25 0(t) = 2m+ 1 — Yn.
j=m+1 j=m+1
Therefore, as we compute the successive 2z, for m = 1,2, --- n, we keep track of

the corresponding y,, . (This is a small extra effort.) At each step we check whether
Zm + 1 — ym < « and terminate if this is the case. This is our backward® pruning
method.

The above deduction of the backward pruning method guards pessimistically

1 The reason we call it ““backward”’ is that pruning is performed when we are already “‘sitting’’

on the branch that we intend to cut. On the other hand, if e(¢) is suppressed after an estimate
of type (a), then we clearly have still another case of forward pruning.

Journal of the Association for Computing Machinery, Vol. 16, No. 3, July 1969

A Planning Problem Solver Based on Look-Ahead 373

against the possibility that all e(¢;) forj = m + 1, ---, n will equal 1. Of course,
we can do better with estimates, as discussed under “adaptive depth.”

The backward pruning method is a generalization of the alpha-beta method for
ordinary game trees. This is immediately seen if we decide that v is not actually
random but always gives v(f;(¢)) = 1 for the 7 which minimizes e(f:(¢)). Our lottery
game then degenerates into an ordinary idealized game, and our pruning method goes
into the ordinary alpha-beta method. (More precisely, it goes into the ‘“‘alpha’
part of the alpha-beta method, which operates symmetrically on both players.
Such symmetry is not possible for lottery games.)

The alpha-beta method is very efficient for reducing the search effort in ordinary
game trees. Unfortunately, we can not expect that the generalized method will be
quite as good. With the pessimistic estimate of e(¢;) as +1, it can be used only when
Ym = 1, which means that the remaining »(¢;) are close to zero, which means we
would have skipped the corresponding e(¢;) anyway with forward pruning. To make
the method useful, better estimates of e(¢;) are needed. But the use of improved
estimates always means taking a certain risk of underestimating e(¢;).

5. The Planning Problem Solver

The purpose of this section is to give a precise definition of the Planning Problem
Solver (PPS) method and to explain how it works.

We use the same notation as in previous sections. Let a transformation problem
from p to M be given and consider first the following happy state of affairs, where
the job of the problem solver is trivial:

(1) () () (F) v(5, q,7) = 1;

(2) (p)(9)(7) v(h(p), g, %) = 1 = h(g(p)) = ¢

(3) (p) [h(p) € HIM)] D [p € M];

(4) E(t) is known for all ¢ in T, the lottery tree from h(p) to H(M).

It is easily proved that with these assumptions, and for each node ¢ in 7', we have
E(t) = ¢(2k) where k is the length of the shortest solution that goes through .
A shortest solution can therefore easily be retrieved by the following routine: Start
in the root of 7', select ¢ as the best first move, set p := ¢(p), advance two steps in
T, select a new g, ete.

Condition (3) is easy to fulfill in practical cases by merely including the truth
value of p € M in the feature vector h(p). But conditions (1) and (4) never hold in
practice, especially not together.

The failure of condition (1) to hold has the following effect. If our attempts to
solve the transformation problem by use of the above routine leads us to a node
(--+, h(p)), then the expectation of this node will change. Earlier it had been defined
using v, but as we actually apply an operator ¢ on p and become able to inspect
h(g(p)), the expectation of (- -+ , h(p), q) is reset to the expectation of its “factual”
successor (- -+, h(p), q, h(g(p))). But (- - - , h(p), q) had been selected as the best
successor of (--- , h(p)); so the expectation of the latter will also change. In fact,
this change backs up to the root of the tree. Most important, it may change our
opinion about what would have been the best move in a previous step.

The failure of condition (4) to hold may be “overcome’ by approximating E(¢)
with ez (t) where T” is a finite stump of 7. But then we may be forced to (in fact,

Journal of the Association for Computing Machinery, Vol. 18, No. 3, July 1969

374 ERIK J. SANDEWALL

we will prefer to) extend T" during the problem-sglving process. This causes the
same back-up changes of expectation as above. (

Unlike “ordinary” games, the problem-solving lottery game permits the 4 player
(~ us) to back up in the game and seleet a move other than the one we previously
chose. It is a crucial question when and how to use that right. The PPS determines -
the answer (which we prove to be a good answer) by studying the back-up of expec-
tation change. To express this strictly, we need more notation. v

A planning node is a finite sequence of the type (i1, q1, %2, - -+); a solution node
is a sequence of the type (p1, ¢1, p2, -+ -, px) where each-p;,; is a solution to the
application problem of ¢; on p; . Planning nodes are characterized by the same con-
cepts as before (A-node, B-node, face, display, ete.), and wherever applicable, these
concepts are extended to solution nodes. The only exception is that the predecessor
and successor of a solution node are obtained by removing, viz. adding, two com-
ponents at the end of the sequence. If s is a solution node, then f,(s) is obtained
by adding ¢ and ¢(pz) at the end.

A planning 4-node ¢ and a solution node s written on the above forms are said to
correspond iff they have equal depth, their ¢; agree, and ¢; = h(p;) for each j.

A solution tree is a finite set of solution nodes. A planning tree is a nicely pruned
tree of planning nodes. A planning tree 7' is a plan for a solution tree S iff every
node in S corresponds to some nonterminal node in 7'. If this is the case, we have the
following additional concepts. A B-node in T is passé iff it has a successor which
corresponds to a node in S. That successor, which is by necessity unique, is called
the factual successor.

The set of corresponding A-nodes and passé B-nodes constitute a tree, which is a
stump of 7'. It is called the base of T If ¢ is an A-node in the base, but f,(¢) is not
in the base, then f,(t) is a bud.

The expectation of a planning node is defined as before, with the following two
exceptions:)

(1) The expectation of an attempted node is defined as the expectation of its
factual successor.

(2) If ¢, qu, -+ ,%s, ¢s) is a bud, then the depth of its (direet or indirect) sue-
cessor

(iqu17"';i1>q-’y"';ik>

is defined as 2(k — J). (The depth of a node is used in the definition of expecta-
tion.))

We have as an immediate result

CoroLLARY 5.1. E(T) = sup E(b) where b ranges over the buds of T.

A bud which maximizes E(b) is called a best bud or a focus.

With this vocabulary, we are now ready for the definition of the iterative PPS.

Let a transformation problem from p to M be given, together with heuristic
information on the form of I, h, v, and s; ¢f. above. The sterative PPS is the method
of solving the transformation problem by the following steps:

1. Define 8 = {(p)}, and T equal to a finite stump of the lottery tree from i(p) to
H(M), large enough to be a plan for S.

2. Perform the following routine iteratively, until some member of S displays a
member of M: (2a) select a foeus f,(¢) of T; (2b) if s is the node in S which cor-

Journal of the Association for Computing Machinery, Vol. 16, No. 3, July 1969

A Planning Problem Solver Based on Look-Ahead 375

responds to ¢, add fo(s) to S; (2¢) add a suitable number of nodes to 7', at least so
many that it is still a plan for the extended S.

Notice that as f,(s) is added to S, the focus becomes passé, gets its factual suc-
cessor, and thereby gets a new expectation.

Intuitively speaking, the expectation e(¢) of a node is a measure of the expected
length of solutions to the transformation problem. (This point is discussed strictly
in Section 7.) When the PPS selects the best bud in the planning tree, it therefore
actually minimizes (or at least thinks it minimizes) the expected length of the solu-
tion. We can now see the reason for the above redefinition of the depth of a node:
the PPS is interested in minimizing the remaining path to the solution, not the total
path.

The PPS has been defined in terms of the best buds. We can relate this to the
back-up-and-try-another-solution way of thinking, described at the beginning of
this section, by the following observation. Let b be the focus, ¢~ < e(b) be the expec-
tation of the second-best bud, and fi(b) the factual successor of b after sprouting has
occurred. If e(fi(b)) > e, then the PPS must select a successor of f;(b) as its next
focus (i.e. proceed on the same path), and if e(fi(b)) < e, it must select the old
second-best bud as its new focus (i.e. back up in T' and in S).

This concludes our description of the iterative PPS.

6. The Recursive PPS

During actual performance of an iterative PPS process, according to Section 5, we
* may get caught in a long and cumbersome evaluation of ¢(p) for nontrivial applica-
tion problems. In this section we extend the PPS so that such complications can be
predicted and planned for.

The obvious technique for retrieving nontrivial ¢(p) is to initialize a new, itera-
tive PPS process, this time from p to d(¢). The subprocess needs its own solution
tree, planning tree, static evaluation function, ete.

In the simplest case, we run the subprocess to its end, and return to the top-level
PPS result in hand. However, we might have started this subprocess with a very
high expectation, only to discover that it was not as easy as we thought. In such
cases we would like to interrupt the subprocess and try some other bud in the main
process.

One way to do exactly that would be the following. As we proceed in the sub-
process, the expectation of the subprocess planning tree, 7", changes dynamically.
(It is equal to the expectation of the best bud.) In particular, it goes down if things
go badly in the subprocess. At each step of the subprocess, we therefore send back
the expectation of 7" to T as a new and better expectation of its focus. If this value
goes down, then some other bud takes over as focus and the subprocess is frozen.
It may be resumed if we later revert to the old focus.

However, that method is not altogether satisfactory. The expectation of the focus
which T provides is based on a long-range look-ahead, where the ply from p to ¢(p)
is only one small step. The expectation of 7", on the other hand, is based on a close
analysis of possible paths from p to ¢(p). These two estimates complement rather
than exclude each other. We would like to combine them.

For that purpose we notice at first that because of look-ahead in the top-level tree,

Journal of the Association for Computing Machinery, Vol. 16, No. 3, July 1969

376 ERIK J. SANDEWALL

we may prefer one member of d(q) to another as a target in the subprocess. We
therefore generalize the lottery game to the following

Lottery Game with Appreciation Function. Given I, L, °, v, and g as before,
but also a function ¢, which assigns real-number values to the members of L. The
game runs as before, with the following modifications: (a) whenever B has put a
member ¢ of L on the table, 4 has an option of continuing or terminating; and (b)
if A terminates when each player has made k moves, and an image 7 is on the table,
then A earns ¢(7)g(2k) points of credit.

In this game, if an 7 which maximizes c(%) is on the table, it always pays for A
to stop. Otherwise, he has to weigh the chances of finding a better ¢ against the
decline in the value of g(2k) with continued play.

Clearly, look-ahead can be performed as before, and the lemmas of the preceding
sections still hold. We have to define the expectation e(¢) of a node ¢ as the first
applicable case in the following table:

0 if ¢ displays ¢°
c(t)gk) if ¢ of depth k is terminal and displays a member of L
s(t)gk) if ¢ of depth k is terminal
max (c(t)g(k), sup f,(t)) if ¢t is an A-node
€Q
2 v(fi())e(fi(t)) if ¢ is a B-node
i€l

Let us return now to the problem with subprocesses in the PPS. Suppose in the top-
level lottery game, we have selected a best bud f,(¢) where ¢ corresponds to s which
displays p and p is not a member of d(g). We then have to run a subprocess trans-
formation problem from p to d(q) and therefore need a lottery tree from h(p) to
H(d(q)). Let

H(d(q)) = {1‘1,7 iZlJ] ,Lkl}

Suppose we solve the subprocess transformation problem and get to z,’. Our expecta-
tion for the remaining main process is clearly
e(i) = i;v(i/, g, %) e(fi(fo(2)))

where e is computed in the top-level tree. This is therefore the appreciation function
with which we have to run the subprocess. Naturally, the subprocess may initialize
lower, second-order subprocesses, which must be run the same way. Therefore, the
second-level appreciation function is dependent on the first-level expectation fune-
tion, and therefore on the first-level appreciation function. This process may pro-
ceed recursively and to arbitrary depth.

For consistency, we also consider the top-level lottery game as a game with ap-
preciation, with ¢(4) = 1 for all 7 in the top-level L set. With this choice of ¢, the
introduction of an appreciation function is a purely formal matter.

We are now ready to define the recursive PPS in strict terms. We do this work
rather meticulously, as the definition will be the basis of proofs about special prop-
erties in the recursive PPS method.

An attempt from p to M is a quintuple (p, M, 8, T, ¢) where p is a member of P,
M is a subset of P, S is a solution tree with (p) as root, T is a plan for 8, and ¢ is
an appreciation function for H(M).

Journal of the Association for Computing Machinery, Vol. 16, No. 3, July 1969

A Planning Problem Solver Based on Look-Ahead, 377

If (p, M, S, T, c) is an attempt, b = f,(t) isabudin T,s = (---,p')in § cor-
responds to ¢, and (p', M', S', T', ¢') is an attempt from p’ to d(g), then the latter
attempt serves the former for b. An attempt structure from p to M is a tree (in the
obvious sense of the word) whose root is an attempt from p to M ; where every other
node serves its predecessor, and where no node is served by more than one successor
for the same bud.

Leta = (p, M, S, T, c) be an attempt in an attempt structure A. If some successor
a in A serves a for b, then we write ' = f,(a) and say that b is attempted. A bud
which is not attempted is fresh.

The expectation of a node ¢in T in @ in 4 is defined as above, with the following
modifications:

(a) The expectation of a passé B-node is defined to be the expectation of its
factual successor.

(b) The expectation e(b) of an attempted bud b in @ is defined as E(T') where
T’ is the planning tree in fy(a).

(¢) The depth of a node in T is counted from the base of 7', as described in Sec-
tion 5.

In the sequel, we often talk about ‘“a bud b in ¢’ when we actually mean “bud
b in the planning tree of a”’; “E(a)” when we actually mean “E(T), where T is the
planning tree of a’’; ete.

If b is a bud in a, then the two-tuple {(a, b) is a bud in A. If a fresh bud b in a
is a best bud in @, then (a, b) is a best fresh bud from a. Recursively, if an attempted
bud b in a is a best bud in a, and (a”, b”) is a best fresh bud from f,(a), then (a”, b”)
is a best fresh bud from a. A best fresh bud from the root of A is a best fresh bud
m A.

We now define two operations for extending and reducing an attempt structure.
Intuitively, these are the operations of initializing a subprocess transformation
problem, viz. of terminating a subprocess successfully and returning the result.

Let b = f,(¢) be a fresh bud in an attempt @ in an attempt structure A. The
operation of extending A from {a, b) is performed as follows:

Notation. Suppose a = (p, M, S, T, c); suppose ¢ in T corresponds to s in S;
and suppose the face of sisp .

1. Define M’ = d(q);

S = , ,
T = a finite stump of the lottery tree from h(p) to H(M), large
enough to be a plan for S';
¢ through
(i) = 2o, q,9) e(filf()))
where i € M, and e is computed on T with c.
2. Add (p', M, 8', T, ¢’y as a new node f,(a) in 4.
It is easily seen that A’ is still an attempt structure after this operation.

We now get to the reverse operation. Let ' = f,(a) be an attempt in an attempt

structure 4 ; let

= <p; M7 S; T; C))
a = <p,7 M” S,’ T/’ c’>7

S
I

Journal of the Association for Computing Machinery, Vol. 16, No. 3, July 1969

378 ERIK J. SANDEWALL

and let b = f,(t), where ¢ in T corresponds to s in S. The operation of reducing A
in @ is possible and defined iff some node in S’ displays a member of M, and is
then performed as follows.

1. Remove a’ and its possible successors from A.

2. Add one more node to S. The new node is obtained from s by adding ¢ and p
at the end of the sequence s.

3. If desired, add more nodes to 7, at least so many that it is still a plan for
S in spite of its extension.

4. Insert the new S and T for the old S and 7 in a and in 4.

The full PPS (or recursive PPS) is the method of solving a transformation
problem from p to M as follows:

1. Define 8 = {{(p)};

T = a finite stump of the lottery tree from h(p) to H(M), large
enough to be a plan for S;

c through ¢(7) = 1forall7in H(M);

A = {({p, M, 8, T, c))}

2. Perform the following routine iteratively until some member of S (in the root
of A) displays a member of M : (2a) select a best fresh bud {(a, b) in A; (2b) ex-
tend A from (a, b); (2¢) reduce 4 in as many nodes as possible.

To understand this specification, notice (1) if p” € d(g) in the definition of the
extension, then the extension to 4 from step (2b) will immediately be reduced in
step (2¢); and (2) each time a node @' = f;(a) vanishes in reduction, one more
node is added to the solution tree in @, which may make it possible to reduce a in
its turn. Therefore, several reductions may occur in sequence in step (2c).

This terminates our description of the PPS method. In Section 7 we discuss its
optimality.

7. Strategies and Expected Length

We saw in Section 5 that in each step the iterative PPS tries to minimize the ex-
pected length of the remaining solution path. For the recursive PPS, we would be
interested in minimizing the expected length of the remaining total solution path, up
and down the various levels of subprocesses. To accomplish this, it is necessary that
the same decreasing function g be used on all levels, i.e. that work on all levels is
equally rated.

Another, and less trivial, requirement is that effort on various levels be additive.
The PPS must be able to select the best choice when offered one alternative with
much work in the subprocesses and little work in the main process, and another
alternative with a different distribution of work load.

A third requirement is that the planning mechanism account correctly for sub-
process calls that may occur a couple of steps ahead in the plan. Essentially, this
is the requirement that v(3, g, '), where 7 is not a member of H(d(q)), correctly
predicts the outcome of future subprocesses.

Due to space limitations we cannot give the full argument and the full proofs
here. We give the main results, and the interested reader is referred to a mimeo-
graphed addendum to the paper, available from the author.

Let us make the following assumptions.

Assumption on I: For each operator ¢ and each object p, the image h(p) must

Journal of the Association for Computing Machinery, Vol. 16, No. 3, July 1969

A Planning Problem Solver Based on Look-Ahead 379

“contain” the truth value of “p € d(g).” In other words, there must exist some
function d from @ to 2’ such that

p € d(q) = h(p) € d(g).

With this assumption we need never be in doubt during the planning process about
whether an application problem has been solved or not.

Assumptionon g: The fatigue function g must be selected such that g(z) =
for some constant A > 0.

Redefinition of v. When 4 is not a member of d(g), the value of (4, ¢,) must
be slightly modified. The exact definition relies on material that must be omitted
here and therefore it cannot be stated. The basic idea with the modification is that
v(4, ¢, 7) should express not only the probability but also the “probable number of
steps” for getting from ¢ to ¢ by applying ¢. The “probable number of steps”
K enters as a factor g(K) =

A consequence of the modlﬁcatlon in v is that we obtain

2 (i, q,7) <1,
i'er

—hz

without necessarily having equality. However, this does not disturb the theory.
Finally, we need the following.
General assumption: Inany attempt a=(p, M, S, T,c), where p is arbltrary,
M is either d(q) for an arbitrary ¢ or the M of the root of an attempt structure,’
= {{p)}, T is the complete tree and its root is ¢, and ¢ is cx(a , then, for any
given ¢ (which may or may not coincide with ¢), the quantity

f; v(li, q,7) e(fi(f(1)))

must be the same for all /; in d(q).

Basically, this assumption says: (1) all members of the top-level M must be
equally appreciated; (2) if all members of M on one level are equally appreciated,
then all members of M on an immediate sublevel must also be equally appreciated.

Under these assumptions, the following theorem holds:

TaEOREM 8.11. The best fresh bud selected by the PPS in each step of its operation
minimizes the expected length of the remaining solution.

The proof is given in the full (mimeographed) version of this paper.

One might argue against the practical usefulness of this theorem that it is based
on the ‘“‘general assumption” above and that assumption will rarely be satisfied in
practice. However, the ‘“‘general assumption” should be considered as an ideal,
not a normal situation. In practice, we always have a certain ‘“‘skewness” in the
appreciation functions. This skewness causes an error in an equality used for the
proof of Theorem 8.11, and it should be possible to give bounds for this error.
We would thus obtain a further pruning criterion. Such error bounds and pruning
criteria must be determined with the techniques of numerical analysis.

8. Remarks on the Practical Use and the Possible Modifications of the PPS

For what problems can the PPS be used?>—For the same problems as have previ-
ously been attacked with the GPS or other heuristic methods. This includes auto-

% I.e. it is the M of a transformation problem given to PPS from outside.

Journal of the Association for Computing Machinery, Vol. 16, No. 3, July 1969

380 ERIK J. SANDEWALL

matic theorem-proving (cf. Gelernter 1959 [1], Newell 1961 [5], Slagle 1968 [10])
and algebraic simplification (cf. Slagle 1963 [8]).

Are the categories of heuristic information that the PPS presumes (i.e. the functions
h, s, and v) usually available’—The use of functions like » and s is a standard
method; see, ¢.g. Slagle 1968 [10]. The introduction of a new function v, on the other
hand, is a difficulty. It also makes the selection of % and the set of images less trivial,
as these functions have to cooperate. There is no reason to believe that this problem
cannot be solved, but the question cannot be answered definitely until experimental
results become available. '

We regret that we do not have any single example of a problem-solving environ-
ment where the v function has been evaluated and has proved useful. The reason
we have not yet tried to use our method is that the PPS can be expected to be effi-
cient only in environments with complicated objects and complicated operators.
(For simple objects and operators, no essential simplification from objects to images
is possible; so look-ahead in the planning tree 7' is no quicker than actual search
of the solution tree S.) Complicated objects and operators are of course the prac-
tically useful ones, but implementing such an environment on a computer will
require much effort. Therefore, before we computed the » function for some com-
plicated environment, we wanted to know what it could be used for. The results
presented here form part of the answer.

Are any modifications of the PP S necessary before it can be applied to these problems?
—UFor the theorem-proving application, yes. There, we could consider p as the
given formula to be proved, M as a (given) set of axioms and theorems, and Q
as a set of rules of inference, turned backward. The PPS then has to handle opera-
tors which yield several subproblems that all have to be solved, i.e. several branches
that all have to be extended to M. (As a trivial example, one operator may tell us
to prove A A B by first proving A and then proving B.) The extension to the PPS
for handling such tasks, is formally trivial. It is intuitively obvious from the results
in this paper that the expectation of a set of AND-connected buds is to be computed
as the product of the expectations of the individual buds. (This formula is also
given in Slagle 1968 [10], although he does not perform any look-ahead and does
not explicitly use any fatigue function. In other words, he hasg(z) = 1.)

However, one problem with this extension is not absolutely trivial: which com-
ponent in a preferred “bundle” (i.e. a set of AND-connected buds) should the PPS
tackle first? One might guess that the easiest problem should be tackled first, be-
cause if we are actually working with the wrong bundle, we would like to know as
soon as possible, in order to switch focus. The bundle component with the highest
expectation would then be the component that is the most likely to deteriorate.
However, a closer analysis on this point would be interesting and important.

Can the look-ahead method in the PPS be improved?—Yes, definitely. The function
e used here does not ‘“know” that the problem solver will be able to back up during
the future problem-solving process. An improved expectation which accounts for
this would be defined, for example, through a kind of pseudoexecution of the PPS
routine throughout the finite planning tree. Such computations would require time,
but they might be worthwhile on the top level.

Is the PPS a good model of human planning in problem-solving situations?—

Journal of the Association for Computing Machinery, Vol. 16, No. 3, July 1969

A Planning Problem Solver Based on Look-Ahead 381

M

second
island

first
island

Fra. 1

Although we do not have any ambition to create a psychological model, this question
is interesting in view of the present superiority of human beings in the problem-
solving field. To the extent that the PPS says: “first I will apply this operator,
then I will apply that one...,” it does not reproduce human behavior, except in
very special cases. It seems to us that human planning usually has the character of
establishing a few ‘“‘islands” (a term attributed to Minsky) half-way and quarter-
way to the solution, as illustrated by Figure 1. These islands serve to focus the
diverging solution tree from time to time.

But such planning can be interpreted as a special case of what the PPS does.
A person’s ‘“‘understanding’ of the islands would be realized in the PPS as a set of
images for each island. Also, for each such island L; , the PPS would use one opera-
tor g, which is the identity operator, except that its domain s restricted to Ly .
A person’s knowledge that objects in a certain class 7 can usually be transformed
into this island would be expressed in PPS by

’Z (4, @, 1) ~ 1.

i €Lg
In this way, the path from the initial object to the first island is pushed down into
a subprocess, and the PPS can perform look-ahead beyond the island. By pushing
each step from one island to the next into a subprocess, the PPS therefore generates
on the top level a gross plan for the entire solution.

As a by-product of the proof of Theorem 8.11, we know that each strategy which
runs through subprocesses has an equivalent inside the top-level planning tree.
Therefore, it is probably a good idea to subvention the use of subprocesses that
take us to islands. This ean be done either by using a pessimistic static evaluation

Journal of the Association for Computing Machinery, Vol. 16, No. 3, July 1969

382 ERIK J. SANDEWALL

function (like sp) or by artificially increasing the expectations E; above what the
definition says (Section 6). At a minimum, the E; should be subventioned with a
factor ¢ to compensate for the extra “cost” of applying one identity operator,
which our scheme (above) makes necessary.’

With these conventions, it appears that the PPS is able to imitate reasonably
well what people do when they plan an approach to a manipulative problem.

REFERENCES

1. GELERNTER, H. Realization of a geometry theorem-proving machine. In Proc. Int.
Conf. Inform. Process., UNESCO, Paris, 1959, pp. 273-281; and in Computers and Thought,
F. A. Feigenbaum and J. Feldman (Eds.), McGraw-Hill, New York, 1963.

2. MicHIE, D., AND CHAMBERS, R. A. Boxes: an experiment in adaptive control. In Machine
Intelligence 2, E. Dale and D. Michie (Eds.), Oliver and Boyd, London, 1968.

3. NEwELL, A., Saaw, J. C., AND SimoN, H. A. Report on a general problem solving program
for a computer information processing system. Proc. Int. Conf. Inform. Process.,
UNESCO, Paris, pp. 256-264. i

4. NEwELL, A., Suaw, J. C., AND S1mMoN, H. A. A variety of intelligent learning in a general
problem solver. In Self-Organizing Systems, M. Yovitts and S. Cameron (Eds.), Pergamon
Press, New York, 1960.

5. NEwELL, A., AND SimoN, H. A. GPS, a program that simulates human thought. In
Computers and Thought, E. A. Feigenbaum and J. Feldman (Eds.), McGraw-Hill,
New York, 1963; also Lernende Automaten, Proc. Conf. Learning Automata, Technische
Hochschule, Karlsruhe, W. Germany.

6. SAMUEL, A. L. Some studies in machine learning using the game of checkers. IBM J.
Res. Develop. 8 (July 1959), 211-229; In Computers and Thought, E. A. Feigenbaum and
J. Feldman (Eds.), McGraw-Hill, New York, 1963.

7. SAMUEL, A. L. Some studies in machine learning using the game of checkers, II—Recent
progress. Memo No. 52, Stanford A. I. Project, Stanford, Calif.

8. SraGLE, J. R. A heuristic program that solves symbolic integration problems in Fresh-
man calculus. In Computers and Thought, E. A. Feigenbaum and J. Feldman (Eds.),
MecGraw-Hill, New York, 1963.

9. SuaGLE, J. R, anp Dixon, J. K. Experiments with some programs that search game trees.
Lawrence Radiation Lab., Preprint UCRL-70552, Lawrence, Calif. '
10. SuaGLE, J. R., aNp Bursky, P. Experiments with a multi-purpose, theorem-proving

heuristic program. J. ACM 15,1 (Jan. 1968), 85-109.

RECEIVED JUNE, 1968; REVISED SEPTEMBER, 1968

3 Actually, subventioning may be worthwhile in other nontrivial application problems as well.
Otherwise, the theoretically best strategy will usually not perform any subprocess calls at all,
and splitting a problem into subproblems is known to be good heuristics. Compare Michie 1968
2], which is also relevant to the third question above.

Journal of the Association for Computing Machinery, Vol. 16, No. 3, July 1969

