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1. Introduction

On page 34, there is a list of some well-known heuristic programs.
Although a few names may be missing, the list should be sufficiently
complete to prove on thing: the interest in heuristics has increased
sharply during the last few years.

(%)

Twe approaches have been competing. In his report on SIN , Moses

characterizes them as emphasizing generality and expertise,

respectively. In the generality approach, one tries to write a
general program which can solve all kinds of problems, provided only
that (adequately phrased) information about the particular "problem
enviromment’ of each problem is provided. The'General Problem
Solver” (sic!), DEDUCOM, and the Graph Traverser are examples of

this approach.

In the approach that stresses expertise, cne concentrates instead

on writing a good program for solving problems in cne given problem
environemnt. SIN itself is a typical example of that approach, as

are game-playing programs (Samuel's, Greenblatt's), and some programs

which, according to rumour, are being used for industrial purposes.

The advanteges and disadvantages of each approach are obvious:
generality has to be paid for by a decrease in program efficiency.
An advantage with the generality approach is that one single heuristic

method can quickly be put to use in a variety of problem domains.

It would seem, however, that methods which have been developed

in one "expertise" program can be carried over to another problem
enviromment and another program. The only problem is +o pull out
the abstract heuristic methods from the program descriptions, which

are often quite technical and detailed.

3 . N - » .
(%) We shall refer to previous work in heuristics by its acronym
and/or the author's name. For exact references, use tables on

page 34 viz, page 35.
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One example of this will suffice. The SIN program contains an important
heuristic, which Moses describes as follows: "The Edge heuristic is
based on the Liouville theory of integration. In this theory it is
shown that if a function is integrable in closed form, then the

form of the integral can be deduced up to certain coefficients. A
program which employs the Edge heuristic, called Edge, uses & simple
analysis to guess at the form of the integral and then it attempts

to obtain the coefficients.” (page 8). The Edge heuristic is further

described on seventeen pages in chapter 5.

Unfortunately, the author fails to formulate this important heuristic
method in abstract terms. Such an abstract formulation could e.g.

run as follows: The purpose of the integration program is to start

from a given, initial object, and to apply the right operators (from

a given set of operators) in the right order, until the given object
has been transformed into a given target set (i.e. the set of all
expressions where the integral sign(s) have been eliminated). The Edge
heuristic relies on information which is local to this particular
problem environment, and which makes it possible to say, during the
search of the solution tree, where in the target set we will eventually
land. The Edge program utilizes this information to get a better
estimate of the remaining "distance" to the target set from each node. -
With such a description, it becomes clear that the same heuristic may
well be applicable to other problem environments, in other expertise-

oriented programs.,

Abstract method descriptions, as outlined here, can of course not

serve as substitutes for conventional ones. A concrete description, like
the one Moses has given for SIN, will always be needed by the user of
the program, or the researcher who attempts to improve on previous work.
By contrast, the abstract description is useful for the man who wants

to carry over methods to other problem environments, and (of course) for
the theoretician who, some time in the future, will attempt to build

a mathematical theory of heuristics.

The morale is, therefore, that we need an abstract frame of reference,
a set of concepts for describing and analysing heuristic methods. Such
concepts would help in the dissemination of know-how; they would alsc

make it possible to compare the efficiency of various methods and

programs, expertise-oriented as well as generality-oriented.



In this report, we shall attempt to set up such a "frame of reference',
In section 2, we formulate a general "transformation problem”, and
discuss some of its cases. In sections 3~4, various commonly used
heuristic techniques are formulated and discussed. Since we argued, in
section 2, that one-input end multiple~input operators must be carefully
distinguished, we use section 5 to extend the conventional search tree
into a search lattice. Our stock of concepts is tested in sections 6-7,
where abstract descriptions of some well-known programs and heuristic

methods are given.



2. Heuristic search: rules of the game,

The problem environments for heuristic search methods always include
a set P of objects and a set Q of operators cn these objects. The
following problem has often been studied, (see e.g. {Newell 1960c}
and {Doran 196Ta}), and has sometimes been referred to as the

problem-solving problem:

Basic transformation problem. Given an initial set R <P,

a target set M <P, determine r in R and Qs Qps <o Gy in Q
such that
qk(qk__l( qg(ql(r)) coe )

exists and is a member of the target set M. We call this a transformation

problem from R to M.

A method for solving basic trensformation problems is called a

heuristic search method if it searches the tree(s) of all possible

operator applications, and the order in which the nodes of this tree
are inspected, is governed in some ways by properties of the nodes
which have already been created. Heuristic methods require, therefore,
that the objects in P are known assymbolic expressions or otherwise
have a non-trivial information content. They cannot simply be non-
informative tokens of the Fform “pi”.

The following variations to the basic transformation problem oceur

frequently:

Operators with several outputs. The problem specification is changed

as follows. Application of an operator can return a set of objects,
rather than a single object. In the transformation process, each

output of the operator must then be transformed into the target set.

Example: In analytic integration, the target set M consists of
the set of all formulae where the integration sign does not occur.
The rule

Sa+3B at

1

Saaw + Cna
can be used as an operator q defined by

o(Sa+Bar) = (Saat, Spat)



In other words, g tells us to integrate A + B by integrating
A end B separately. (The final task of joining together the
solutions to those two integration problems with a + sign is a

trivial matter).

Operators with several input. The problem specification is changed

as follows. Initially, each member of R is considered available.
At each cycle of the solution process, one selects one operator qg

which requires i arguments, and i availeble objects

i
Pys Pps eee Bye I a(py, pps oo py)
is defined, it is included among the available cbjects. Problem:

find some available object which is elso a member of M,

Example: This variaticn frequently occurs in "forward" logical
inference, e.g. in the resclution logic environment,

It has been common practice in heuristic research to consider the
cases of several inputs or several outputs as trivial extensions
of the one-input/one-cutput case. For example, the General Problem
Solver is formulated in terms of one input operators, and then
immediately applied to a problem environment where a two-input
operator (Modus Ponens in forward proof) is essential. Similarly,
Slagle's group have attempted to use their MULTIPLE program (which
is designed for one-input, multiple-cutput operators) to the
resolution logic environment, where the most important operator

has two inputs and one output.

The fact that an operator requires several inputs can be "hidden”

in various ways. In the case of Modus Ponens, which takes

A and ADB as inputs, cne can say that the operator "essentially"
takes A B as input, so that the merit of an A - B formula
determines whether the operator shall be applied or not. If the
system decides to apply Modus Ponens to a formula A =3B, it checks
whether the formula A is availble. If it is not, the output is
"failure”. - Another, and more general way of hiding multiple inputs
is to consider the set of all available objects as a "higher level}
cbject. Similarly, the operators are redefined to accept one higher

level object as input, and to emit an incremented object as output.



The disadvantage of all such tricks is that important information
gets lost to the system. For example, with the introduction of

"higher level®™ objects and operators, one will have
ala'(p)) = q'(alp)) ( exce t when ¢'(p) - p

ié essential for the spplication of q, or g{p) - p is essential
for the application of g' ). It is hard to make traditionasl tree-
search routines "aware™ of such commutativity. In our opinion,
one should instead face the fact that scme operators take muliple
inputs, and study them separately.

Thus the failure to recognize muliple-input operators has led to
inefficient programs. It has also led to a regrettable lack of
communication: techniques which have been designed for handling
muliple~input operators (e.g. the various "strategies” for the
resolution method) have not been recognized as heuristic methods,
People seem to think that they are technical details for handling
resolution, whereas in fact they are examples of quite general
heuristic principles. One can make a parallell with the "Edge"
beuristic discussed in section 1: general principles have gone

unnoticed for lack of abstract concepts to phrase them in.

As a first step to remedy this situation, let us introduce separate

nemes for the various kinds of operators. The following terms are

believed to be illustrative:

number of inputs number of outputs name
one one perporator
one multiple diporator
multiple one ' conporator

multiple multiple” fociporator

Our second step is to introduce a formalism and a vocabulary which
enables us to deal with these different kinds of operators. The
formaelism is based on lattice theory, and requires a section
(section 5} of its own.



Qur third step will be to illustrate these general concepts and
principles by re-interpreting some current heuristic methods
(ineluding the unit preference strategy in resolution). This is

done in sections € and 7.

Some other complicaticns which may occur in the basic transformation

problem, are:

Operators with or-connected outputs. One often encounters operators

which, like diporators, yield a set of objects of outputs, but
which merely require that one of the outputs is to be transformed

to the target set. Such or-connections may occur

(a) intrinsically, e.g. "in order to prove aV b, prove a, or
prove b"(*)

(b) because the operator is ambigous, e.g. in resolution logic,
where the resolution operator takes two clauses as input and
gives one clause as output. Each of the two clauses is a set
of literals, and the operator "annihilates" (in & certain
sense) two literals, one from each input. The operator has
one output for each combinstion of literals in the two inputs,

(%)

(¢) because the operator requires a parameter, which may or may

and is therefore ambigous.

not be in the set of cbjects. For example, in order to prove
B in conventional predicate calculus, it is sufficient to prove

(%)

A eand A > B, where A 1s arbitrary.

We shall refer to all operators which yield or—connected outputs,
as ambigous. Thus (a) exemplifies an ambigous perporator, (b) an

ambigous conporator, and (¢) an ambigous diporator.

8till another complication is

Operators with restricted domain, i.e. a domain which is a proper

subset of the set P. Some possible ways of dealing with this

complication are discussed in section 3.

(%)

In example (b), we assume forward proof, and in (a) and (ec),

backward proof.
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Example. In integration, the partial integration operator is not
always applicable.

A final complication is

No back-up. In typical problem~sclving, application of an cperator
is never irrevocable: we are always permitted to back up in the
solution tree and try some other operator on a previously used
object. In some situations (e.g. the Edinburgh studies of heuristic
automata), one encounters similar problems where back-up is not
permitted. The transformation problem then boils down to the problem

of selecting the best operator in each step.

Sometimes, e.g. in planning, a back-up problem can be transformed
to a no-back-up problem, or vice versa. We therefore consider both

kinds as variants of the same basic problem.

Summing up, transformation problems can be characterized by a

couple of features, i.e.

(1) what kinds of operators? (per-, con-, di-, foci-porators)
(2) are operators ambigous?
(3) are there restrictions to the domain of operators?

(k) is back-up permitted?



3. Approaches to heuristic search.

In this section, we shall attempt to classify and name some methods
of heuristic search. Our classificiation will be put to use in the
next few sections, where some previously published methods for

heuristic search are reviewed,

In each cycle of the heuristic search process, the program should
selectone operator to use, and one object (viz. set of objects)

to use it on. Object selection seems to be performed in most cases
by either of the following two methods:

(A1) Labyrinthic methods proceed down the search tree, and have
(%)

This mechanism tells the program "this is a good branch, go

an explicit mechanism for deciding direction in the tree.

on the same direction”, or "this is a bad branch, back up --

steps and select another branch".

(A2) Dest bud methods use an evaluation function which assigns a

priority or merit to each growth direction (bud) in the tree.
At each cycle, the program tskes a global look at all the

buds, selects the best one, sprouts it, and iterates the cycle.
In the new cycle, the best bud from lest cycle is no longer

a candidate, but it has yielded several new buds. All other
buds from last cycle are candidates snew. Dack-up occurs
automatically if the new buds are unable to compete with

the stand-by buds from last cycle.

Methods (Al) and (A2) have been formulated for perporators. It is
easy to extend them to diporators. For conporators, it is sometimes
a good idea to select ome input to the operator according to a
labyrinthic or best-bud method, and then to select "best companions™
to the selected first input. We consider this the generalization of
(A1) and (A2) to multiple-input operators. A third method cathegory
for them would be

(%)

As we shall see later, we sometimes have o lattice rather thaher

than a simple tree.

10,
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(A3) DBest bud bundle methods, which use an evaluation function which

assigns a priority to each combination {"bundle") of "buds™,

and selects the best one in each step.

GPS and SIN use labyrinthic methods, whereas SAINT, the Graph traverser,
MULTIPLE, and PPS use best-bud methods. The unit preference heuristics

(strategy) in resolution is an example of a best bud bundle method.
Another (and at least in principle, independent) basis of classification
is how the program selects the operator in each cycle. The following

methods have often been used in practice:

(B1) Object(s) first, one operator afterwerds method: First select the

most promising object(s) to work upon, according to a labyrinthic
or best~-bud method. After that, find a good operator to apply to
it (them).

(B2) Exhaustive method: Select object(s) like in (Bl) and apply all

operators to it.

(B3) Object(s) first, a few operators aftervards method: A compromise

between (Bl) and (B2) a few (but not all) operators are

selected and applied to the object(s).

(Bk) Object and operator together method: Consider all possible

object-operator combinations and select one of them, using a
priority function. (This is in other words a best-bud method,

where each object-operator combination is considered as a "bud")

The MULTIPLE progrem and the Graph Traverser are examples of (DB2),
GPS and SAINT are examples of (B3), whereas unit preference and PPS

are examples of (BL).

In methods (B2) and (B3), object selection in one cycle is effectively
a choice of operator in the previous cycle. Therefore, they can be
considered as special cases of (Bl), with a very careful and time-

consuming method for operastor selection.

The four cases above are clearly not exhaustive, as it is in principle
guite possible to run an operator first, object afterward method. Also,
labyrinthic instead of best-bud selection cf operators is possible (one
would keep using the same operstor until a "back-up” or "change operator"

criterium is satisfied). However, these possibilities are probably

nasleaa ar nractinal rvehlaome
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If the number of operators is very large, or if some operators are
ambigous with a large number of alternatives, then it is not possible
to search through all possible cases. This excludes (B2) and (B4)
methods. One must first select the proper object(s), and then use

a function whith selects one or a few operators (and ways of applying
them, if ambigous). Usually, this function recognizes features in
the given object, features which determine what operators may be

suitable.

In many practicel problem environments, one encounters operators
which are only defined on a subset of the set P of objects. This
restriction has been dealt with in at least two ways, which provides

us with a classification in still another dimension:

(C1) Consider as failure. If we have heuristically selected an object

and an operator, and 1t turns out that the object is not in the
domain of the operator, then give up this branch and try something

else.,

(C2) Solve sub-problem. Let M' be the domain of the operator. Solve

the transformation problem from the given object to M', and
apply the given operator to the result. Formally, we extend the
definition of our operators, so that qlp) = q(pl), where p,
is the (possibly ambigous!) solution to the transformation

problem from p to the domain of q .
SAINT uses a type (Cl) method, whereas GPS and PPS use type (C2) methods.

In conclusion, we have pointed out three features in heuristic methods.
These features can be used to classify and characterize the methods.

They are:

(A) Mode of object selection
(B) Mode of operator selection

(C) Way of handling restricted domeins for operators.
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b, Some frequent techniques in heuristics.

In this section, we shall discuss the use of "merit orderings", plans,

and feature vectors ("images") in heuristic methods.

Use of merit orderings. Definitionwise, best-bud methods require that

there exists a way of selecting the "best” one from a set of buds. In
all best-bud~-type methods known to the author, this selection is based
on an (explicit or implicit) partial ordering > on the set P of
objects. Some maximal bud according to > (i.e. some bud o such that
no other bud satisfies b > bx) is then selected as "best bud", and is

sprouted.

In some, but not in all cases, the merit ordering > 1is implemented as

an explicit merit assignment function e, i.e. & mapping from P to the set

of real numbers., > 1is then defined in an obvious manner through
The problem of finding a suitable merit ordering for a given problem

environment is of course crucial. Often, it is thought about as an

estimate of distance. One attempts to define a function d, where

d(Pl’pB) is a rough estimate of the work (the number of operator applica-

tions) required to transform Py into Pye Similarly, one attempts to compute

D(p,B) = min d(p,b)
b &€B

for reasonable sets B. The merit function e is then defined e,g. as
e(p) = ~ D(p,M).

The use of merit orderings is not restricted to best-bud methods. In laby-
rinthic methods, the criterium for abandoning a path and trying another
may be that q(p) < p Dby some merit ordering. The GPS utilizes exactly

this heuristicsa(x)

At first sight, the idea of using a merit ordering has much eppeal. On

(%)

The name “General Problem Solver" has sometimes been criticized as
being too uninformative. It is natural to call a heuristic method
goal-directed if its merit function is defined through D. The variant
of GPS described in {Newell 196la} can then be characterized as a
Goal~-directed Perporator Search method,
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closer scrutiny, it turns out to be less than obvious. It all depends

on what kind of economy we desire.

Suppose we are solving a transformation problem for perporators, and
that we have already searched part of the tree. Then which of the

following quantities do we want to minimize in our next step:

(D1) The number of steps (i.e. operator applications) in the "solution
path” from the initial set R to the target set M?

(D2) The remaining number of steps in the "solution path" from the

selected bud to s member of the target set M?

(D3) The (remaining) number of steps, including steps that are performed

in blind alleys (i.e. the total number of arcs in the solution tree

the way it looks when we have reached M)?

(Dk) The quentity mentioned in (D3), except that if a path is trodden,
abandoned through back-up, and then resumed, the steps which are

trodden several times shall be counted as multiple steps?

If the path to the solution of the transformation problem is to be used

as a plan for a more expensive activity in another environment, then

(D1) is of course the correct criterium. On the other hand, if we are
interested in a member of M, rather than in the path to this member

{e.g. if we are searching for a solution to an integration problem),

then (D3) or (Dh) would be the correct quantity to minimize. (D3)

should be used if the entire search tree is stored in memory, and {(Dh)
should be used if the search tree isstored implicitly on the push-down-list,
so that abandoned paths are garbage-collected and all work there has

to be re-performed.

If eriterium (D1), (D3), or (DL4) is to be used. then the "merit" of

a bud is not simply a function of that bud and the target set, but
instead a function of the whole "stump" of the solution tree that has
been searched up to now. For example, if the criterium (D3) is used,
then the remaining work from a bud is affected if there exists some
other bud which has almost as much merit, and which in the future may
attract the problem-solver's attention for blind-alley work. It follows
that the idea of a merit ordering”  is sound only if we want to use
eriterium (D2) - and this is exactly the criterium for which we did

not find any obvious application.

Although theoretically shaky, the use of merit crderings seems to be
the only asvailable techuique today. If criteria (D3) or (D4) are relevant
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(which is usually the case), then the use of a distance estimate

as & merit function is even more questionable, We shall treat this
question in e later paper. But again, the distance estimate seems to
be the only technique we have.

Use of plens. Let P, Q, R, and M define a transformstion problem

for which a solution is known, and let P', Q' = Q, R', and M' define
a transformation problem which is to be solved. Assume also that
there exists some mapping h which maps P' onto P, R' onto R, etec.

in such a way that if p and q(p) ere steps in the known solution, and
if p = h(p'), then q(p) = h(q(p')). In other words, the function h
maps solutions in P' onto solutions in P. Then we can clearly find a
solution in P' by just re-tracing the solution in P(*), The solution

in P will be referred to as a plan for the solution in P',

This ideal situation probably never exists, except when h is the identity
function. However, it may be the case that the requirement -
a(p') = h(q(p)) often (though not always) holds. Then it can still be

a good strategy to try to follow the plan. If it does not work, we have
to take resort in another plan, or in the object-operator selection
methods mentioned above. (In other words, use of plans may be considered

as yet another method, (BS5), of operator selection).

Plans can be generated in several vays, e.g. by memorization of previous,
successful solutions (Doran's heuristic automaton), by human advice,

or by "look-ahead”: solution of an analogous problem in an auxiliary
problem space (e.g. in the Planner system and the PPS).

When the problem enviromment is predicate calculus, the "abstraction
function" h can e.g. be selected so as to throw away everything except
the varisbles in the formulas (planning GPS) or to throw away everything
except the boolean connectives (Planner).

(%)

To insure that we have a solution, we must assume that only members

of M' are mapped into M, i.e.
hip') €M = p' (M

Moreover, it is essential that R' is mapped onto (rather than into)
R, and that M' is mappeéd onto M.
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A third technique is

Use of images. By an image, we mean an item which expresses some,

but not all the information of an object in the set P, The image

may be for example, a vector of features in the object, or (in the
case of a LISP~type formula), the top-level structure of the object,
with lowerlevel sub-expressions being replaced by asterisks. Although
they rarely talk about it in abstract terms, many creators of heuristic
programs do in fact use such images.

Images are used for several purposes, including:

(1) as a basis for merit functions (a numerical value is assigned to
each feature, and merit is computed as a weighted average of the
feature values) or distance functions {computed as a weighted

average of "distance" between features);
(2) as objects in an auxiliary problem space used for planning;

(3) in methods of type (B3), for the selection of operators that
should be applied to a given object.

Examples: (1) game-playing programs and (with certain modifications)
Doran's heuristic automaton; (2) planning GPS, Planner, PPS; (3) GPS.

In this section, we have described and classified general heuristic
techniques, and given references from each technique to actual programs
which utilizes it. In gections 6-7, we shell build an inverse system
of references. Each sewtidn will review one heuristic program in

terms of the classification and concepts above.
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H
5. Lattices instead of trees,

Heuristic search is often referred to as tree search. However, the
tree model is only applicable to cases where all operators are
parporators or (with some extra conventions) diporators. With
ig:zorators, the need for a more general structure arises. In this
section, we shall suggest one possible way of performing the

generalization.,

Instead of a solution tree, we shall introduce a solution lattice,

For perporators, but not for diporators, the solution lattice
degenerates into a tree as usually drawn. - For a gobd introduction
to lattice theory, see {Rutherford 1965a}.

First some general notation. Let g be an unambigous operator which
is defined with one set P' € P as inputs, and which yields P" CP
as outputs. We then write P" = g(P'). For the moment, we forget

about ambigous operators.

The ordered k-tuple whose elements are By 8oy see

written <{a., 8., ese a.> . a and {a> are considered as distinct
(%) 1?72

w(b)., If B is a set of tuples, the set of last elements of members

of B is written Q(B).

8, will be

items' ', If b is a k-tuple, the last element of b is written

We now define the set S (the solution lattice) as follows:
(1) if p is an object, then {p» is a member of S;

(2) if s and t are members of S, then s M+t and syt are
also members of S

(3) see below,

Following Rutherford, we define x [y tomean x = x0 y . Also,

we assume commutative, associative, and absorptive laws for M

and U . Distributive and idempotent ( x M x = x etec.) laws for N

and U4 follow easily. Also, we f£ind that the C relation is transitive,

and that }
XCy A yEX <> xXx=Yy

(%)

Instead, we shall frequently write a when we mean {a}l .
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In dimgrams, we shall illustrate members of S as nodes, and relations

- as arcs. Arrowheads will usually not be indicated; instead, we
always position the left-hand argument of [ below the right~hand

argument. For example, xC y is illustrated as

Figure 1.

If g' = {sl, Sy wee sk} is a subset of 8, we write {ES'

for 81{7 S5 17 ess Fisk, and similarly for L}S'.
The last part of the recursive definition of S can now be given:

(3) Let S' be a subset of S for which P' = Q(S') and
P" = gq(P') for some operator q are defined. Then the triple

<£}S',q,p"> is a member of 8 for each p” in PY.

The members of Q are defined as operators on S as follows: If
P" = g(P*), P' = q(s'), 8" = {<{§S',q,p"> | p" £ 2"},

then yIS“ = q(tj st).

We now have the formal apparatus needed to express the given trans-
formation problem in lattice +teyms. First, we define the initial
set B and the target set M in S:

{ ow> | réR}

|sts & wis) &M}

R

]

'{

=it
fl

o]

Thereafter, we make it an axiom that

(Vs ts) als) s

when q(s) is defined. The given transformation problem then is equi-

valent to

Lattice transformation problem Prove that m Mo Uﬁ

The general method to solve this problem is to inspect nodes in the



19.

(usually infinite) set S, until one has identified a finite

set S'C S which forms a "bridge" between {plﬁ and {M}ﬁe
Successive nodes on this bridge are to satisfyya. C  relationship
according to the above axiom, and the desired result T - LJ R

then follows by the transitivity of [ .

At each step in the search for this "bridge”, a finite subset of S
has been inspected. This subset is not a lattice, since it does not
satisfy assumption (2) on page 17. As it is still a partially ordered

set (under (£ ), we call it the search (solution) poset.

We shall not attempt to prove the formal equivalence between the
general trensformation problem and the lattice representation, but

only illustrate the idea through a couple of examples.

Example 1. Only perporators considered. The initial situation is
illustrated in figure 2. Let us now select a node r in R and an
operator q, and extend the graph with g{r). The node r has the form
<p>, and the single new node has the form <r,q,q(p)> , where q(p)
is of course another member of P. This situation is illustrated in
figure 3. After a few more operators have been applied to various
nodes, we may obtain the situation in figure 4. Clearly, as saon
as some node s in the growing tree has a member of M as its last
component, it is a member of M, and then it has been established
that ﬂﬁ [~ U R, which was our goal. Br the pure perporator
case, the search poset proviled by the lattice formulation is

clearly identical to the conventional search tree.

Example 2. A diporator q yields two outputs. Let q(p) = {pl, 92}’
and assume that & node s such that w(s) = p, is already in the
lattice. By our assumptions, the two nodes 8, = <s,q,pl> and
52 = <s,q,p2> are also members of the lattice, and we have

s; sy, = als)
as well as

als) © s
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It is easily proved that

ﬂﬁgsl!&nﬁgsg Hﬁgslﬂse

The right-hand side of the equivalence implies that gﬂgﬁ £ s. In

i

other words, transforming both 8, and 5, to ¥ is sufficient for

trausforming s to M. For an illustration, see figure 5,

Example 3. A conporator g takes two inputs, when applied to members
of P. Let qf r114 r, ) = s, where ry and r, are members of R. The
graph is given in figure 6. To prove

15 c |Js

it is clearly sufficient to prove

?u}ﬁ — r U T, ).

A similar example, where the arguments of g are not members of R, is

illustrated in figure 7. The relation
spls, £ U

(indicated by alternating dots and lines) has been inferred from the

others, and is crucial.

Let us finally turn to the case of ambigous operators. Suppose, in
example 2 (figure 5) that q is an ambigous perporator, and that it is
sufficient to transform either P, or P, to the target set M. We
then simply redefine q(s) as 5, LJ Sy, with unchanged notation

otherwise. See figure 8, and compare figure 5.

If desired, the notation can of course be further extended to

arbitrarily complex and/or structures:

Example 4. After applying operator g to object p, we find that it is

sufficient to transform

p, or (p3 end p, and (ps or p6)) or  p,

to the target set M. S With s; as before, we then simply define

als) = s, U (55 11 5, 1 (SSUS6)) L s,

3
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Using the obvious distributive etc. laws, this expression can be

reduced to the canonical form of an ambgious diporator.

In summary of this section, we have suggested a formal and pictorial
representation of the search "trees" for arbitrary operators. Our
search lattice S is the set of all possible nodes in search space,
In the search for a solution, we gradually extend the searched

poset, which is a subset of S, until it has been proved that

o el
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6. Heuristics in the SAINT program. .

In sections 1 - 5, some aspects of heuristic programs have been
discussed. As an exercise in the use of these concepts, we shall
now give a description of Slagle’s program SAINT. We wish to
demonstrate that, with the concepts that have been introduced, the
description can be more abstract and involve less programming

details than before.

Problem environment.

The set P of objects consists of all formulas built from real numbers,
(*), and one functional:

the integration operator. The target set M consists of all objects

variables, various arithmetic functions

which do not use the integration operator. The initial set R
consists of one single object, which is given to the program on each

ocecasion of use.

The set Q consists of 4h cperators. All are perporators, except
for one diporator, the formula for the integral of a sum. Some of
the perporators (e.g. the substitution operator) are ambigous

and governed by a parameter. Most operators have a restricted domain.

Discussion of heuristic method.

It is natural to sort up the operators in Q into the following disjoint

cathegories:

a. Standard forms (26 operstors). These are perporators whose output
is always in the target set M (if the input contains only one
occurrence of the integral operator). An example of such a per—

porator is
f ¢’ av = ¢’ /1nec

Remark: the possibility to single out those operators which land

in the target set is particular for this problem environment, and

(%)

addition, subtraction, multiplication, power function,

logarithmic, trigonometric, and inverse trigonometric functions.
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does not occur in e.g. logical inference.

b, Algorithm~like transformations (8 operators). These are cperators
which, if applicable, are usually appropriate., The diporator is

one of thenm.

¢. BHeuristic transformetions (10 operators). These are operators

which may or may not be appropriate, Substitution is one of them.
Let us call these sets Qi, Q2, and Q3, respectively, and define:

Pl the set of all objects in P which are in the domain of some

operator in Ql;

P2 the set of all objects in P-P1 which are in the domain of some

operator in Q2;.

H

P3 P - PL - P2,

Objects in Pl havé a solution just around the corner, and should of
course be given top priority. For objects in P2, we know which opera-
tor should be epplied (it turns out that there is never more than
one), so such objects are given higher priority than objects in P3.
For objects in P3, several operators may be applicable, so a

heuristic search has to be performed.

Each object p stands for an expression built with functions. The
"maximum 3epth" of this expression is significant for the following
reasons: (1) the members of P1 (usually) have small meximum depth;
(2) operators often perform only a small change (one or a few units)
in the maximum depth of their input. Under such conditions, it is
reagsonable to use the depth of an expression as a gross measure of
its "distance® to the target set, and (therefore ?) to use it as a

merit function.

With this background, the heuristic method used by SAINT can be
outlined,

atoe e con i o

The SAINT program uses images = feature ¥ectors with eleven components.

Maximum depth of expression is one of them. Images are used for three
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purposes:

(a) selection of best bud (only maximum depth component used);
(b) selection of appropriate operators for a given object in P3;

(c) selection of parameters for ambigous operators.

Hendling of restricted domain.

If a selected operator is not applicable to a selected object,
SAINT just gives up. It does not try to solve a sub-problem.

Object and operator selection.

Abstractly speaking, the SAINT program uses an "object first, a
few operators afterwards" selection system, where objects are
selected with a best bud method based on a merit ordering. However,

there are certain complications to this simple scheme.
The following merit ordering is used:

p>p' iff p is a member of Pl and p' is not,
or p is a member of P2, and p' is a member of P3,
or both p and p’' are members of P3, but p has less

meaximum depth than p' has.

In each step, SAINT selects some maximal bud in the search tree
according to this partial order, and applies suitable operators to

it. The operators are selected according to the following table:

if object is in then select operator(s) from
Pl Q1
P2 Q2
P3 Q3

In P2, only one operator is usually applicable; in P3, the object’s
image determines which operators shall be selected. Notice in
particular that if object is in P2, then an operator from Q3 is
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never selected, even if the object is in its domain. The reason

is that an object in ?2 can be transformed one or more steps by
operators in Q?, and then the desired operator in Q3 can be applied
to the resﬁlt; This ie sufficient (and is in fact a good pruning
technique)ﬁ aince operators in Q2 only effect trivial modifications
on thé objecés.

Programing.

Since oﬁly one operator is applied to objects in P1 and P2, these
objects and operators can be given a separate and "algorithmic®
treatment. The heuristic search need only span objects in P3 and

operators in Q3.

Like most heuristic programs, SAINT maintains a bud list, i.e. a
list of objects to which no operator has yet been applied. This list

contains members of P3 ordered according to (the merit order) »> .

Somewhat idealized, the cycle in the SAINT program runs as follows:

(1) Take the first object on the bud list. (This is a maximum bud
in P3).

(2) Select suitable operators for this object. Apply them. The set
of results is called P",

(3) For each member of P", check if some member of QL or Q2 is
applicable. If so, apply it. If it was a member of Ql, terminate.
Otherwise, include the result in P" and reperform (3) on it.

+ .
(4) Let P be the modified P" after all Ql or Q2 operators have
been applied. Dy hypothesis, P ¢ P3. Merge P'  into the

bud list according to > .

The cycling starts in step 3 with the bud list empty, and with

P" = the given, initial object ("the given integration problem").

The occurrence of a diporator in the problem environment is a compli-~
cation. To handle this, the program maintains a "goal tree", which
is equivalent to the search poset of last section, but utilizes a

slightly different notation. On discovery of a member of QL (step (3)



in the routine) SAINT does not actually terminate, but utilizes
instead the "goal tree" to remove from the bud list those buds

that need no longer be transformed to the target set. In lattice
terms, if SAINT has proved for a node t is the search poset that

(? M € t, then it removes from the bud list all nodes t' such that
t{gg t. Also, and for the same reason, such members of P" (P7)

are thrown away. SAINT then continues the above cycle (starting in

step (1)) as long as there is anything left on the bud list.

Remarks .

This terminates our description of the SAINT program. It is based
on g rather short summary of the work on SAINT, {Slagle 1963a},
rather than the full thesis. There may therefocre be mistakes in
details of our description. However, let us repeat that the
intention with this section was to demonstrate how eractly the same
material may be described in completely different terms when it is

to be used for another purpose.,

To facilitate comparison, let us finally give a short dictionary

that translates between Slagle’s terminology and ours:

Slagle here

heuristic goal list bud list
(temporary) goal list P", P
character image

characteristic feature
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7. The unit preference heuristics in resolution.

The purpose of this section is the same as that of section 6, i.e.

to demonstrate the usefulness of abstract heuristic concepts. In
addition, we shall try to show that the so-called strategies used

in resclution are in fact heuristic methods, and amenable to the same

(%)

treatment as other such methods . Therefore, we have selected o

make a description of the unit preference strategy for resolution.

Problem environment.

Each object in the set P is a set of literals, a literal being a
symbolic expression  (NOT (Ri eee weo )) oOF (Ri vas eso Jo
The target set M has one member: the null set (i.e. the set of no
literals). The initial set R consists of a relatively small number

of objects and is given to the program on each occasion of its use.

Notice that in this case, R is given as input to the program, snd M
is fixed. In the case of SAINT, we had the opposite situation,

The set Q consits of a two-input conporator ("resolution") and a
perporator ("factoring"). Both have a restricted domain, and both

are ambigous. The ambiguities are moderate: the number of alternatives
is finite and so small that all can be tried.

B e s s

Unit preference uses images for object-operator selection., The image
of an object is an integer, viz. the number of literals in the
object. Operators can be extended to imeges in the following manner:
if the inputs to the resolution operator have images j and k, then
the cutput (if it exists) has image j+k~2. Similarly, if the input

to the factoring operator has image j, then the output, if it exists,

(*)

Feigenbaum, in his IFIP 68 paper { Feigenbaum 1968} , ergues a
similer standpoint.
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(%)

has Jj=1 as image' .

Digcussion of heuristic method.

e o

Since the target object has image zero, and the operators effect

a relatively small change on images, it is reasonable to teke the

image of an object as a crude estimate of its merit in the search
towards the target, with small images having a higher merit. Therefore,
operations which decrease the image can be expected to bring us

closer to & solution. This gives us a preference for factoring, and

for résclution when one input has image 1.

A trivial strategy would be to reduce the image to zero through
successive factorings. However, we run into problems with the
restricted domains of the operators: factoring when the image of the
input is 1 (i.e. the last step) is never possible, and in all

reasonable problems we would fail far before that.

Resolution when the partners image is 1 ("unit resolution") seems to
be a better strategy, and is what our heuristics prefers as first
choice. When it cannot be had, we perform other resolutions or
factoring a couple of steps, in the hope of achieving unit resolution

later.

Handling of restricted domain.

o awe s sv

If a desired operator is not applicable, the unit preference method

Jjust gives up.

Object and operator selection.

Unit preference utilizes abest tud bundle method, where a suitable

operator and its input(s) are selected together. The system makes

implicit use of a merit ordering >  defined as follows on I L!Igz

-

* . . .
(*) It may accidentally happen that the image of the output is less

than (but never greater than) j+k-2 viz. j-l. Such accidents

are rare and do not affect the heuristics.
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numerical relationship merit ordering
( < means "less than") ( > means "better than")

i
j<m - {1,i} > {1,m} eeo (1)
k#1, m#1 - {1,i} > {k,m} eeo (2)
k #1 - {1,j} >k eoo (3)

if i,j,k,m all are # 1, we have:

i+j < k+m or 1 ,

> {1,3} > {k,m} ooo ()
i+j = k+m, min(i,j) < min(k,m)
i+§ < x - {i,j} > x eos (5)
k < i+j - k> {i,j} eao (6)

For example, we have

{1,2} > {14} > 2 > 3 > {2,2} > k > {3,2} > ...

cee > T > {6,2} > {5,3} > {4,bk} > 8 > ...
The relation > 1is extended to P L!P2 in the obvious way.

In each cycle, unit preference uses > to select one maximel object
or object-pair and applies the correct operator (factoring in the
case of an object, resolution in the case of an object-pair) to it.
In case of ambiguity, all alternatives are treated with the same
priority. If operator application in some alternative is successful,
and the output has higher priority than the input (and therefore,
higehr priority than the other alternatives processed togeth:r with
this one), then the higher priority is honored irmediately.
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Programming.
Although our reference says little about the actual program that
performs the unit preference heuristics, the following are some
suggestions for such a program.

The progrem utilizes lists L., Lg,

all generated objects with image j, together with the following

coe Lj’ eoo o Where Lj contains

information for each object:

(1) has factoring been attempted on this object?

(2) if factoring is ambigous, for which cases has it been

attempted?

(3) with what other objects has resolution been attempted?

(4) 1if resolution is ambigous, for which cases has it been
attempted?

The answers to these questions can be represented as follows:

(1) for each list Lj, where J < 2, a pointer indicates how far
down the list factoring has proceeded;

(2) for the pointed-at element of each list Li’ the attempted
alternatives are listed. (For all other slternatives of Lj’

either none or all alternetives have been attempted);
and similarly, for each object pjm on each list Lj’
(3) for each list Lk’ where k < j, a pointer indicates how far

down Lk resolution with pjm has been attempted;

(4) for the pointed-at element of each list L, , the attempted

alternatives are listed.

With these conventions, programming is straight-forward.

The images used by the unit preference method have a noteworthy
property: the image of tke output of an operator is a function of the
image(s) of the input(s), if the operator is spplicable; but the image

does not contcin enough information to determine applicability. This
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"semi-deterministic" property has otherwise been characteristic of
planning methods, notably planning GPS, and PLANNER. As a result of
some present work, we believe that semi-deterministic images have

interesting theoretic properties.

Pruning criteria.

The unit preference heuristics should only be used in combinaticn

with various pruning criteria, such as:

(1) Restriction on search depth. The depth of an object is the
number of resolutions that was required to construct it.
Objects of depth > k

rejected;

0 (where kg is a fixed parameter) are

(2) Set of support strategy. A subset T of R is singled out as
Yessential initiel objects", and nodes p in the search poset

which satisfy

p £ U(ﬁ-u'?}

are given zerc merit;

(3) Rejection by pattern. Objects p which conform to certain
patterns (e.g. contain two literals of the form A viz.
(NOT A) ) are rejected.

We have then made a distinction between heuristics (i.e. rules
which govern the order in which the solution 1lattice is searched)

and pruning criteria (which are extreme cases of heuristic rules

since they cut off some "branches" altogether). In the resolution

literature, both heuristics and pruning criteria are called strategies.

Pruning criteria can formally be treated as further restrcition on

the domains of cperaters. The first two pruning criteria above can

(alternatively) be implemented by using images <j,d,s> , defined

as follows:

If p is a member of the initial set R, p’s image is <j,d,s>, where
J is the number of literals in p;

d 1is zero;

s 1is the truth-value of p £ 7
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If p was derived through resolution, and the imagss of the inputs

were <jl,dl,sl> and <32,d2,32> » then the image of p is <j,d,s>,
where

J=dy v -2 (the number of literals in p)

d = max(dl,&g) +1

g = Sl A 52

Finally, if p was derived through factoring, and the image of the

input was <j,d,s>, then the image of the output is <j-1,d,s> .

When the partial order > is extended to triples <j,d,s> and
pairs of such triples, the following items are considered as

zeroes (i.e, < all other items) and therefore rejected:
<j,d,s> when (4 > ko) V . s
{ <jl,dl,sl> , <32,d2,52>} when
(@, > k) Ve, >k)V ~ (s

1 7 sp)

With these exceptions, the order > treats <j,d,s> 1like j, and

{(:Jl:dlasl) 2 <323d2382>} like {JlBJe} 4

Notice that if we ignore the accidents mentioned in the footnote
on page 28, both operators are semi-deterministic on these extended

images.

Modification: the fewest-component preference heuristics.

Slagle has proposed to streamline the unit preference heuristics into
a fewest-component preference method. The idea is to change the
definition of the merit order so that the special preference for
pairs {1,j} is dropped. The details are: in the sbove definition
of >, drop rules (1) through (3), and use rules (4) through (6)

even if some of i,j,k, or m equals one. For the redefined > s WE

have e.g.

{1,1} > 2 > {1,2} > 3 > {1,3} > {2,2} > L4 > ...
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8, Conclusion.

We have defined a number of concepts which are useful for the
compact and abstract definition of heuristic methods. For illustra-
tion, these concepts have been applied to two well-known methods.
Examples of their compactness can be found on pages 26 (Slagle’s
AND/OR tree pruning), 31 (set of support strategy) and 32 (fewest-
component preference heuristics). We have argued that abstract
descriptions of similar kind will be useful as complements to

conventional descriptions of heuristic programs and methods.
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