UPPSALA UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCES
NOTE NR 2

OCTOBER, 1967

The GPS expressed in LISP A

by

Erik Sendewall

1. Introduction and references.

This note gives one example of LISP A programming. We show &
four-line program for Newell, Shaw and Simon's General Problems

Solver, as described in

A. Newell, J.C. Shaw and H. Simon
Empirical Explorations with the Logic Theory Machine
in (a) Proc. Western Joint Comp. Conf., 1957,
and (b) E.A.:Fzigenbaum and J. Feldmen
Computers and Thought
McGraw-Hill Book Co, 1963.

LISP A is a LISP-like programming language for an incremental

computer. A preliminery version was described in

Ambiguity Logic as a Basis for an Incremental Computer

Uppsala C.S. department, report # 9.

We shall use here a slightly different LISP A, described in

Outline of LISP A
Uppsala C.S. department, note # 1.

Note # 1 describes only the changes, and assumes chapters 1 and 2

of report # 9 as known.

2. The General Problem Solver

The GPS model (as described in "Empirical Explorations...”) makes
use of the following entities:

Objects, e.g. expressions in elementary propositional calculus. An
object o conforms to en object B if « 1is obtained from B

by substitution of subexpressions for variables.

Operators on objects e.g. the operator which transforms the object

A D B into the object ~B D =~A (where A and B are arbitrary

sub-expressions);

Differences between objects. Usually, a difference is expressed as
a description of what has to be done to make one object conform to
the other. Examples of ¢ifference descriptions are

"Add terms”

"Change grouping".

Goals, which may be of three kinds:
"Mransform object A into object B",
"Reduce difference D between object A and object B",

"Apply operator Q to object A".

It might be argued that what we have here called differences should
in fact be called goals. In that case, what we have called goals

is in fact "meta-goals™. Such distinctions are not of interest.

The GPS essentially consists of three rules, which tell how these
three types of goals shall be processed. The rules are recuréive,
i.e. in order to accomplish some goal, we set up some sub-goals,
which may set up new subgoals, possibly of the same type as the
first goal, etc. As GPS documantion is easily available, we shall

not reiteraste these rules.

3.

3. The LISP A program for the GPS

Our program assumes that there should be one unambigous ambject
for each object, each operator (of which there are twelve, named
rl, r2, . . rl2 in the particular example discussed in "Empirical
Explorations...), and each difference (of which there are sever
in the same example). Also, if a, b, d, and q are unambigous
objects, the goals

transform(a,b)

reducediff(a,b)

applyop(q,a)
(with the obvious meanings of these expressions) should be represented
by unambigous ambjects. In general, however, the arguments of these
three functions are ambigous, and then the value is an ambigous

ambject,

With each operator ri there is associated a symbolic function =i

which we also write bar(ri).

Simple example of representation. Suppose the operator. ri transforms

the object a to the object b. If we evaluate the expression

transform(a,b),

the following ambjects will be introduced:

1. The ambject A. Tt has A as its ENAME property. The description
of the object (which in the propositionalcalculus example is a
formula, e.g. "g A g D r Vs") is a property under an
attribute DESCR.

2. The ambjecﬁ‘g. Similar to A.

3. An ambject SEE;élo This stands for "the object obtained by
applying operator rk on object a". Its MEAN property is of
course (R4 A). Like A , it has a DESCR property, which shows
a after rl has operated upon it. This DESCR ﬁroperty was assigned

by a LISP A operator (to be distinguished from a GPS operator!)

let E be an rh in ...

which works because gl;gg;él is a case of RE . (Notice, by
the way, that §§' has a cases all the expressions that use
EE as leading function, and is therefore ambigous, whereas

R4 (without bar) is unambigous).

L. An ambject (transform A B), whichobtains on its CASES property,
ambjects like E:E_él In general, all ambjects
(RT (R2 (... (Rk A) ...))) which are obtained from A by
successive transformations, and which conform to B (by comparison

of DESCR properties) are obtained as CASES of (transform A B)

.]
if the LISP A system is permitted to run long enough. - "transform"
stands fcr the value of the atom TRANSFORM.

The functions for the three goals, i.e. "transform", "reducediff",
and "applyop" are defined as rho-expressions, i.e. the value of each
of those atoms is a rho-expression. On M-language form, the function

definitions go:

transform(a,b) = if null(finddiff(a,b)) then a else
transform(reducediff(a,b), b)
reducediff(a,b) = applycp(signifop(finddiff(a,b)), a)

epplyop(q,a)

(%)

bar(q) (transform(a,domain(q)))

This is the entire GPS program. The purpose of the functions is as

follows: transform (a,b) transforme the object a into the object b.

It does this by first transforming a into some object a' which is

(in some sense) closer to b, and then trying transform(a',b).

reducediff(a,b) reduces the difference between a and b. It returns

some object a' which has manifestly been obtained from a through the

application of permitted operators, and which is closer to b than a was.

(»)

The meaning of this expression is that we first evaluate the value q of
bar(q) and then consider it as a function which is evaluated with the
value of transform(a, domain(q)) as argument. This is possible in

LISP A. The corresponding S-expression goes

applyop = (RHO (Q A)
((BAR Q)
(TRANSFORM A (DOMAIN Q))))

applyop(q,a) applies operator q to object a by first transforming to

a form which is in the domain of q .

The above definition makes use of some auxiliary functions, which

have to be written specifically for each application. They are:

finddiff(a,b), an eta-expression which takes unambigous ambjects
(for objects or object classes) arguments, and

returns

NIL if a and b are considered equal according to

their DESCR propertys

an unambigous difference description otherwise.

signigop(d), an eta-expression which takes a difference description
as argument and returns an operator that seems
significant to the difference, as value. (In the
example, this function is merely an encoding of the
"connection table" on the bottom of page 285 in

Computers and Thought).

domain(q), an eta-expression which takes an operator q as
argument and returns the domain of q, i.e. the
class of objects on which q is defined. For example,
if q is the operator that transforms A D B into
« B> = A, then domain(q) is the class of formulee
on the for A O B.

bar(q) an eta-expression which takes an operator q as

- argument and returns the corresponding symbolic

(%)

function q as value.

() The reason we can not identify q and q is that q
must take a lot of quoted expressions as cases
and therefore be unambigous,whereas q must be an
unambigous ambject for each operator (because the
definition of applyop as a rhoexpression relies on
the idea that the first argument is an ambiguity
between operators, e.g. r2? r5? r6, and each unambigous

operator shall be used individually for q).

This is a comsequence of the connection table, which says (in the

example)

signifop(d) if d = add-terms
then r3 72 r7 ?2r9 2 r10 ? r11l ? rl2 else
if 4 = delete-terms

then r3 ? r7 7 r8 ? rll ? rl2 else ...

if 4 = change-position then rl ? r2.

Because it is a rho-expression, when applyop is given an ambigous
first argument, it will let q'(transform(a,domain(q'))) be evaluated
for each unambigous case q' of its first argument. For each such
case, transform is called, so reducediff is called, so signifop is

called, so new branching occurs.

The above recursive definition could therefore never be used in
ordinary LISP, because it would lead to a depth-first search through
all possible transformations. In LISP A, branches are studied and
continued according to priority evaluation, so the study of a
branch mey be given up and the study of any other branch taken up

instead. Study of the first branch may later be resumed.

L, How the rho—functions work.

The eta-functions finddiff, signifop, domain and bar work just like
functions in ordinary LISP, but the rho-functions transform,
reducediff, and applyop have to be explained slightly more in detail.
Consider the evaluation of transform(a,b) on some level in the
middle of recursion. Both arguments, a and b, are ambjects, and
the first argument is most likely ambigous. It carries a list of
CASES, some of which may be unambigous. The LISP A evaluator now
introduces a new ambject tab, whose MEAN property ("meaning") is
list(transform, a,b).
The ambject tab will be the value from evaluating transform(a,b),
but before returning tab, the function evaluator evaluates the

expression

if null(finddiff(aa,b)) then aa else

transform(reducediff(aa,b), b)

for unambigous aa that are cases of the first argument a. The value
of such an e¥pression is a new ambject, as transform returns
ambjects as values. It is set a CASE of the ambjects tab. The CASE
relation is transitive, so an ambject obtained when recursion
terminates (i.e. according to the clause "if null(finddiff(a,b))
then a") is not merely a CASE of the ambject transform(a,b) that
immideatily evaluated it, but also a CASE of transform(a,b) on the

outermost level of recursion.

We stated that "before returning tab, the function evaluator
evaluates the expression ... and sets the value as a CASE of tab",
This is not altogether true, because it depends on priority. At

least in some branches, the evaluation of this expression may have
been postponed. If search in high-priority branches was unsuccessful,
the function evaluator may return to such postponed branches (i.e.
reach them in the priority gqueue). More CASES will then be added to
the ambject a that was an argument to "our" expression transform(a,b)
above, However, the specifiratiosof how rho-expressions are to be
handled guarantees that such new cases will be followed up (upwards in
recursion) just like if they had been incorporated as CASES before

tab was returned,

The other two rho-functions are handled analogously.

Through such mechanisms, the LISP A system can evaluate an expression
transform(a,b); find various transformations of a into b, and set
each transformed a as a CASE of the ambject transform(a,b). Besides
the functions specified above, there must of course be functions for
priority evaluation, which let the most promising branches be
evaluated first and cut branches that are too unpromising. Also,

if the GPS task is a job in itself (rather than a subroutine in some
larger job) we will usually not evaluate transform(a,b), but

instead describe(transform(a,b)), where describe is an eta-expressicn
which goes into the CASES property of its argument and prints out

the MEAN property , so that the sequence of operators that were used
for the transformation is obtained. By the notation in report # 9,

we have

describe (t) = usenames(cdr (assoc(CASES, cdr(t))))

L, How the function applyop and the symbolic functions (the GPS

operators) work.

The definition of applyop was

applyop(q,a) = bar(q) transform(a,domain(qg))) .
This definition shall be studied more in detail., Let us first make
the convention that all q shall belong to the class of "strongly

regular" symbolic functions, characterized by

)

and al1) = q.

Some conclusions from the first of these axioms are executed through

(1) let e be a strongly-regular / unambigous in

isstar(argument(1l,e))

and

(2) let e be a strongly-regular / unambargument(l) in

isstar(ambofxpr(e))

where unambigous is the ambject which has all unambigous expressions
as cases on their quoted form, and unambargument(l) is the ambject
which has all expressions whose first argument is unambigous, as

cases on their quoted form.

Consider now the evaluation of

epplyop(q,a)

on some level in recursion. q was obtained as the value of signifop(---),
and is most likely ambigous. a can be proved to be unambigous.

Applyop is defined as a rho-expression. For each case qi of g, it
therefore evaluates the ambject TAQ = transform(a,domain(qi)), which

is in the general case ambigous, and then evaluates qi(taq). This

introduces a new smbject with the MEAN property (QI TAQ). For each

qi, this ambject becomes a case of applyop(q,a), but by the first

axiom above, it can not be unambigous.

However, in order to continue recursion, we are interested in

unambigous cases of applyop(q,a).

This is arranged as follows. The LISP-A-operator (2) above is

re-written on the form

(3) let e be & strongly-regular in

let a be an argument(l,e) in

isstar(argument(0,e)(a))

The meaning of the last line is that argument(O,e) (i.e. the

function symbol) should be used as a function with the argument

a. In S-notation this is more clear:

(ISSTAR ((ARGUMENT O E) A))

10.

We are again making use of the LISP A innovation that we can evaluate

a function and immideatily use it.

In the example, suppose taq has the uynambgious case tagj, i.e. we
have xtaqj and taqj <~ taa. Clearly, we want qi(taqj), which

ig.unambigous. We evaluate‘ai(taq) as argued above. This causes

turn a case of strongly-regular. Therefore, the above operator is

triggered with e = (' QI TAQ), which is unambigous. Then argument(l,e)

is taq, and the inner let-expression is applied with e.g. a = teqj.

On the third line, argument(0,e) evaluates into QI so the ambject

(ISSTAR (QI TAQJ))

is evaluated and set as a case of the above LISP-A-operator. This

causes it to be declared true, so the ambject (QI TAQJ) is

need, the ambject which can be carried upwards in recursion.

Notice that the above operator (3) is applicable to all strongly
symbolic functions, not merely to the symbolic function that serve

as GPS operators.

11.

5. How to make applyop more efficient.

We have
applyop(q,a) = bar(q)(transform(a,domain(q))).

If some case qi of g can not possibly be applied to a,
transform(a,domain(qi))

will never be assigned any cases, and therefore operator (3)

in the preceeding section never comes through (because there

never comes any a for "let a be a argument(l,e)"). However, there

will be an ambject qi(taq) (with taq as in last section) in memory,

and this takes space and extra work.

Sometimes, it is possible to say before the evaluation of
transform(a,domain(qi))

has even started, that it will not succeed. In Empirical

Explorations...”, a "preliminary test of feasibility" is performed

to prune dead branches as quickly as possible. A corresponding test

may be introduced into our formulation of the GPS by changing the

definition of applyop into the rho-expression given by

applyop(q,a) = if preltest(q,a) then 1 else

bar(q) (transform(a,domain(q)))

where preltest(q,a) returns the value T if the (unambigous)
operator q can not successfully be applied to the object a.

(Notice that 7 <~t is a trivial statement for any ambject)..

1<,

6. Conclusions.,

The program for the General Problem Solver becomes very simple and
compact if LISP A facilities can be used. The program for the

abstract GPS takes four lines. Specificatioms for additional functions,
vhich are needed for the application of the GPS to some procblem
environment (e.g. the functions f£inddiff and domain) are simple and

straight-forward. We have not "swept the problems under the carpet’.

LISP A is an extremely slow programming system. The LISP A version
of GPS can therefore never be practicially useful. However, the
ease of programming it offers makes it feasible to write down and
check out more complicated Problem Solvers, where more provisions

are taken.

The LISP A system is essentially taking care of the tree search
aspects of GPS. By generalization, we can therefove conjecture
that LISP A shall prove a useful tool for quick programming of

other search processes as well.

The LISP A system (i.e. the function evala) does not "contain"

any built-in GPS. In fact, it was not at all designed with GPS

in mind, but intended for automatic inference("incremental computer").
Distinction: the incremental computer works forward blindly in a
stimulus~response manner. Its responses are determined by priorities,
but these are not necessarily assigned with some goal in mind.

(If there is to be any goal direction, it has to be built into the
priority evaluation functions). The GPS does work toward explicit

goals.

The conclusion that goal-directed behavior can be simulated by blind
stimulus-response processes on’a higher level than.the computer’

progrem, is noteworthy in itself.

	
	
	
	
	
	
	
	
	
	
	
	
	
	

