Abstract:

Bl 4

GSG No. 52

‘?ﬁ:*ia

Erik Sandewall .

December, 1968

USE OF AMBIGUITY LOGIC IN THE

PICTURE DESCRIPTION ILANGUAGE

The Picture Description Language is extended
by the use of the ambiguity operator and the
ro-notation (a variant of the lambda-notation).
This enables us (1) to avoid the labeling
scheme, which was an ad hoc notation; (2) to
express attributes in predicate calcuius no=-
tation; and (3) to write recursive descriptions
of pictures (such as a page of text) inside

the language.

l. Introduction

We consider the following characteristic facts about Alan C. Shaw's Picture
Description Language /3,5/:
(1) Each sentence in the language is an expression, built from primitive

names and concatenation operators (+, X, -, *).

(2) Bach primitive name stands for any member of a class of pictures. The
same is true about each expression. "

(3) If Sl and 82 are expressions, and © is an operator, then S1 © S2 stands
for a class of pictures which are formed from each possible combination
of a picture from the class S1 and a picture from the class S2. (The
* operator is an exception). |

(4) If the same primitive name occurs several times in the same expression,
there is no restraint against selecting different members of the eclass
in those two instancés.

(5) 1In many cases we want to select one arbitrary member of a class of
pictures, and use thal same member several times in the‘same expressidn.

We call this the multiple use problem. It is handled, in Shaw's original

PDL/5/, by a generalized concatenation operator, and in the later version

/3/, by a labeling scheme.

In our opinion, both these notations for handling the multiple use prob-
lem are formally "impure", and it is desirable to find a more system-
atic notation. It turns out that the ambiguity logic, which was investiga-

ted hy the present author for quite differcnt purposes /4/, can be useful

for the mulliple use problem.

The following chapter contaihs an exposition of the ambiguity logic. In

chapter 3, its application to picture description is discussed.

2.1 The basic notation

In /2/, John McCarthy briefly proposes the use of an ambiguity operatar.

In this chapter, we shall develop a logic based on such an operator.

Let us use the question-mark (7) as an infixed, binary operator, and let

"a ? b" mean "the ambiguous expression whose value is a, or b". We have to

make this more precise. When we write "f(x) = a?f", we cQuld:mean:

(1) The value of £(x) may be a, and it may be b. We don't know (or we don't
care to tell). ’ L '

(2) f(x) has two values. One of them is a; the other is b.

Some axioms hold in either case, viz.

(A1) 2 ? a = a

(A2) a2b =D 7 a

(A3) a7z (m2c)=(a?2b) e

(ak) £(a 2) = £(a) 7 £(b)

The difference between (1) and (2) becomes acute when we are asked whether
we want to assume an axiom like
(A7) a=b Da= (b 2c)
~ which would permit us to write e.g.

2+ 3 =425,
It is more fruitful to consider this as a question: What do we intend to mean by
equality (between ambiguous expressions)? If accepted, (A?) would violate
the transitivity of equality, because we would have

3=3?24h=b=495=5 ete. o ,
Therefore, we reject "axiom" (A?) and choose interpretation (2) above. This
also means that we would not write |

Y ((n), uit(n) =0) =T

as McCarthy does in /2/. (We would instead write V ((n), 04N vit(n));
see below). ’

Axiom (A3) makes it natural to omit parenthesis in sequences of ?7's and write

€ege "a ?b 7 c ?d". We shall say that this is an ambiguous expression.

It denotes an ambiguous object or ambject with the cases a,b,c,d, a?b, a?c,
«es a?b?c?d. If we want a strict definition of equality, we:can assume a
"weak" equality between unambiguous expressions to be given, and define a
strong cquality as follows: a =Y if every unambiguous case of g equals some

unambiguous case of b, and vice versa.

We shall use the symbol 4§ for the “inconéeivable case", so that

a? 8 = a

(1)

as cases" or "e is unambiguous". We also stipulate =1* § , and then obtain

If e is an exprecssion, let us write *e for "e contains only itself and 4

as an axiom

(a5) *(a?b) > a=hb

We shall distinguish between regular and dominant functions. A regular

function is a function which satisfies axiom (Ak) above; a dominant function
is one which does not. In particular, ? itself is a regular funetion.

Tunctions of several arguments can be regular in some of them.

The same distinction is valid for predicates. A regular predicate is one
which satisfies

p(a 7 b) = p(a) ? p(b).
1f p(a) = true, p(b) = false, we have p(a?b) = true ? false. Here, 7 is a.

.

logical connective, rather than a function. We obtain a four-valued logic
with the values true (t), false (£), t ? £ or sometimes (s), and A , A, V,

7,etc. are regular connectives in this logic, and we have e.g.

t1Lf=58
s?2t=(t?2£)?2%t= .. =58
sAt=(E20)Aat= (bat)? (EAL) = «ov =5

Tt is a trivial task to write down the truth-tables for these four truth-
values and the logical connectives n, V, T, 7 « See appendix. We may also
use a dominant or strong implication, defined in analogy with strong equality;
u implies v strongly (written u 2 v) if every unambiguous case of u implies
weakly (i.e. with a regular function) some unambiguous case of v, and every
unambiguous case of v is implied by some unambiguous case of uw. It follows
that strong implication is transitive; that modus ponens stillrholds; and that

f o s I t. ' |

The truth-table of strong implication is also given in the appendix.

(1) This one-argument * should be distinguished from the two-argument *
of the PDL.

o

A purist might prefer to use different symbols for the function ? and the
logical connective ?. However, axioms (Al) - (A5) are valid for both these
kinds of ? (if the function symbol f is axiom (A4) is interpreted so that

wffs are obtained). We therefore use the same symbol and save duplication of

axioms.

By the same philosophy, we consider = and * as dominant predicates and, atb
the same time, as dominant logical connectives. We have e.g. |
(t=s)=¢ |
*(u = v) |
We need one more function, a dominant function / which is similar to intersection
between sets in the sense that a / b shall be an ambiguous expression whose
cases are the common cases of a and b. This gives us e.g.
(avb) /a =a
f(a / b) =f(a) / £(b) if f is regular. :
If 2 and b have no common cases, a/b is . Likewise, f(g) =4 for

regular functions f.

Finally, we need one dominant predicate, corresponding to set-inclusion.
aeN b shall be t if every case of a is also a case of bv«(the "vice'_f.'
versa" is not required) and f otherwise. This gives us - o

a/baeh aech a?b : '

(2N D) A(be? a) > (a=D)

Of course, / and &) have a second nature as logical connectives.

The ambiguity concept plays us a few tricks. We no”longervhavé
(uv Au) e : P fac |
as an axiom. More significant is the impact on the A -notatipn,,which is';

the topic:of the next section.

2.2 The A -notation and the @ -notation"
. J
Should we consider a A —expressidn as a regular or a dominant function? Let .

us see what happens when we apply axiom (AL):

pla,a) 7 n(b,b) = , S o B
DA ()p(t,6)] (&) 2 LA (8)p(t,8)] (b) = /axiom (ak) !
[A (8)p(t,8)] (a2 b) = | |
p(a?b, a’b) =

P(a:a) ? P(a:b) ? P(b;a) ? P(b:b)'

Thus it seems that axiom Al is not applicable, and that A -expressions should
be considered as dominant functions. However, we may instead question the
third equality sign in the example, which relies on the axiom ‘

(xK) [A@)FE)] (a) =F(a)

If we take as a requirement in axiom K that a must be unambiguous, then lambda-
expressions will indeed be regular functions. We shall permit both cases,
and introduce the symbol 19 for the lambda that creates regular functions.

Thus every expression (P (¢ee) +e.) is a regular function, and we have
the axiom

¥a D ([P (t) T()] (a) =T(a))
A -expresgsions, on the other hand, are dominant functions and satisfy axiom K.

This trouble with A -expressions may seem a nuisance. In fact, it is an asset,
because we can use P in many cases where a universal quantifier would other-

wise be used. ILet us work a simple example in ordinary logic notation.

Ex. Let Bl, B2, ... Bn be boys, and define the function
father(x) for "the father of x"
and the predicate

admire(x,y) for "x admires y".

The phrase "all boys admife their fémhers" is ﬁsually written
V ((b) b e Bin D admire(b, father (b)))
~where Bin = {]ﬁq B2, «ue Bn} . v
With the f) -nol.ation, we can instead write
[p (b) a,dmir‘.e(b father(v))] (boy)
where boy = B. ? B2 ? ... Bn.
This works as follows. Let A be the regular predicate
Lp (b) admire (b, father(v))]

v

Our axiom states that‘A(Bl ?vBéh?‘.;g ?an) ié E; bﬁ£ éé the argument is
ambiguoﬁs, we cannot substitute it into the definition of A. But according
to regularity, we have instead

A(B2) &N A(Bl ?B2 7 .cs 7 Bn) = E; and through application of a
sequence of obvious axions, we can conclude

A(B2) =t
As we also have *B2, we can now use the axiom for f) and. conclude

admire(B2, father (B2)) ‘

In an actual use of this notation, we would of course not feel cdmpelled to
define "boy" through an enumeration of all possible boys. Instead, we would
assume the ambiguous object "boy" and use the function A each time we encountered
an object Bk with the properties Bk «f) boy, *Bk. |

2.3 The let-notation

The lambda-notation (and by consequence, the ro-notation) often yvields ex-
pressions that are difficult to read, especially when the lambdas are nested.
The let-notation, originally proposed by Landin /1), is an equivalent notation

with increased legibility.
A few examples will make the notation clear.

Ex. 1 i lambda-notation: [)\ (x) f£(x,x)] (a)

let-notation: let x be a in f(x,x)
\

Ex. 2 lambda-notation: [A (x,y) £(x,y) + £(y,x)] (a,b)

let-notation: let x be a, y be b in £(x,y) + £(y,x)
Ex, 3 lambda-notation: [) (x), [} (v,2) £(y,z) + £(z,y)] (f(x,x), g(x))1(g(a)
let-notation: let x be g(a) in o

let y be f(x x), z be g(x) in f(y,z) + f(z,y)

We shall extend the notation to ro-expressions, but distinguish them by writing

be a or (synonymously) be an instead of be.

Ex. 4 ro-notation: the example above

let-notation: let b be a boy in admire (b, father(b))

2.4 Ambiguous Objects and Jets

As we saw in the example in section 1.2, the symbols /, 7,¢0) , etc. can be
used for forming and describing collections of objects. Usually, we use set
notation for such purposes. If the reader sees the difference between the
two notatims, please proceed to the next chapter; else read the following

very informal characterization.

In the ambiguity notation, if we form a collection of unambiguous objects,

Al 2 A2 9 A3, and another collection, Bl ? B2, and then form a collection from
these, we obtain (AL 7 A2 ? A3) ? (Bl ? B2), where 'the parentheses can be
removed. In set notation, we obtain instead {{_Al, A2, A3 } '{Bl B2 } } s
where the subsets keep their individuality.

Figuratively speaking, forming a set of a number of objects means putting them
into a box (which can then, as a unit, be put into other boxes), whereas
forming an ambject means making a heap of the objects. If two heaps are put
together, they lose their identity.

With this analogy, S is the empty heap, and *A for a heap a means "A consists
of only one element". Dominant functions and predicates are those that oper-

ate on heaps as wholes; regular functions and predicates are those that operate

individually 6n each member of a heap.

Ambiguous objects could be expressed entireiy in terms of sets, with the ? oper-
ator expressed as \./ , with ¥ being the predicate "set has only one member",
etc. however, the use of regular predicates would then force us to introduce
such novelties as sets of truth-values. It appears more convenient to dis-

tinguish between sets and ambjects.

3.1 Ro-notation and the Multiple Use Problen

We
pr

shall demonstrate that the ro-notation takes care of the multiple use

oblem. Before we turn to the Picture Description Language, let us show how

the ambiguity operator and the ro-notation works on arithmetic‘expressions

(F

1 O\ Fow
L]

In
of

or convenience, we use the equivalent let-notation) :

(32 h)y+5 =157 k45

(32h)+ (576) =357 36 745 7 146

let tbea3?2h?25int+2 =327 22542

let tbea3?h,ubeas526int+u = (374)+(576)
(324)+ (324) = 33 7 3k 2 L3 2 hal :
let tbea3?hint+t =3+3 7 bl ‘

let tbea3?h 25 ubea2?7in tx (u+2) =
3x (2+2) 2 Lhx(2+2) 2 5x(2+2) ?
3x(7+2) 2?2 bx(7+2) 2 5zx(7+2)

Assume "odd" is the name for the infinite expression 1 72 3?25 727 7 «s.
Then ,
let t be an odd in t x (t-1) =1x0 ? 3x2 ?5xk 2 Tx6 7 ...

all these examples we have ambiguous expressions, which stand for collections

integers (e.g. 3 7 4 ? 5), and through the use of the ro-notation, we are

- able to pick out an arbitrary member of that collection, use it several times

in the same expression, and form a new collection by applying»this expression

to each member of the original collection. This is exactly our multiple use

pr

oblem for the Picture Description Language.

\

The reader should make sure he understands how this works. Let us perform

 all intermediate steps in example 6:

let t bea 3?24 int+ 1 = /defh of let-notation/
[.P (t) ++t] (32 4) = ‘ / P gives regular functions/ S e
[J° ()] (3) 7 [J) (£) tt] (&) = /integers are unambiguous,

3+

i.e. *¥3 and ¥4/

37 btk

To apply this to the,PDL,:We make the folleing conventionsf

(1) Primitive names are 1nterpreted as names of amblguous obgects, p0531b1y v
with infinitely many cages: the poss1b1e plctures. ' o , ':'
(2) The concatenation operators (+, x, -, *) are regular functlons in both

“their arguments.

It immediately follows that expressions also denote ambjects; _For example; A
if "seg" is the name for one class of picture elements, and "dlag“ the name’

for another such class, '"seg + diag" denotes an ambject whose cases are

obtained by adding (with the + operator) an arbitrary member of the class seg __§'i

with an arbitrary member of the class diage.

For another example , let us introduce the following picture elements:
line la - ~ line 1o = . line le
line 2a , line 2b

Each name stands for one unique picture element, and we therefore have

. : K . .
line la, line 1b, ... ¥1line 2b. Let us defline

line 1 line la ? line 1b 7?7 line lc

]

9]

line 2. = line 2a % line 2b , , »
Line 1 and line 2 are both primitive classes (Shaw's terminology) or ambiguous

objects (our terminology).

The operator + is a regular function. On uﬁ-ambiguous objects (pictures), we

can immediately apply the definition:

>

—._._r—_'"‘l’

line la + line 2b line lc + line la

10

On ambiguous objecls, we nse regularity. Thus line 1+ line 2715 o primitive
class/ambiguous object with six cases, obtained by adding any case of line 1
to any case of line 2. Other operators operate in the same manner (except

%, which is treated in the next section).

Line 1 and line 2 are primitives with a finite number of cases, but there is
nothing to prevent us from introducing names for primitives which contain
an infinite number of cases. Such primitives can be described with predicates,

but cannot be defined through enumeration.

Sometimes, it is necessary for the description to refer several times to the
same component of a graph. As an example, we shall write an expression for
"the" complete four node praph, i.e. the ambject which has as cases various

four node graphs like

(As therc are many different complete four hode graphs, it is very reasonable
to say that "the complete four node graph" is an ambiguous description).
Let linseg be "the" straight line (i.e. the ambject which has all possible
strairht lines as cases), and let arc be "the" arc. We assume that five out
of the six arrows are straight lines, and that the last one is an arc.
Without the straight line diagonal, the picture can be described as

(linseg + linseg) * (linseg + linseg) * arc;
insignificant parentheses have been omiﬁted; With both dlagonals, we introduce
the name "upper" for the upper, horizontal line segment, end "diag" for the

diagonal, and obtain the expression -

let upper be a linseg, diag be a linseg in

(upper + linseg) * (((llnseg + dlag) - lupper) + (~ [diag) + llnseg) * arc

1,

Reading the expression from left to right, we*seebthat the following happens:
First we follow the %7\ part of the picture; then we go back to the upper
left-hand corner; go down)L and up the diagonal to the head of "upper"
(remember that a-b has the same tail and hcad as a; but the head must alsoc be
the head of b); back the same diagonal, but now with all points eliminated,

and along —»— to the lower righthand corner; finally we go along the arc.
It is easily seen that any graph can be described by walking around this way.

3.2 The Constant A and the operator

The picture corresponding to an expression a % b can not always be constructed.
Shaw, in his first memo /5/, handles this by assuming that "the * operator

implies a semantic restraint between its two operands" (page 15).

With the ambiguity logic, we can express this more formally. If a and b are
unambiguous, i.e. refer to unique pictures, and if axb.cannot be constructed,
we make the convention that 2™ =‘9 . In the example of the previous
section, we have e.g.

line 1b * line 2a = 9 .
The reason for this convention becomes obvious when some argument of * is

not unambipuous. Remember that S was introduced with the rule = a?8 = a.

line 1 * lil’le 2 = cee

fl

-J

Using again the example of the previous section, we therefore have e.ge
line la * line 2a ? g 2 A 2 A

ﬂ(?)
? line lc¢ * 1line 2b

line la * line 2a ? line lc * line 2b

1l

In general, axb is an ambiguous object which cmtains as cases all geometrically
possible combinations (with the ¥ operator) of cases of a and b. This is what

we would intuitively desire.

12

3e¢3 Using Predicates Instead of Attributes.®

Primitives are names for classes of pictures, and it is therefore necessary
to define somehow the extension of this class. Sometimes it may be sufficient
to define the class implicitly by the recognition function that recognizes

members of the class; sometimes we desire a more explicit specification.

Shaw suggest that this be made through the use of attributes. Each primitive
class is defined through a number of attributes, which may indicate form,

size, direction, etec.

This approach has the disadvantage that there does not exist any calculus for
manipulabing such attributes, and we are therefore left without help if we
want (for instance) to speak about the attributes of at+b, as inferred from

the attributes of a and b, individually.

Withvéhe ambiguity logie, we can solve this problem by using predicateé instead
of attributes. Let us return for avament to the examples with integers.

- The predicate 0dd(n) is defined to be true if the integer n is odd, and false
if n is even. For example, 0dd(3) = true. If we now declare 0dd to be a
regular predicate, we have e.g. 0dd(3 75) = 0dd(3) ? 0dd(5) = true ? true =
true. $imilarly, using the constant "odd" (+ 12 325 ? ...) from section

3.1, we have 0dd(odd) = (an infinite sequence of true's) = true.

Conversely, if we have as axioms 0dd(odd) and 1 D odd, 3 &) odd, etc.

¥

(ond also ¥t D *mda(t)), we can infer odd(1), o0dda(3), ete.

When we want an alternative to the use of attributes in picture calculus, we

use the latter direction of inference. TFor instance, suppose that we have

a regular predicate straightline of one argument, and that straightline(t) for
unambiguous t is true if t is a straight line. For example; we have -
straightline(line la), above. To express the fact that every case of the
ambiguous object linseg is a straight line, we write straightline(linseg).

For each case t of linseg, we can conclude straightline(t) in analogy with

the inference for 0dd, above.

13

Similarly, if length(s) is a regular function that eveluatcs to the length
of a line segment along its path, and % is taken as a regular predicate in
both its two arguments, then the restriction "all linsegs are at least two

length units long" is expressed through 2 & length(linseg).

This is of course only a theoretical rcmark. In an actual computer representation,
it is probably desirable to store information about primitives on a LISP-type

property-list, i.e. as atiributes.

: 3.h Recursive Definitions of Classes of Pictures

In the memos /3/ and /5/, three types of pictures are handled completely
differently:

(1) Primitive classes. They are given a name and are described by a set of

attributes.

(2) Non-recursive classes. These are classes which can be formed fram the

primitive classes thrbugh a finite number of application of the operations
+, -, X, etce BFach class is described by an expression in the PDL.

The properties of the members of a class can be deduced from this
expression, and from the attributes of the primitives in the expression,
but this has to be done outside the FDL.

(3) Recursive classes. An example is the class of pages of printed text.

Tt is impossible (or at least impracticable) to write a closed expression
for these classes. Instead, Shaw suggests (in /5/) that we should write.
a grammar which generates an infinite set of closed expressions, and
which has the property that the set of all cases of all generated

‘expressions is equal to the given recursive class.

With the introduction of predicates instead‘of attributes, it became possible
to apply predicates to expressions (case 2), so that much of the distinction
between (1) and (2) vanished. In this section, we shall demonstraté that
recursive classes can be described with the use of the ambiguity 6perator, and

completely inside the language (i.e. without resorting to a grammar).

N

We use the same example and the same elements as Shaw in /5/, fngj6, and write

down the definition immediately:

al

page o= start + lines + end
start = e+ e
v
-end = e+
v v A _ ;

lincs = line ? linc x (cL: + lines) . \
~line = words ~: enl o
cwords . o= word ?. word +e + words

word char ? char + e, + word

char

1l

a?b ?2c? 400 2y?2

eol 4 ”+ eh

i

All three recursions clearly work the same way. Let us look at the last one,
defining words from characters. Flrst by the axiom.

’aflj a?hb
we conclude that

char &) word L
lee. all cﬁaracters are words. Second by the same axlom, the newly-won
1ns1ght .and the regularlty of +, we have

char + e, + char ¢f) char + e, + word &) wcrd
i.e. any sequence of two characters is a word. That conclu51on enables us
to say ‘ , | i

char + e, + char +»ec + char &7 char:% e, + word <€) wcrd“

and so on,

As we see, groups (1) and (3) abowe are now handled in‘esseﬁtialiy the same

way. Primitive classes (1) have names, and are described by theiuse of . -
. functions and relations, e.g. "2 £ length (linseg)". Recursive classes (3)
also have names, and are described by functions and relations, e.ge. B ‘
"line = words - eol". The difference, of course, is that the relations that

describe recursive classes are less explicit.

In conclusion, use of the ambiguity logic enables us to reduce'various
notational devices in the Picture Descfiption Language to a coherent'system ’
of predicate-calculus-like notation. This could simplify the set of axioms

for the PDL and facilitate making a program for manipulating the PDL.

L.
24 -

3.

b4,

54

References

b.J. landin

A CorrespondenCe Between Algol 60 and Church's Lambda, notatlon, :

Part I : Comm. ACM 8 (1965), p. 89

John McCarthy
A Basig for a Mathematical Theory of Computation in

~ P. Braffort and D. Hirschberg (eds)

Computer Programming and Formal Systems, Amsterdam, 1963.

W.F. Miller and Alan C. Shaw
A Picture Caleculus

Erik J. Sandewall _ i e
Ambiguity Logic as a Basis for an Incremental Computer -
Fortheoming Stanford A.I. Project Memo '

Alan C. Shaw

A Proposed Language for the Formal Descrlption of Plctures

Truth-values for logicai connectives in the ambiguity logic

Appendix 1:

f = false

t = true

s = sometimes.

b

s

Truth-values:

avb ashb a?b a/b a=b adb aeb

~aAnb

t

£

L)

1]

= K

o

R x

*¥a,

—1a

L= P Gy

