LISP A: A lisp-like system for incremental computing

by ERIKJ. SANDEWALL

Uppsala University
Uppsala, Sweden

BACKGROUND: THE LISP LANGUAGE

The work reported here is based on the LISP 1.5 pro-
gramming language. Let us therefore begin with a
short review of LISP 1.5. Those who have used LISP
would be able to proceed directly to the section OUT-
LINE OF THE SYSTEM.

All data in LISP are in the form of S-expressions,
i.e., correctly parenthesized expressions, whose ulti-
mate components (atoms) are similar to FORTRAN
variables or constants. Thus

((A 3.14 BETA)((GAMMA)(T345)))

is an example of an S-expression. Its sub-expressions,
e.g.,

(A 3.14 BETA)
(GAMMA)

etc., down to and including the atoms A, 3.14, etc. are
also S-expressions.

Inside the computer, each S-expression is represen-
ted as a list structure, i.e., as a system of address
references between cells in core. This need not worry
us here.

For each atom, there is a property list, on which
characteristic facts about the atom may be stored. One
atom may have several properties, and they are there-
fore distinguished through the use of attributes. A
property-list is essentially a collection of attribute-
property pairs. Any atom may be used as an attribute,
and any S-expression as property.

So much for data. The program in a LISP job is
also written as an S-expression. This makes it possible
for a program to modify itself. The program is usually
interpreted at run time, rather than compiled.

The format for writing expressions in the program is
exemplified through

(PLUS A 3.14 MINUS C) (TIMES F (PLUS G H)))

which would mean the same as the FORTRAN ex-
pression

375

A+3.14+(=C)+F*(G+H)

Thus functions in LISP are always prefixed to
their arguments, and always stand immediately after
a left parenthesis. Usually, functions for manipula-
tion of S-expressions dominate in a LISP program,
and arithmetic functions like the ones in the example
are only sporadically used.

There are two ways to write the program, either
as a FORTRAN:-like, step by step program, or as
one single expression. In the former case, we may use
atoms like statement numbers, and write GOTO
statements in the format of (GO POSITION). In
the latter case (which is considered more ‘‘pure’),
conditional expressions and recursivity are used,
and virtually eliminate the need for assignment state-
ments, goto statements, etc. The statement structure
collapses, and the ‘‘program” degenerates into one
single expression, that is to be evaluated.

The present work is based on the latter type of
“program’’.

As a subroutine-like feature, it is possible to define
in LISP new functions in terms of elementary or
previously defined ones. Suppose F1, F2, and F3
are defined as functions, and we want to define G as a
function in such a way that the value of

G X Y
is identical to the value of
(FIL(F2X)(F3Y))

for any X and Y. Through the use of a certain elemen-
tary function, we put the S-expression

(LAMBDA (X Y)(F1(F2 X)F3Y)))
on the property-list of the atom G and (usually) under

the attribute EXPR. The atom LAMBDA plays a
special role in the system, and must always be there.

376 SpringJoint Computer Conference, 1968

It is important to distinguish between the S-
expression

(FI(F2XXF3Y)

on one hand, and the value of this expression, when it
is used in a (or as a) program, on the other hand. In
the former case, we are referring to a piece of data,
which is passive, and which is only potentially a pro-
gram. In the latter case, we are referring to the out-
put of a program. In this paper, we shall always lete.g.,

(FL(F2 X)XF3Y))

refer to the S-expression itself, not to its value. If we
want to refer to the value, we shall write either

“the value of the S-expression (F1 (F2 X)(F3 Y))”
or, conforming with mathematical notation,
f1(£2(x), f3(y)).

Note that the function symbols are now outside the
parentheses that enclose the argument(s).

For further information about LISP 1.5, the reader
is referred to John McCarthy’s original article,’
to the LISP 1.5 manual,? or to a recent textbook.’
It may also be worthwhile to study some programs
that have been written in LISP, as reported in e.g.*¢
What has been said here should however be sufficient
to get some grasp of the present paper.

Outline of the system

LISP A is an extended and modified version of
LISP 1.5. Its main characteristics are:

1. Atoms for sets of objects

If an atom has certain properties on its property-
list, the system recognizes it as a symbol for a set of
objects. Such an atom is called an ambject. For ex-
ample, we might have an ambject BOY for “the set
of all boys”.

As ambjects stand for sets, their property-lists may
e.g., contain references to other ambjects that stand
for subsets or supersets of the given set.

2. New: symbolic functions

Besides the types of functions used in LISP 1.5
(i.e., machine-coded SUBR’s and FSUBR’s, and
LAMBDA-expression EXPR’s and FEXPR’s),
LISP A recognizes symbolic functions, which are
evaluated in a special way. Let FATHER be a sym-
bolic function. When LISP A evaluates the form

(FATHER JOHN)

it assumes the atom JOHN to have an ambject as
value,™® and returns as value a new ambject which
has the ‘“meaning” list (FATHER JOHN) on its
property-list under the attribute MEANING.

Symbolic function are used for building up data
structures. They can be combined freely with other
types of functions. Thus it could be sensible to eval-
uate the expression

(DESCRIBE (FATHER JOHN)).

The symbolic function FATHER creates an amb-
ject for ‘““the father of John™ (unless such an ambject
is already there, in which case it is retrieved, rather
than re-created). The ordinary function DESCRIBE
is defined through ¢ LAMBDA-expression, and it
digs into the data structure to create a description
of its argument.

Likewise, it might be sensible to evaluate the S-
expression

(SETTRUE (ISFATHER DICKJOHN)).

Here, ISFATHER is a symbolic predicate, which
is a kind of symbolic function. An ambject generated
by a symbolic predicate can have an indication about
truth or falsehood on its property-list. The ordinary
function SETTRUE sets an indication that its argu-
ment is true, and it may also be defined to perform
some inference from this fact.

3. New:RHO-expressions

There is still another type of functions, namely
RHO-expressions. They have in principle the same
form as LAMBDA-expressions, but they work quite
differently. If

fn=p((x,y) g(x,y))

and (FN A B) is evaluated with A and B ambjects,
then the system will essentially apply the function
G to each combination of members of A and members
of B. In other words, (FN A B) performs: “‘for each
X in A and each Y in B, evaluate (G X Y)”. The
facts “X is in A" etc. must of course be retrieved
from the property-lists of the ambjects A and B.

* [t is convenient to make the convention that all ambjects have
themselves as values. Thus when the system evaluates
(FATHERJOHN)
it first evaluates the atom JOHN, which is an ambject and has
itself as value. This means that
father(john)
and
fatherQOHN)
are identical.

LISPA 377

4. RHO-expressions are triggered automatically.

The system takes two actions when evaluating an

expression like (FN A B) above:

41. It evaluates (G X Y) for each X that is presently
known to be in A, and each Y that is presently
known to be in B.

4.2 It stores away the expression (FN A B) in the
data base. Subsequently, each time a new Xi is
added to the cases of A, the expression (G X; Y)
is evaluated for each Y in B. The symmetric
action is taken when a new Y; is added to the
cases of the B.

For example, we might evaluate

p((x) print(describe(x))) (cousin(Peter))

where DESCRIBE has been defined before;
COUSIN is a symbolic function. cousin (Peter) is
an ambject that stands for the set of
all Peter’s cousins;
and the RHO-operator will cause a description to be
printed for each one of Peter’s cousins that the system
has recognized, and each cousin that it later recog-
nizes.
Another example is
p((x) settrue(admire(x,father(x))))
(boy N discussed-obj)

where FATHER and BOY have been defined before;
ADMIRE is a symbolic predicate;
SETTRUE has been defined before;
DISCUSSED-OBJ is the set of all objects that
are currently interesting to the system. This is
a kind of heuristic information.

For each boy who is also a discussed object, this
operator will assert that the boy admires his father.
The situation might be that every boy admires his
father, but that we only want to execute the inference
for those boys that attract our interest in particular.

In these examples, the RHO-expressions were
used for their side-effects. After we have given an
interpretation of rho-expressions in terms of the sets
they take as arguments, we shall be able to evaluate
them for their value as well. This is discussed in sec-
tion SEMANTICS OF RHO-EXPRESSIONS.

5. Expressions can be treated as objects

The symbolic function SYMQUOTE makes it
possible to form sets of expressions, and to manipulate
those sets. SYMQUOTE creates an ambject, that
stands for another ambject. (Does this sound confus-
ing?) Remember that the value of e.g. the S-expression

(FATHERJOHN)

is an ambject that stands for John’s father. The value
of the expression

(SYMQUOTE (FATHER JOHN))

is an ambject, that stands for the ambject, that stands
for John’s father. Iterated quoting is permitted (but
probably rarely useful).

The function SYMQUOTE should be distinguish-
ed from the function QUOTE in ordinary LISP.
(QUOTE is also defined in LISP A). To take an
example, the value of the expression

(QUOTE(FATHER JOHN))
is the S-expression
(FATHER JOHN).

This S-expression then has not been evaluated:
The purpose of QUOTE is to prevent its argument
from being evaluated, and to return it as it is. On the
other hand, if we evaluate

(SYMQUOTE(FATHER JOHN))
we do first evaluate
(FATHER JOHN)

and obtain an ambject as value. After that, SYM-
QUOTE takes the argument and creates a new amb-
ject just like any other symbolic function.

There is one important difference between SYM-
QUOTE and other symbolic functions, however.
This has a philosophical parallel. If we know that
Dick and John’s father are identical persons, we can
conclude that the wife of Dick and the wife of John’s
father are also identical. However, we can not claim
that the linguistic expression “Dick™ and ‘“John’s
father” are identical. One consists of four letters,
the other of eleven.

The function SYMQUOTE performs exactly that
kind of quoting. Thus for any symbolic function fn
except symquote, we would have

a=b D fn(a)=fn(b)

In conclusion, the value of the expression
(SYMQUOTE DICK)

is an ambject that stands for the ambject Dick; the
value of the expression

(SYMQUOTE (FATHERJOHN))

is another ambject and stands for the ambject
father (John).

378 SpringJoint Computer Conference, 1968

SYMQUOTE can be used to speak about expres-
sions that are already in the data base. For example,
it makes sense to form the set of all ambjects obtained
from the evaluation of

(FATHER JOHN)
(FATHER LUCIA)
(FATHER PETER)

etc. If this set is called FATHEREXPRESSION, it
would be correct to evaluate e.g.

(SETMEMBER (SYMQUOTE (FATHER JOHN))
FATHEREXPRESSION).

Here, SETMEMBER is an ordinary function that
declares its first argument to be a member of its
second argument. It can be compared to SETTRUE
which was used above.

6. Thanks to SYMQUOTE, LISP A “knows what it is
doing”, each time it uses a symbolic function.
If FATHER is a symbolic function like before,
and the system evaluates the form

(FATHER JOHN),

it will create (or retrieve) two ambjects:
6.1 An ambject fj with the meaning ““John’s father”,
6.2 An ambject gfj with the meaning ‘‘the ambject
f-"?'
The ambject gfj is identical to what would have
been obtained as the value of

(SYMQUOTE (FATHER JOHN)).
The LISP A system returns fj as the value of
(FATHERJOHN),

but before that, it has automatically performed the
operation

(SETMEMBER (SYMQUOTE (FATHER JOHN))
FATHEREXPRESSION).

In this way, each RHO-expression that has pre-
viously been evaluated with FATHEREXPRES-
SION as one of its arguments, will now be given
a chance to operate on qfj. In other words, the system
is able to take care of operators that say ‘“‘whenever
you see an expression where FATHER occurs as
the leading function symbol, do the following: —".
The action done may be some logical inferences, or

some external action like a printout.

7. LISP A is an incremental computer

In ordinary use, the behavior of the LISP A system
is governed by the RHO operators. The evaluation of
one operator may trigger another, which in its turn
triggers several other operators. (The question wheth-
er the resulting trees shall be handled on a depth-
first or a parallel basis, is discussed in section IMPLE-
MENTATION). All operators are given to the
LISP A system independently, and they communi-
cate through the changes they make in the data base
(= the system of ambjects). There is no single, deter-
ministic program. For these reasons, we characterize
the LISP A system as an incremental computer.
(This term was introduced in an article by Lombardi
and Raphael.” For a discussion of their system, see
section OTHER INCREMENTAL COMPUTERS,
(towards the end of the paper).

8. LISP 1.5 is (almost) a subset of LISP A

Some small and unimportant changes have been
made to LISP 1.5, but in general, everything that
can be done in LISP 1.5 can be done on almost
identically the same form in LISP A. The differences
are described in section DIFFERENCES FROM
LISP 1.5.

Examples of ambjects and symbolic functions

Before we proceed, let us specify the interpretation
of ambjects and symbolic functions more in detail.

Rule 1. All ambjects in the LISP A system stand
for sets that consist immediately of objects. There
is no obvious way to represent the objects them-
selves as ambjects, nor to represent sets of sets.

Example. The ambject ESKIMOO would stand for
the set of all individual eskimoos.

Example. The ambject JOHN would stand for the
set whose only member the person John is.

Rule 2. All symbolic functions take sets as argu-
ments and yield new sets as values.

Example. The ambject

father(JOHN)

stands for the set whose only member John’s father is.
Example. The ambject

father(JOHN U NILS)

stands for the set that has John’s father and Nils’
father as members. If John and Nils happen to be
brothers, the set has of course only one member.

Example. Let the symbolic function DRIVERS be
defined in such way that, if CAR4 stands for the set
of one particular car, then

LISPA 379

drivers(CAR4)

is the set of all persons that ever drove this car. If
X-CO-CAR is the set of all cars owned by X Co., then

drivers(X-CO-CAR)

is the set of all persons that ever drove some of their
cars.

Example. Let the symbolic function BELONG-
INGS be defined such that e.g.

belongings JOHN)

stands for the set of all objects that belong to John.
If CAR stands for the set of all cars in the world, and
X-CO for the set whose only member X Co. is, then
we have

X-CO-CAR =CAR N belongings(X-CO)
and therefore of course

drivers (X-CO-CAR)=
drivers(CAR N belongings(X-CO))

Remark. The functions FATHER, DRIVERS, and
BELONGINGS all satisfy

fn(a U b)=fn(a) U fn(b) ;

this rule is characteristic of symbolic functions.

One predicate!™ is important. It takes one argument
and says that its argument is a set of exactly one mem-
ber. Clearly, we have

*a D *father(a)

but not

*a D *drivers(a)

nor either
*a D *belongings(a).

Remark: The fact that the LISP A system only
“thinks about” sets of objects, never objects them-
selves, means that we have to reinterpret some state-
ments made in section OUTLINE OF THE SYS-

TEM. Thus the function SETMEMBER must be
defined in such a way that evaluation of

(SETMEMBER A B)
assertsthat*a Aa C b.

Semantics of RHO-expressions
Like before, let

f=p((x,y) g(x,y)).
We shall interpret
f(a,b) as Urea Useb g({r}, {S})

In plain words: Let a and b be sets. Select an arbi-
trary r that is a member of a, and an arbitrary s that is
a member of b. Form x = the set whose only memberr
is; y = the set whose only member s it. Construct the
object g(x,y). This is a new set. Form the union of
all such sets. The result is f(a,b).

From this, it inmediately follows:

*a A *b D p((x,y)g(x,y))(a,b) =g(a,b) (RD)
f(a, U a,, b)=f(a,,b) U f(a,,b) (R2)
if f is a RHO-expression, and similarly
for the second argument.
Consequently,
a, C a, D f(a,,b) C f(ay,b) (R3)

if fa RHO-expression

This interpretation immediately generalizes to oth-
er rho-expressions with an arbitrary number of argu-
ments. With this background, it is clear that the follow-
ing ways of handling set-inclusion, RHO-expressions,
etc., are sound:

1. Each ambject A has properties on its property-

list under the following attributes:

SUBSET The corresponding property is
a list of all subsets of A(*). This

includes A itself.

The corresponding property is a

list of all sets that have A as a

subset. This includes A itself.

A flag which, if present, indi-

cates that A has exactly one

member.

The corresponding property is

essentially (see below) a list of

all expressions on the form
(FN..A..)

where the leading function, FN,

is a RHO-expression, and A

occurs as one argument.

SUPERSET

STAR

OPERS

380

Spring Joint Computer Cbnfercnce, 1968

2.

To evaluate a form whose leading function is a

RHO-expression, we do as follows:

2.1 Evaluate the arguments. They should all
yield ambjects Al, A2, ... Ak.

2.2 Create an ambject that is later to be returned
as the value of the whole form. Give it a
suitable MEANING property. (2.1-2.2 is
the same treatment as is given forms with
symbolic functions).

2.3 Add the ambject created in (2.1) to the
OPERS property of each argument Al,
A2, .. Ak. (To be precise, the OPERS
property of an ambject A is therefore a list
of ambjects, each of which has a MEAN-
ING property which is a form with a RHO-
expression as leading function and A as
one of the arguments.)

2.4 Consider each argument Ai. Its SUBSET
property is a list of ambjects Ail, Ai2, ...
Aiki. Each such Aij stands for a subset of
Ai. By checking for the occurrence of a
STAR flag, select those Aij which have
exactly one member, i.e., which satisfy
STAR flag, select those Aij which have
exactly one member, i.e., which satisfy *Aij.

By forming various combinations of such Aij,
we now notice that from law A1 above,i. e.

*a A *b D p((x,y)g(x,y)) (a,b) =g(a,b)

follows
*a A *b D p((x,y)g(x.y)) (a,b) =
A(x,y)g(x,y)) (a,b)

We generalize this from two arguments a,b, to
k arguments Al, A2 ... Ak, and decide on the
following method:
2.5 Evaluate all expressions
(FL Alm; A2m,. .. Akm,)

where FL is the original RHO-expression,
except that the RHO has been changed into
a LAMBDA, and each Aim; is a one-
member subset of the argument Ai.

2.6 In step 2.5, we obtain one ambject as value
for each possible combination of one-
member subset. By virtue of rule R2 above,
each such ambject is a subset of the ambject
created in (2.2). Mutual references are there-
fore put on the SUPERSET viz. SUBSET
properties.

3.1 Checks whether the fact a C b is already
known (i.e., whether the ambject be is al-

A Y
* More precisely, is a list of all ambjects, that stand for subsets
of the set that A stands for.

ready on the SUPERSET property of a).
If so, it returns; otherwise, it continues.

3.2 Adds each member b’ of the SUPERSET
property of b (including b itself) to the
SUPERSET property of a. If we know
*a (i.e. if a has the flag STAR), we also apply
the operators of b’ to a; see step 3.4.

3.3 Adds each member a' of the SUBSET
property of a to the SUBSET property of b.
If we know *a’, we also apply the operators
of bto a’, see step 3.4. Then return.

3.4 To apply the operators of b'’ to a’, first
retrieve the OPERS property of b"’. It is a
list of ambjects whose MEANING proper-
ties are forms

(F1...... B''..)
F1 is a RHO-expression. It would be pos-
sible and legal to re-evaluate these RHO-
expressions as described in step 2.4-2.6.*
In step 2.5, where we form all combinations
of one-member subsets, we would then
obtain combinations where a'’, the one-
member subset of b’’, is included, which is
what we desire. However, we would also
obtain combinations where other subsets
than a’’ are used, and these combinations
have already been considered. To avoid
this inefficiency, we first put the SUBSET
property of b’’ on the push-down-list, and
replace it with another property that only
contains a''. After that, all forms on the
OPERS property of b’’ are evaluated, and
finally the old SUBSET property is restored
from the push-down-list.

4. There is a function SETSTAR, which is similar
to SETSUBSET. It puts the flag STAR on its
sole argument, and triggers the necessary
operators. The details are analogous to those for
SETSUBSET.

The above algorithm can be considered as an en-
codement of the rules R1 -R3 for RHO-expressions
and the * predicate, as given at the beginning of this
section. As each occurrence of a symbolic function
is reported via SYMQUOTE and may trigger opera-
tors, axioms for symbolic functions and predicates
may be encoded as RHO operators.

Logic with four truth-values
We agree that a symbolic predicate should be a

special kind of symbolic function. It is desirable that

*Step 26 must be slightly modified; the ambject created in step 25
is now to be a subset of the ambject that carries the RHO-expres-
sion i.e. the ambject on b”:s OPERS property.

LISPA 381

the difference between predicates and other functions
should be kept as small as possible. In particular,
to make it possible to use predicates inside RHO-
expressions, we should let the value of a symbolic
predicate be a set of truth-values.

Let ¢t and f be the original truth-values, defined on
relations between objects. Introduce the sets

T={t}

F={f}

S = {1, f} (stands for ‘‘sometimes”’)
={}

It easily follows

*PAPCTDOp=T (R4)

This rule is important and will be used below.

We now extend the ordinary logical connectives
to this four-valued logic. The connectives shall
satisfy the general axiom fn(a U b) = fn(a) U fn(b),
so we have e.g.

TVT={} Vv {t}={}=T.
TvS={ Vv{tfl=
{1 v u{hH=

ey v{ihuddevih=..
TUT=T

Let us not here delve further into this logic. One of
our early examples of the use of RHO-expression was

p((x) settrue(admire(x,father(x))))

(boy N discussed-obyj).
If we assume the very reasonable axioms

*a D *father(a)
and
*b A *¢ D *admire(b,c),

we can re-write the operator on the equivalent form

settrue(p((x) admire(x,father(x)))
(boy N discussed-obj)).

If we evaluate the operator in this latter version,
the following will happen (although not necessarily
in this order):

1. The ambject boy N discussed-obj is evaluated
and assigned some properties by operators that
are triggered by the use of the function N.

2. The RHO-expression is applied to its argument.
A new ambject, af, is introduced.

3. The function SETTRUE is applied to af, which
is then set equal to the set T through a property.

4. Let r be an ambject which has obtained the flag
STAR, and which has the ambjects BOY and
DISCUSSED-OBJ on its SUPERSET prop-
erty. When the last of these three conditions
becomes satisfied, the above RHO-expression
will be triggered. The system evaluates father(r)
and admire(r,father(r)). These will of course be
new ambjects. If the above axioms are properly
encoded, the system will put the flag STAR on
them. Moreover, by the specification of how to
handle RHO-expressions, the system will eval-
uate

setsubset(admire(r,father(r)), af),
where af is the ambject introduced in step (2).
By rule (R4) above, the ambject admire(r,father
(r)) will be set EQUAL to af and therefore to T.
This was one example of how RHO-expressions can
sometimes be evaluated for their value, rather than
for their side-effect.

Differences from LISP 1.5

Through the introduction of new types of func-
tions, the traditional means of handling functions
in LISP become inconvenient. We found an alter-
native system of conventions, which may have some
interest in itself.

The association-list in ordinary LISP assigns values
to atoms. The value may be a FUNARG - expression
(in which case the atom can be used as a function
symbol) or an arbitrary S-expression (in which case
the atom can only be used as the argument of some
function).

On the association-list, it does not matter whether
an atom stands for a function or something else, but
in other parts of the LISP system it does. On property-
lists, functions are defined as EXPR-properties or
FEXPR-properties; other values as APV AL-proper-
ties. If the atom G has the EXPR-property gg, then
the two expressions

(FUNCTION G)and
(FUNCTION gg)

are equivalent, but if the atom A has the APVAL-
property (aa), the two expressions

(QUOTE A)and
(QUOTE aa)
are not at all equivalent.
In LISP A, the distinction between functional and
other values is abolished. This leads to the following
consequences:
1. The pseudo-function FUNCTION is super-
flous. We use QUOTE instead.
2. When LAMBDA-expressions are used directly
in forms, they must be quoted. To avoid con-

382 Spring Joint Computer Conference, 1968

fusion, we introduce the symbol ETA to be used
instead of LAMBDA. Thus the following would
be a correct form:

((QUOTE(ETAXY)(........)

3. When function definitions (e.g. LAMBDA-ex-
pressions) are named by atoms, they are put as
APV AL-properties (viz. as VALUE-properties
in PDP-6-LISP-type implementations).

4. Different kinds of functions, which were pre-
viously distinguished through their attributes
(EXPR, FEXPR, SUBR, etc.) must now be
distinguished some other way. We use the follow-
ing transformations:

4.1 A previous EXPR on the form
(LAMBDA ab)
is re-written on the form
(ETA ab)
4.2 A previous FEXPR on the form
(LAMBDA (al a2) b)
is re-written on the form
(PHI al b).
4.3 A previous SUBR is re-written on the form
(ECODE. a)
where a is the starting address for the ma-
chine code routine.
4.4 A previous FSUBR is re-written on the form
(FCODE.a)
with a as for ECODE.

5. The general evaluation function for LISP A,
evala, evaluates the leading function of a form
just like any of the arguments. It therefore be-
comes possible to evaluate the expression for
a function immediately before it is used. For
example, we can write

((DERIVATIVE SINE) X)

where (DERIVATIVE SINE) evaluates into
the value of COSINE™ which is then applied to
the value of X.

The above changes have the obvious advantages
of preparing the ground for the two types of functions
in LISP A: symbolic functions and RHO-expressions.

@ The value of the atom SINE is most likely an expression
(ECODE . a). The function DERIVATIVE takes this as argu-
ment and uses it in an expression of the type

derivative (f) =
[7 A else
if f=sine then cosine else
The value of (DERIVATIVE SINE) is therefore an expression
(ECODE . b), which also happens to the value of the atom
COSINE.

To increase compatibility with LISP 1.5, it is pos-
sible to define functions LAMBDA and LABEL as
PHI-expressions. If we let the value of the atom
LAMBDA be

(PHI R (CONS (QUOTE ETA) R))

we can use LAMBDA-expressions as leading func-
tions in forms, just like in LISP 1.5 (LAMBDA-
expressions that were EXPR’s or FEXPR’s must of
course still be transformed into ETA- or PHI-
expressions). A similar definition of LABEL becomes
a little bit more involved.

Implementation

A preliminary version of evala, the evaluation
function in LISP A, was coded in ordinary LISP
for the PDP-6 computer. That version lacked some
facilities that have been described here. Most impor-
tant, it only permitted RHO-expressions to be evalu-
ated for their side-effects, not for their value. On the
other hand, there were some additional facilities in
that system.

A modernized version of evala according to the
specifications in this report is currently (March,
1968) available in LISP for the CD 3600 com-
puter.

The crucial feature in these implementations was
the use of a queue for expressions-to-be-evaluated.
The need for this arises e.g. when we handle RHO-
expressions that contain one or more occurrences
of symbolic functions. Such a RHO-expression is
triggered by the evaluation of an expression

(SETSUBSET

it itself triggers evaluation of similar expressions (e.g.,
when SYMQUOTEJd expressions are set as subsets
of larger sets). Obviously this process may continue
in a chain or tree. At each step, several new RHO-
expressions may be triggered.

The order of evaluation of such expressions can be

chosen in several ways:

1. Depth-first. If evaluation of expression e trig-
gers expressions f1, 2, ..., fk, we first evaluate
f1 and all its consequences to the end of the tree;
and only then start to evaluate f2.

2. Queueing. We keep a queue of expressions that
are to be evaluated. If e triggers fl1, f2, ..., fk,
these operations are put at the end of the queue,
and the evaluation of all is postponed until the
expressions before them in the queue have been
handled. When we reach f1, we put the expres-
sions that it triggers at the end of the queue;
proceed to f2, etc.

3. Queueing with priority. This is like (2), except
that expressions which are deemed particularly

LISPA 383

significant, are permitted to step into the queue
at some point other than its end.
Other alternatives, and more sophisticated ones,
are also possible. In our implementation, we have pre-
ferred the ““queueing with priority” scheme.

Other incremental computers

The System by Lombardi and Raphael.

The idea to use LISP as the basis for an incremental
computer is not new; it was originally put forward by
L. A. Lombardi and B. Raphael.” They describe a
modified LISP system which can (in some sense)
evaluate expressions, even when the values of some
variables have not been specified.

Lombardi and Raphael specify three key require-
ments for an incremental computer. We shall relate
the present work to theirs by discussing whether
LISP A satisfies those requirements. The first of them
is:

“The extent to which an expression is evaluated is
controlled by the currently-available information
context. The result of the evaluation is a new expres-
sion, open to accommodate new increments of perti-
nent information by simply evaluating again with a
new information”.

In LISP A, we can write expressions which satisfy
this by using RHO-expressions. (We can also avoid
paying the cost for it by using LAMBDA-expres-
sions.) The “current information context’ for forms
with a2 RHO-expression as their leading function is
information about subsets of the arguments in this
form. We would say that the form has been completely
evaluated when all one-member subsets of all argu-
ments are explicitly known, and all combinations of
them have been considered by the system. Usually,
this is not the case, and evaluation is performed to an
extent “controlled by the currently-available informa-
tion context™.

As we have seen, forms with RHO-expressions are
stored away in such a way that they are “‘open to
accommodate new increments of pertinent informa-
tion” about subsets.

The LISP A system does not satisfy Lombardi and
Raphael’s second requirement (‘“‘algorithms, data, and
the operation of the computer (!) should be specified
by a common language”) or their third condition
(this language should be understandable by untrained
humans). But neither does their incremental LISP,
nor any other system we have heard of.

Our system is extremely inefficient in terms of
computer time, and it can be assumed that theirs is
less wasteful. On the other hand, LISP A seems to
have the following two advantages over their system:

(1) When an expression is evaluated incompletely

for lack of information, the system remembers

this and resumes evaluation when further,
pertinent information increments become avail-
able.

(2) Through the introduction of ambjects and sym-
bolic functions, our system comes closer to
having ‘“‘a large, continuous, on-going, evolu-
tinary data base”, which should be the char-
acteristic environment of an incremental com-
puter. The data base of Raphael’s program is
identical to that of LISP 1.5, i.e. it is restricted
to property-lists of atoms.

Lombardi has later published a more extensive
treatise of incremental computers.® He there concen-
trates on the basic representation of data in core,
and introduces his own system with three references
in each cell. These seem to be quite different prob-
lems from the ones tackled in this paper, and a com-
parison is therefore not attempted.

Future Developments of LISP A.

The following developments seem natural:

A. Write a machine-coded version of evala.

B. Introduce a notation through which pseudo-
parallell execution of several expressions can
be performed. This is very natural, since e.g.,
the order of evaluation of the specializations of
a RHO-expression is immaterial.

C. Attack storage problems by making use of back-
ing storage, drum or disk. Facilities for parallel
execution of expressions then become very
important, because they help us to use the time
when we are waiting for information from back-
ing storage.

SUMMARY

LISP A is a modification and extension of LISP 1.5.
Besides minor modifications, two new types of func-
tions have been added to the language. One type
(symbolic functions) is used to create and extend
the data base. If ISFATHER is a symbolic function,
evaluation of (ISFATHER JOHN DICK) will create
a representation for the relation in the data base,
without asserting its truth. This representation can
then be used with conventional LISP functions, which
set it true, ask whether it is true, etc. The other type
(RHO-expressions) can be used to write a kind of
rules of inference, which are automatically triggered
in desired situations. The LISP A system is governed
by such RHO-expression operators, which trigger
each other. There is no coherent program, just a set
of operators which communicate through the changes
they cause in the data base. The paper gives a general
description of the LISP A system.

384 Spring Joint Computer Conference, 1968

ACKNOWLEDGMENTS

The author is indebted to professor John McCarthy
at Stanford University for his kind guidance during the
year 1966/67, when the work reported here was
started. He would also like to thank fillic. Jacob
Palme of the Research Institute of National Defense,
Stockholm, Sweden, for many valuable discussions
during the last year.

REFERENCES

1 J McCARTHY
Recursive functions of symbolic expressions and their
evaluation by machine, part |
Communications of the ACM 3 (April 1960) p 184
2 J McCARTHY et al
Lisp 1.5 programmer’s manual
The M.L.T. Press 1962

3 C WEISSMAN
LISP 1.5 primer
Dickenson Publ Co Belmont Cal 1967
4 E C BERKELEY et al
The programming language LISP: Its operation and
applications
The M.L.T. Press 1966
5 DG BOBROW
Natural language input for a computer problem solving system
Doctoral Thesis M.L.T.
6 BRAPHAEL
SIR: A computer program for semantic information retrieval
Doctoral Thesis, M.L.T.
7 LALOMBARDI BRAPHAEL
LISP as the language for an incremental computer in Ref. 4
8 L A LOMBARDI
Incremental computation
In Frank L Alt ed
Advances in Computers Vol 8
Academic Press New York 1967

	
	
	
	
	
	
	
	
	
	

