UPPSALA UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCES
REPORT NR 9
SEPTEMBER, 1967

Ambiguity logic as a basis for an

incremental computer

by

Erik Sandewall

The research reported here was partly supported by the Swedish
Natural Science Research Council (Dnr 2711-2 ans 6826) and by
the Advanced Research Projects Agency of the Office of the U.S.
Secretary of Defence (SD-183).

Introduction

This memo describes a LISP program for an incremental computer, and the

logical system that is the basis for the program.

By an incremental computer (IC), we mean a (hardware and/or software)

device that

(1) 1is able to accepte facts or statements in some general notation and
incorporate them into a date structure;

(2) can be programmed so as to perform some operations automatically,
when it receives certain types of facts, or recognizes certain
combinations of facts. These automatically performed operations
could involve (a) deposit of new facts in the data base. In this
case, the IC serves as an automatic inference device; or (b) per-
!forming some external operations, e.g. printing on a teletype a

report of what it is doing.
Some previously written programs satisfy parts of this definition:

(A) Many question- answering programs (1,3) perform some deductions from
given facts at assertion time, rather than at question time. (This is
often done in order to detect inconsistencies in given facts.) As
incremental computers, such programs are weak in two respects,
however. First, they can only operate on facts within a narrow range
of discourse, and second, the program that performs the inference is
large and complicated. We would prefer to write the program for the
IC in a more modular fashion. Each rule should be written on the
form "whenever you see this, do that" and incorporated into the IC

independently of other rules.

(B) The incremental computer described by Lombardi and Raphael(4) accepts

one simple kind of facts: a certain LISP atom has a certain value.

When such a fact is fed in, the computer resumes evaluation of
expressions that previously stalled for the lack of value in this
atom. These expressions can of course be written with full

generality. The restriction lies in the extreme narrowness of

the class of facts that this IC will accept.

In the present memo, we shall describe an incremental computer with

the following characteristics:

(1)

(2)

(3)

It accepts expressions in a modification of predicate calculus.
The modification consists in introducing the ambiguity operator
and some related functions. The new symbols supplant the universal

quantifier and (to some extent) set theory notation.

Each input expression can be prefixed by a ! (for "the following
fact shall be incorporated into the data base"), or a ? (for can
the following statement be deduced from the data base?"). These
two cases are handled exactly the same, except in the final step.
Mainly, the program looks at the expression and its sub-expressions;
performs all inferences that it "comes to think of" (i.e. all
inferences given by operators of the type "whenever you see an
expression like , do"). If the prefix is ! , the program
flags the expression as true (which may cause further inference,
setting truth-values of other expressions); if the prefix is ?,

the program checks whether the expression has gotten a flag for

truth.

The operators that together form the program for the IC (in contrast
to the LISP program that simulates the IC) are in the first hand
built for logical inference, but they can use a function evalq
which calls the LISP eval. It is therefore possible to "deduce” that

some operation outside the realm of logics shall be taken. This is

3.

like of we could write, in ordinary predicate calculus, expressions
like

(t) (t € Roevalg(print (describe(t)))) ,
.meaning~%ﬁét each time the relation t& R 1is proved true for some

t , we let the LISP eval evaluate "describe(t)' and print it.

() Logical inference in the IC can be concerned with real-world objects,
mathematical items, etc., but it is also possible to quote expressions
already in the IC; to state their properties (e.g. their "significance")
and the relations between them; and to make inference on the facts
about them. In a certain sense, therefore, the program is potentially

capeble to "think about its own thinking".
This memo consists of three chapters, which deal with:
(1) the ambiguity logic that underlies the IC;

(2) the LISP program that simulates the IC. Essentially, this is a program
that performs automatic inference on a small number of axioms. All
other axioms (and all extra-logical operators) can then be expressed

as operators that are called and executed by the IC program;

(3) the belief structure character of the IC's data base (the IC flags
some expressions as "true according to present knowledge”). We discuss
the notation for keeping track of truth-values and some problems which
arise when the IC first "believes'that an expression is true and then

"chenges its mind

One version of the program for the IC is working, but lacks some of the
features described in this memo. A later version with all the features is

"not completely debugged.

ChaEter 1

Ambiguity logic

1.1 The basic notation

We shall use the ambiguity operator, mentioned by McCarthy in (2), in the

logical system for the IC.

Let us use the question-mark (?) as an infixed, binary operator, and let
"a ? b" be an ambigous expression whose value is a, or b . We have to

make this more precise. When we write "f(x) = a?" , we could mean:

(1) The value of f(x) may be a , and it may be b . We do not know

(or we do not care to tell).
(2) £(x) has two values. One of them is a ; the other is b .

Some axioms hold in either case, viz.

(A1) . a?a=a

(A2) a?b=b?a

(A3) a?(b?c)=(a?b)?ec
(ak) f(a ? b) = £f(a) ? £(b)

The difference between (1) and (2) becomes acute when we are asked

whether we want to assume an axiom like

(A?) a=b>a=(b?c)

which would permit us to write e.g.
2+3=L425,

It is more fruitful to consider this as a question what we intend to mean
by equality (between ambigous expressions). If accepted, (A?) would

violate the transitivity of equality, because we would have
3=3?7hb=4k=L425=5 ete.

Therefore, we reject "axiom" (A?) and choose interpretation (2) above.

This also means that we would not write
% .‘~"
" ((n), ult(n) =0) =T

as McCa}thy'QQes in (2). (We might instead write kfk(n), 0 +» ult(n))

see below.)

Axiom (A3) makes it natural to omit parentheses in sequences of 1?'s ,

and write e.g. a ? b ? c ? 4 . We shall say that this is an ambigous

expression. It denotes an ambigous object or ambject which contains the
cases a,b,c,d, a?b, a%, ..., a?b?c?d . If we want a strict definition
of equality,we can assume a "weak" equality between unambigous expres-
sions to be given, and define a strong equality as follows: a =b iff
every unambigous case of a equals some unambigous case of b , and vice

versa.
We shall use the symbol f for the "inconceivable case", so that

a?fl=a

"

If e 1is an expression, let us write #e for " e contains only itself

and fI as cases" or " e is unambigous". We also stipulate =-*f, and

then obtain as an axiom
(A5) *(a ?2b)>a=">»

We shall distinguish between regular and dominant functions. A regular

function is a function which satisfies axiom (AL) above; a dominant
function is one which does not. In particular, <? itself is a regular

function. Functions of several arguments can be regular in some of them.

The same distinction is valid for predicates. A reguler predicate is one

which satisfies

pla 2 b) = p(a) ? p(b) .

7.

If p(a) = true, p(b) = false, we have p(a?b) = true ? false. Here,

? is a logical connective rather than a function. We obtain a four-valued
logic with the values true (t), false (f), t ? £ or sometimes (s),

and 1 . A, V,= etc. are regular connectives in this logic, and

we have e.g.

trf=s
str=(t?f)2?t=...=5s
sAht=(t2f)At=(tAL)?2 (£AL)=... =5

It is a trivial task to write down the truth-tables for these four
truth-values and the logical connectives A, V¥, 7, ? . See appendix 1.
We may also use a dominant or strong implication, defined in analogy with
strong equality: u implies v strongly (written u »v) if every
unambigous case of u implies (weakly, i.e. with regular implication)
some unambigous case of v , and every unambigous case of Vv is

implied by some unambigous case of u . It follows that strong

implication is transitive, and that
f= s>t .
The truth-table of strong implication is also given in appendix 1.

A purist might prefer to use different symbols for the function ? and
the logical connective ? . However, axioms (Al) - (A5) are valid for
both these kinds of ? (if the function symbol f is axiom (AL) is
interpreted so that wffs are obtained). We therefore use the same

symbol and save duplication of axioms.

By the same philosophy, we consider = and * as dominant predicates and,

at the same time, as dominant logical connectives. We have e.g.

(t=5)=f

*(u = v)

We need one more function, a dominant function / which is similar to
intersection between sets in the sense that a / b shall be an ambilgous
expression whose cases are the common cases of a and b . This gives

us e.g.

(a2b) /a=a

f(a / b) = f(a) / £(v) if f 1is regular.

If a and b have no common cases, a/b is f . Likewise, f(f) =

for regular functions f .

Finally, we need one dominant predicate, corresponding to set-inclusion.
a «+2 b shall be t 1if every case of & 1is also a case of b (the

"vice versa" is not required) and f otherwise. This gives us

a/b+ra+ralb

(a 2 b)A (b« a)> (a =1)
Of course, / and <+~ have a second nature as logical connectives.
The ambiguity concept plays us a few tricks. We no longer have
(uv—u)

as an axiom. More significant is the impact on the \-notation, which

is the topic of the next section.

1.2 The)-notation and the p-notation

Should we consider a)-expression as a regular or a dominant function?

Let us_seéfwhat happens when we apply axiom (AL):

p(a,a) ? p(b,b) =

(A(t)p(t,t))(a) 2 (AM(t)p(t,t))(b) = /axiom (Ak) !/
(Mt)p(t,t))(a 2 b) =

p(a?b,a?b) =

pla,a) ? p(a,b) ? p(b,a) ? p(b,b) .

Thus it seems that axiom A4 is not applicable, and that A-expressions
should be considered as dominant functions. However, we may instead
question the third equality sign in the example, which relies on the

axiom ;
(K) (At) F(t)) (a) = F(a)

If we take as a requirement in axiom K that a must be unambigous, then
lambda-expressions will indeed be regular functions. We shall permit both
cases, and introduce the symbol p for the lambda that creates regular
functions. Thus every expression (p (...) ...) is a regular function,

and we have the axiom

*a > [(e(t) F(t)) (a) = F(aﬂ

A-expressions, on the other hand, are dominant functions and satisfy

axiom K .

This trouble with A-expressions may seem a nuisance. In fact, it is an
asset, because we can use p 1in many cases where a universal quantifier
would otherwise be used. Let us work a simple example in ordinary logic

notation,

10.

Let Bl, B2, ... Bn be boys, and define the function
father(x) for 'the father of x"

and’ the predicate
;dﬁife(x,y) for "x admires y"

The phrase "all boys admire their fathers” is usually written
X/ ((b) b € Bln > admire(b, father(b)))

where Bln = {Bl1, B2, ... Bn} .

With the p-notation, we can instead write
(p (b) admire(b,father(b))) (boy)

where boy =Bl ? B2 ? ... Bn .

This works as follows. Let A be the regular predicate

(p (b) admire(b,father(b)))
Oﬁr axiom states that A(Bl1 ? B2 ? ... ? Bn) is t , but as the
argunent is ambigous, we cannot substitute it into the definition
of A . But according tc regularity, we have instead

A(B2) «» A(B1 ? B2 ? ... ? Bn) =t , and through application
of a sequence of obvious axioms, we can conclude

A(B2) = t
As we also have *B2 , we can now use the axiom for p and conclude

admire(B2, father(B2))

In actual use of this notation, we would of course not feel
compelled to define "boy" through an enumeratiocn of all possible
boys. Instead, we would assume the ambigous object “boy" and usec the
function A each time we encountered an object Bk with the

. *
properties Bk +» boy, Bk .

ll.

1.3 The let-notation

The lambda-notation (and by consequence, the ro-notation) often yields
expressiois’ that are difficult to read, especially when the lambdas are
nested. The let-notation, originally proposed by Landin /3/, is an

equivalent notation with increased legibility.
A few examples will make the notation clear.

Ex. 1 lambda-notation: (a(x) f(x,x)) (a)

let-notation: let x be a in f(x,x)

Ex. 2 lambda-notation: (A(x,y) f(x,y) + f(y,x))(a,b)

let-notation: let x be a, y be b in f(x,y) + f(y,x)

Ex. 3 lambda-notation: (A(x),(A(y,z) f(y,z) + f(z,y))(f(x,x),g(x)))(g(a))
let-notation: let x be g(a) in

let y be f(x,x), z be g(x) in f(y,z) + f(z,y)

We shall extend the notation to ro-expressions, but distinguish them by

writing be a or (synonymously) be an instead of be .

Ex. 4 ro-notation: the example above

let-notation: let b be a boy in admire(b, father(d))

Chapter 2

Ambeval - an eval function for ambiguity

logic and ro-expressions

12.

13.

2.1 Use of ambeval

Our program for the incremental computer consists of a LISP function
ambeval, which evaluates expressions in the ambiguity logic and takes
proper ;é%p_bf ro-expressions; a substantial number of functions that
are directly or indirectly called by ambeval; and a small number of
"surface functions", which facilitate the use of ambeval in time-sharing

mode. This is the program that simulates the IC. The system is written

for PDP-6 LISP. Besides, we have written a good number of expressions
(for ambeval), whose leading function is a ro-expression. When ambeval
evaluates these expressions, it is made to act as an IC with the
expressions as independent operators. Together, they form the program

for the IC.

In this section, we shall demonstrate the use of the system through
the surface functions (e.g. ?, !) . Latter sections explain ambevel and
its subfunctions. If possible, the reader should re-do the examples on a

computer.

After the ambeval system has been read in and initialized (see separate
operating instructions), we start giving it facts, i.e. S-expressions
preceeded by an exclamation mark. Object syﬁbols and functions need not
be declared before use. Until declared otherwise, each symbol is
automatically assumed to stand for an ambject # f , which is not

necessarily unambigous. Examples of use (computer input indented):

(' IMPLIES (OR LOGl LOG2) (AND LOG3 LOG4 LOGS))
0K
(v . LoGg2)

OK

We then pose questions similerily, but with ? instead of ! . This is

not the question mark used for the ambiguity operator! The system answers

1L,

with 'NIL' if no proof of the formula can be found
with "(BECAUSE ...)" if the formula can be proved from something
previously asserted, and with "(BECAUSE)" if the formula has pre-

vicusly been given as an assumption (with !) . Examples:

(1 % Loak)
(BECAUSE (AND LOG3 LOGL4 L0GS))
(? AND LOG3 LOGL LOGS5)
(BECAUSE (OR LOG1 LOG2) (IMPLIES (OR LOGl LOG2) (AND LOG3 LOGL LOG5)))
(? OR LOG1 LOG2)
(BECAUSE LO0G2)
(2 . LOG2)

(BECAUSE)

There exist operators that perform (incompletd inference from the following

ambeval functions:
AND, OR, IMPLIES

AMB (for the ambiguity operator ?),

SLASH (for /),

ISCASE (for)

STAR (for the function % for unambiguity)

ISEQUAL (for equality and logical identity).’

All functions are prefixed. AND, OR, AMB, and SLASH can take an arbitrary

number of arguments.

Operators for handling logical NOT, and for functions and relations on
sets (e.g. an operator to deduce ac. c from ac b, b . c) do not yet

(July 28) work right.

Some time-consuming inferences take place only if certain expressions are
declared "interesting" or "significant". This is done by prefixing '>> n'

instead of ! or ?. n 1is an estimate of the significance of the expression;

15.

an integer between 1 and 6, where 6 stands for the highest significance.
In the present system, n governs only in what order inferences are to
be made, but even inferences on level 1 are performed, sooner or later.
Whén‘soméyiﬁferrupt device has been introduced into the program,

expressions with low significance may go completely unprocessed.

It is easy to change the range of the significance quantity n , if six

steps is considered too crude.
Examples of use:

(! ISCASE OBBl OBB2)
OK
(! STAR OBB2)
OK
(>> 4 . OBB2)
YES
(>> 4 ISEQUAL OBBl OBB2)
YES
(? ISEQUAL OBBl OBB2)

(BECAUSE (ISCASE OBBl1 OBB2) (STAR OBB2))

In a more practical system, we would of course prefer to have heuristic

routines which assign these significance quantities automatically.

16.

2.2 Handling of the functions <+> and * , and of ro-expressions.

The key ideas in the function evaluator, ambeval, are

(1)

(2)

Ambeval constructs one property-list for each expression that it is
giveﬁ;‘and for each sub-expression. For example, when ambeval
evaluates (IMPLIES (OR LOGl LOG2) LOG3), it introduces one property-

list for each of the following expressions:

LOG1
L0G2
(OR LOG1 LOG2)
LOG3

(IMPLIES (OR LOGl1 LOG2) LOG3)

On the property-list for an expression a , ambeval stores e.g. the
#*

truth-value of a ; a flag for the truth of a ; references to

property lists for ambjects b such that a «» b or b +» a ; etc.

The exact format of the property-list is described below.

Ambeval never introduces several property-lists for one expression,

even if it is evaluated repeatedly.
Suppose

(21) A = I'_B (x1 x2 ... xn) expression]
(22) ambeval has evaluated A(yl y2 ... yn)
(23) the facts zl «> yl, zl,
z2 +n y2, *z2, coe
zn <> yn, *2n have been incorporated

into ambeval's data structure;
Ambeval shall then proceed to do

(24) evaluate [}(xl X2 ... Xxn) expressioé] (z1 z2 ... zn)

3

(25) incorporate the fact

l?.

[M(x1 x2 ... xn) expression](zl 22 ... zn) +» A(yl y2 ... yn)

‘into.the data structure.

Ambeval evaluates
&)(xl) evalq(print(describe(xl)))] (boy)

and introduces & property-list for this whole expression.

Moreover, ambeval has previocusly obtained or it later obtains

b ©» boy

%
b

Ambeval then evaluates
evalq(print(describe(b)))

This is intended to make the LISP system print out a
description of the object b . The function evalq always

evaluates into fI , so in step 25, ambeval makes
1+ |} (x1) evalq(print(describe(xl)))] (boy)
which is trivially true.

Ambeval evaluates

[p (x1 x2) R(xl x2)] (s1 s2)

and puts a label for truth on the property-list for this

expression. Alsc, ambeval obtains
* *
vl € sl, vli, v2 +» s2, va.

It then evaluates (i.e. introduces a property-list for)

18.

R(vl v2)

and does

R(vl v2) “ [p (x1 x2) R(x1 x2)] (s1 s2)

Suitably programmed, ambeval may be able to deduce
R(vl v2) # 4

and then to proceed to

R(vli v2) = ¢

The ro-expression therefore says "each sl stands in the

relation R to each s2 ",

If ambeval had evaluated R(sl s2) /instead of the expression
with the ro-expression in it/, and labeled it for truth, then

ambeval would not automatically eveluate R(vl v2) under the

assumptions above. However, if we instruct it to evaluate
R(vl v2) , ambeval might still label this expression for truth,

automatically.

(3) The order in which the IC is given the premises: (a) the expression
Ayl ... yn) ; (b) a fact zi «» yi ; (c) a fact #%zi ; shall be
immaterial. Therefore, each of the operations (a)-(c) should
perform two things:

(31) trigger ro-into-lambda applications that now have all their
premises satisfied;
(32) deposit themselves in the data base, to be available in step

(31) of further evaluations.

For example, each time it does #V , ambeval shall

(31')look up all U such that V +» U has been stored away in some

19.

previous step (32); and all the ro-expressions that have
previously been applied to all those U ; and then convert
the ro-expressions into lambda-expressions and apply them
t9‘_V .

(32')put:affiag on some property-list associated with V ,
indicating that V is unambigous. This flag is used next
time we state V «+» UU for some UU , or apply some operator

on some U such that V +» U .

In the rest of this section, we shall describe the organization of the
property-lists. Eaclr property-list is on the form (AMBJECT (Al . Pl1)

(A2 . P2) ... (An . Pn)) , where

AMBJECT is a marker which serves the same purpose as car of a LISP atom;
Al are attributes; and

Pi are corresponding properties.

In other words, the property-list is organized like the association-lists
of conventional LISP. Every such property-list describes an ambject. For

convenience, we shall often call the property-list itself an ambject.
The following are some of the attributes that are used:

ENAME The corresponding property is an atom, viz. the external name
of the ambject. In the above example, the ambject for 'LOGl'
has the ENAME property LOGl, and similarly for LOG2 and LOG3.
The ambjects for the non-atomic sub-expressions (like

'(OR LOGL LOG2)') do not have an ENAME property.

MEAN This gives the meaning of an ambject for a non-atomic sub-
expression. For example, the MEAN property of the ambject for
'(IMPLIES (OR LOGl LOG2) LOG3)' is a list (al a2 a3), where
al is the ambject whose ENAME is 'IMPLIES' (notice that we

have ambjects for functions and relations as well!)

20.

a2 1is an ambject whose MEAN is derived from the expression
'(OR LOGL LoG2)'

a3 is the ambject whose ENAME is LOG3.

We shall use”q broken underscore to form a name for an ambject from

'its' formula. Thus LOGl1 is the ambject whose ENAME is 'LOGl', and

(OR LOGL LOG2) , is the ambject whose MEAN is a list (OR LOGL Log2) .

BECAUSE

This property should only appear on ambjects that can carry

a truth-value. If we believe that the expression for the
ambject has the value true (out of the four possible truth-
values), then the BECAUSE property is a list of other ambjects
which also are taken to be true (i.e. which have a BECAUSE

property) and which together imply the present ambject.

Clearly, the references must either go in circles, or end in

ambjects which have NIL as a BECAUSE property, i.e. which look

like

(AMBJECT ... (BECAUSE) ...)

If we do not have any reasons to believe that an ambject has
the value true, then it does not have any BECAUSE property at

all.

The same belief structure organization is used for the references to

the cases of an ambject and to the ambjects which have a given ambject

as a case; and also for the flag which indicates that an ambject is

(velieved to be) unambigous. In each of these cases, there occurs a list

of ambjects which possess a BECAUSE property, and which form the motiva-

tion for the reference or flag.

STAR

The value of the STAR property is a list of reasons for the

unambiguity of the ambject. For example, if we do

(! STAR OBB1)

CASES

TYPES

OPERS

21.

the system will put the property (BECAUSE) on the ambject

(STAR OBBl), and the property (STAR (STAR OBB1))on the ambject

OBBl .

.Coh§i§er an ambject

(AMBJECT ... (ENAME . U) ... (CASES . lista) ...)
lista i1s a new association-list
((vi . 1isl)(v2 . 1is2) ... (Vk . 1lisk)) .

For each j , the system believes Vj «» U with the motivation

of the ambjects on the list lisj. For example, if we do

(' ISCASE VV UU)

(! ISCASE WwW VV)

. then the ambject UU will look like

(AMBJECT ...

(ENAME . UU)

(CASES (VV (ISCASE VV UU))

(Ww (ISCASE VV UU) (ISCASE WW VV))

cee)

This property is organized like CASES, but gives the reverse

reference.

Let A be a ro-expression, for which we have evaluated
(A X1 X2 ... Xn) . Ambeval creates ambjects for the Xi, and

for the whole expression (A ... Xn) , but not for A itself.

The OPERS property of an ambject C 1is a list of ambjects for
expressions, whose leading function is a ro-expression, and

which include the ambject C among their highest-level arguments.

22.
Several other attributes will be introduced later.

The function ambeval is similar to (and was inspired by) the function
evalquotel fqp_iﬁe incremental computer of Lombardi and Raphael /L/.
In their incremental computer, evaluation of lambda-expressions is

postponed whenever some arguments are not yet defined; in ambeval,

similar postponement takes place when some argument is ambigous.

23.

2.3 Functions for looking at ambjects.

As we saw, ambjects are association-lists, where the values are often
lists:of QAngéfs. Because of circularities in the structure, it is
rarely possible to print out an embject as an S-expression. Among the
"surface functions” that facilitate work with the system, there are
therefore some functions that enable us to print out some representations

of ambjects. We have the functions

usenames which is the inverse of the broken underscore introduced above.
usenames takes an ambject and reconstitutes the expression that
created it, by working down threough MEAN properties until it

finds ENAME properties.

lockval Let A be an ambject. '(LOOKVAL A PROP)' finds the PROP
property of A and prints out usenames of it. lookval quotes

its second argument.

Example: the surface function ?, used in questions, could be

defined as

(DEFPROP %
(LAMBDA (A) (LOOKVAL (AMBEVAL A) BECAUSE))

FEXPR)

Moreover, when an expression (! F Al A2 ... An) is evaluated, the

constant != is set to the ambject (F Al A2 ... An) . Clearly, !=

can not be printed as it is, but it can be used by usenames, lookval, and

ambeval. The other surface functions set the constants ?= viz. >>= in

a similar fashion.

2k,

Examples of use:

(! . LOG1)
0K
' (LOOKVAL != BECAUSE)

(BECAUSE)

(? IMPLIES != (AND LOG6 LOGT))

NIL

(USENAMES ?=)
(IMPLIES LOGl (AND LOG6 LOGT))
(DO (SETQ P1 !=))

DONE (Do is an EXPR which evaluates its only argument and
returns DONE. We could not have done simply (SETQ Pl !=)
because of the printout).

(! IMPLIES != LOG9)
0K

(LOOKVAL != MEAN)
(MEAN IMPLIES LOG1 LOGY)

(CAR ?=)

AMBJECT

(USENAMES (CDR ?=))
((MEAN IMPLIES LOGl (AND LOG6 LOGT)) (BECAUSE) ...)

/this is a good way of looking at a whole ambject/.

If you want to look at an ambject that is on the property-lists of your
present ambject, it is best to reevaluate it (with the prefix ?, which

does not set any truth-values). Alternatively, use assoc.

25.

2.4 Quoting of expressions. Automatic inference. Heuristics.

When ambeval eya;uates an expression (F Al A2 ... An) /where F is
not a:ro-expféssion or a lambda-expression/, which it has not seen before,

it actually creates two new ambjects. One is (F Al A2 ... An) as

discussed before. The other one looks like

(AMBJECT ... (QUOTE (F Al A2 ... An)) (STAR) (TYPES (F) ...))

and is denoted (' P Al A2 ... An) (i.e. usenames prints it with the ',

and we can describe it to ambeval with ').

Notice that (' F Al A2 ... An) +» F . 1In other words, each function
(predicate, connective) symbol stands for an ambject, which has as
cases ail quoted expressions that have this function (etc.) in the
leading position. One of the basic tasks of ambeval is to perform
this case-inclusion automatically for each new expression, and to
enable operators previously applied to the function symbol, to operate

on the quoted expression. This is the basis for automatic inference in

the IC.

We stated above that the IC performs inferences by "loocking at expres-
sions" and "coming tothink of conclusions". More precisely, inference

rules are often written on the form
" let pp be & p in (expression) " ,
where p 1is a function symbol and pp therefore, a quoted expression.

Example 1. If we do (! AND LOG1 LOG2) , the IC should conclude that

LOGl and LOG2 are true, and put (AND LOGl LOG2) as the single BECAUSE

reason. An operator that performs this could look like

"let i2 be an and in evalgq(

if assoc(BECAUSE, cdr(ambofxpr(i2)))
then mepcar(/A(r) putval(r,
list (ambofxpr(i2))
BECAUSE) /
cdr(xpr(i2))) -
else nil)", wvhere
putval(r,p,a) puts the property p under the attribute a in the
ambject r;
smbofxpr(i) = cadr(assoc(QUOTE, cdr(i)))

xpr(i) = cdr(assoc(MEAN, ambofxpr(i))).

Example: if i = (' OR LOGl LOG2 LOG3), then

ambofxpr(i) = (OR LOG1 LOG2 LOG3), and

xpr(i) = (OR LOGL LOG2 LOG3)

The actual operator and## that we use, enables further inference
from the fact that the arguments of AND have been set true, and is

therefore slightly more involved.

Example 2. The rule "if a admires b , then a 1is dependent on b "

could in predicate calculus be expressed as
((a)(v), admire(a,b) = dependent(a,b)) .
For the IC the same rule could perhaps be written as

let a be an admire in dependent(evalg(argument(l,a)),

evalq(argument(2,a))),

where argument(n,e) is a lisp expression that evaluates into the n+l'th

member of the list xpr [_e].

Notice that this operator gives (DEPENDENT) to ambeval. This

causes the evaluation of

27.

(* DEPENDENT) <> DEPENDENT

which triggers all operators previously applied to DEPENDENT. In this

way, chains of inference may arise.

Operatérs of this character contain more infcrmation than the mere axiom
they express: they also state when the axiom shall be applied. In the
above examples, the axiom is applied, together with modus ponens, each
time a specialization of the left-hand side of the implication in the

axiom, 1s given to ambeval. However, we can do more complicated things.

Example 3. Let signifh and signif5 be ambjects that have quoted expres-
sions as cases. (Being a case of signifl or signif5 could mean that the
expression is particularly significant to e.g. a given question).
Suppose we want to apply the axiom of example 2, only to expressions
(DEPENDENT) which have in this way been termed significant.

We would re-write the operator as

let a be an admire / (signifh ? signif5) in
dependent(evalg (argument(l,a)),

evalqg (argument(2,a)))

This operator is triggered whenever we give ambeval an expression

(ADMIRE A B) and then do
(! ISCASE (' ADMIRE A B) SIGNIFL)

or the corresponding for signif5. - It is necessary, of course, that we
have some other operator which performs the inference "if a <o b eand

a +> c then a +» b/e”.

In the above example, how is the expression (DEPENDENT A B) set true?
(We said that ambjects are set true by the prefix !, which is a surface
function, and which can not easily be used inside ro-expressions) This

works like on page 18. In other words, the above let-expression trans-

28.

lates into an expression whose leading function is a ro-expression. That
expression gets its own ambject R , and it is set true by a ! which is
prefixed t0~th§\§xpression when it is first put into the IC. Later, we
apply thé ro:ékbfession to various cases of the ambject ADMIRE, and each
time, we obtain an expression (DEPENDENT) /notice that we do not
obtain back the expression (' DEPENDENT) ! /which is of course
a case of R . But R was declared true, and by specialization we obtain

therefore the truth of the ambject (DEPENDENT ... «..) .

Actually, the operators in example 2 and 3 are not completely correct,
because they do not check whether the given expression (ADMIRE A B) is
true or not. This is managed by the pseudo-function RECOGN, described

in the next section.

29.

2.5 Order of evaluation of ro- a2xpressions.

As evaluation of expressions with % and +» means stating a fact and
making'the‘égnélﬁsions, ambeval has to account for the problems connected
with deep trees of conclusions. Such trees occur e.g. if ro-expressions
contain expressions a ¢ b : evaluation of such a ro-expression may
trigger the evaluation of many other ro-expressions referenced by b ,
which in their turn may trigger new ro-expressions. This may take us

into very deep deductions and even into infinite loops.

The order of evaluation of such expressions can then be selected in

several ways:

(1) depth-first. If evaluation of expression e triggers expressions
fl; f2, ... fk, we first evaluate fl and all its consequences to

the end of the tree; and only then start to evaluate f2 .

(2) Queueing. We keep a queue of expressions that are to be evaluated.
If e triggers fl, f2, ... fk, these operators are put at the
end of the queue, and the evaluation of all is postponed until the
expressions before them in the queue have been handled. When we

reach fl , we put the expressions that it triggers at the end of

the queue; proceed to f2 ; etc.

(3) Queueing with priority. This is like strategy (2), except that

expressions which are deemed particularly significant are permitted
to step intc the queue at some point other than its end. The
assignment of priority values to ro-expressions and to their argu-

ments could be modified according tc previous experience.

Alternative (1) is weak, and (3) seems to be a worthwhile extension of (2).

We have therefore selected alternative (3).

30.

2.6 Implementation of the / function. The pseudo-functions recogn and

someother.

Let A Dbve an expression (ro (x y) ...) , and suppose that the IC has
evaluated A(c 4) . For each ci +» ¢ such that *ci , and for each

dj +» d& such that #*dj , the IC should do A(eci, dj) «> A(c,d) . This

is possible, since ambeval introduces an ambject for A(c,d) .

For each new unambigous ci +» ¢ that we add after the evaluation of
A(c,d) , the IC should therefore combine this ci with every case of 4 ,
and evaluate A anew. It should not re-evaluate A for the old cases

of ¢ . In the general case, when we have ro-expressions with an
arbitrary number of variables, and add one new case to some argument,

we should get all combinations of all cases of all other arguments, but

only the new case in the affected argument.
This is used in the implementation of the rule
(a 2 b) Aa +>c) D(a +o b/e) .

For each expression with SLASH that ambeval sees, an operator creates
a new operator with the arguments of the slash-expression as arguments.
The new operator, when applied to unpambigous cases, compares the
arguments and checks if they are all identical. If they are, the
argument is set as a case of the slash-expression; otherwise, nothing

happens.

For example, if we create an expression (SLASH AI1l AI2 AI3) , we get a
new operator (OP AIl AI2 AI3) . Suppose unambigous AA has previously
been declared a case of AI1 and of AI3 , and is now declared a case

of AI2 . OP. is applied to every case of AIl , to the new case of AI2 ,
and to every case of AI3 , in all possible combinations. In one of these
cases, the case of AIl and the case of AI3 happen to be identical

to the new case of AI2 . Therefore, OP sets the new case of AI2 as a

31.

case of (SLASH AI1 AI2 AI3) . If the new case of AI2 is either, not a
case of AIl, or not a case of AI3, every combination will fail, and the

new case does not become a case of (SLASH AI1 AI2 AI3) .

This method;iéiéxceedingly slow, but quite convenient to program.
Moreover, it enables us to write ambjects that actively recognize their
cases. If ppp is a LISP predicate with one argument, ambeval understands
recogn(ppp) as an ambject which has as cases, all ambjects r that
satisfy ppp(r) . However, an expression recogn(ppp) may only appear

as an argument in SLASH-expressions. If we introduce (SLASH AIl AI2
(RECOGN PPP)) , the specially created operator will compare new cases

of AI2 to each case of AIl (and vice versa, of course), and if the
cases are identical, check the case with ppp . If ppp of the case

gives a true value, the new case of AI2 becomes a case of the SLASH-

expression.

The pseudo-functicn recogn (pseudo-function, because ambeval handles the
function recogn as an exceptional case) can be used for the 'inference-
from-true-facts-only' problem of the previous section. Suppose we want to
apply the rule "if a admires b, a is dependent on b " to all true
expressions (ADMIRE A B) that have been declared significant. We then

write

let a be an admire / (signifh ? signif5) / recogn(expriztrue)

in dependent(evalq (argument(l,a)), evalq(argument(2,a)))

and define expriztrue as a LISP function which checks if the QUOTE
property of its argument has a BECAUSE property. (It is in fact a
little bit more complicated than this, because the assumptions of the
BECAUSE property for (ADMIRE A B) shall be included in the BECAUSE

property for (DEPENDENT A B)).

One SLASH-expression may contain several RECOGN-expressions, but they

32.

must all stand after the conventional arguments.

One small problem should be mentioned. For technical reasons in the
implementation‘9f the application of stored ro-expressions to new cases,
we can 395 uccessfully write A(x x) , where A is a ro-expression.

If we evaluate the above expression and then do x4 «» x , ambeval will
apply A to the arguments (x4 xl) , but it will not combine x4 in
one argument position with other cases of x in the other argument. If

we want such expressions, we have to use the pseudo-function SOMEOTHER

and write e.g.
A(x, someother(x))

/which combines the new case x4 in the first argument, with every case,

including x4 and the old cases, in the second argument/, and
A(someother(x), x)

/which does exactly the opposite/.

Chapter 3

Handling of truth-values

33.

3.1 Reasons for storing reeasons.

Several attributes (i.e. BECAUSE, STAR, TYPES, CASES, EQUALS)
agsummaéﬁg&éiresponding properties to contain lists of
"motivations" or "reascns". It would have been possible to
construct a simpler ambeval whose data structure does not
contain such reasons. We could e.g. put simple flags (in the
LISP sense of the word) for true and for unambigous ambjects.
The additional effort and storsge required to take care of

reasons pays off in the following ways:

(1) The system can "make guesses": it can "deduce" that a
certain assertion is probably true, and continue to make
conclusions from this guess. If the guess later proves
nmistaken, the conclusions must be annihilated, and this

is possible only if the line of reasoning is stored.

(2) The system can find out how how a given conclusion was
arrived at. This is potentially importent for heuristic
purposes (because we may desire to give increased priority
to a fact that proved useful) and for proof construction
by analogy (where, given a theorem to prove, we find a

" gimilar, known theorem and see how it was proved).

The purpose of this chapter is to explain how indications of
reason are menipulated by ambeval, and how they can be used.
There is also one section about circular reasoning ("C holds,
because B holds, because A holds, because C holds, because ...").
Such circles arise very easily in the data structure when

"guesses" are taken back.

3k,

e

3.2 Properties and routines for handling truth-values.

The list of attributes in section 2.2 was incomplete. We shall

now extend'tpgjlist.

DNF This property, like the BECAUSE property, can only
appear on ambjects that have a truth-value, but unlike
BECAUSE, DNF can appear on ambjects with any truth-value
(not only those with truth-value t). The DNF property
of an ambject a is essentially a logical expression e
on disjunctive normal form, such that e » a. The logical
connectives are left out in e, which is therefore just a
list (C1 C2 ... Ci ... Cm) of lists

"(cil1 Ci2 ... Cij +.. Cin) of ambjects.

For example, suppose an ambject éééé has the DNF property
(12 12)(Lh)(16 15)t 7))
This means that

(L1 A L2 D AAAA)

(L4 > AAAA)

(L6 A L5 A L3 2 AAAA)

(L1 A LT > AAAA).

In other words, (E} Eg) can appear as & possible BECAUSE

property for AAAA, if only L1 and L2 have BECAUSE properties;

(%) Notice again that L1 is a LISP atom; thet L1 is the ambject whose
ENAME , property is Llj and that the DNF prcperty above therefore

is a list of lists of ambjects.

(L4) is another possible BECAUSE property; etc.

HELPSIMPLY This property contains references in the reverse direction

from DNF. For example, if the ambject AAAA has a DNF

prdperty as above, then each of the ambjects L1, L2,

L4, L6, L5, L3, LT has a HELPSIMPLY property, vhich is

a list and has the ambject AAAA as one of its members. If
it exists, the HELPSIMPLY property of a given embject is
always a simple list of embjects (nct a list of lists,
like the DNF property), and it consists of those ambjects

that have the given ambject on their DNF property.

There are essentially two operations that have to be performed on

these properties:

(1)

(1a)

(1p)

“"Let new =(nl n2 --- nk) be a list of ambjects, and let a
be an ambject. Incorporate into the data structure, the fact
nlA n2A ..GA n.k:a"

The following steps must be taken:

Look up the DNF property of a, if it exists. If new is a
superset of some member of the DNF, then return, otherwise
cons new to the property; add a to the HELPSIMPLY property

of each member of new; and continue.

(%)

If a has a BECAUSE property, then return. If some member of
the 1list new does not have a BECAUSE property (i.e. is not
believed to be true), then return. Otherwise, put new as the

BECAUSE property of a, and continue.

(%)

For technical reasons the progrem often proceeds to step lc

instead.

Il e

(lc) The system now has concluded that a is true, and this is
something it did not know before. To update all ambjects
that have a on their DNF, perform the following routine

recursively:

(1cl1) Consider each member a' of the HELPSIMPLY property

of a.

(1c2) If a' has a BECAUSE property, return. Otherwise,
try to find some member rrrq of the DNF property of
a' each of whose members has a BECAUSE property. If
we find rrrq (in which case we can be sure that it
contains a), put it as a BECAUSE property cf a', and
start again from step (1lcl) with a' instead of a.

Otherwise, return.

In this process, each time an ambject a is set true (by giving
it a BECAUSE property), those ro-expressions that only

operate on true ambjects are given a chance to discover e.
This can e.g. be accomplished by evaluating

& +~ recopn(expriztrue).

In the LISP progrem for ambeval, steps (la)-(lc) are taken if we

do "putreason (new,a)". Step (1c2) is performed by "rechecktrue (a')".

(2) The smbject a has a BECAUSE property. This property is incorrect;

remove it.

This operation may be taken in two situations:

(4)

(B)

(2Ba)

(2Bb)

a was an assumption or a guess, i.e. its BECAUSE property

is NIL, and we want to remove that assumption.

Some ambée;t on the BECAUSE property has had its BECAUSE
prbper%&‘}evoked.

In the former case, the actions to take are obvious. In the
latter case, there may still be some other reason for keeving
a true. If it exists, this alternative reason should be on
the DNF property. Therefore, the following steps must be

taken:

Remove the BECAUSE property from tle association-list a.

Try to find scne member rrrq of the"DRF pboperty of a, cach
of whose members has a BECAUSE property. If we find rrrq,
put it on a as a BECAUSE property, and return. Otherwise,
consider each member a' of the HELPSIMPLY property of a, and

start again from step (2Ba) on it.

In the LISP program for ambeval, steps (2Ba)-(2Bb) are performed

with "revokehypoth (a)" for case (A) and with "recheckfalse (a)®

for case (B).

3.3 How to guess, and how to revoke a guess.

A "probhle inference” may be on the type "for each t <o u, if

p(t) and q(;)?ﬁbld, then it is a reasonable guess that r(t) occurs".

The incertitude in this statement may arise in several ways:

(a)

(B)

(c)

We know that the full and precise statement should be

let f be a u in

p(t) A alt) A - v(t) 2r(t) ,
where v(t) is a relation which indicates some exceptional
circumstance (like "the ceiling falls down") that we can

usually ignore.

There are not one but many exceptional circumstances, and

they can not all be enumerated.

This can be reduced to case (A) in the following manner.

We introduce a new predicate w and let w(t) mean "some of
the exceptional circumstances in this rule holds". The rule
is therefore

let t be a uin p(t) A q(t) A4 wit)>D r(t).

- To express "v(t) is one of those exceptional circumstances",

we then write

let t be a u in v(t) > w(t).

The implication let t be a u in p(t) A q(t) > r(t) has been
obtained empirically, and we do not yet feel sure that it
holds. This means that we want to assume or guess that the
implication holds, and to perform inference from it, but we

also want to be able to take back the assumption later if

ho.

contrary evidence should eppear. Crudely speaking, in cases
(a) and (b) the true implication says that a guess can be
mede, where as in case (c) we guess that an implication holds.
We ;ﬁé;lﬂﬁow demostrate how these guesses can be made and

revoked with ambeval.

Case A. We introduce a Boolean function unless, which is to be used
instead of not in cases where the argument is usually false. Thus

the statement shall go
let f be au in p(t) A q(t) A unless(v(t)) Dr(t)
Ambeval needs the following operators to handle the function unless:

(1) An operator which checks t in each expression unless(t)
and, if t .
does not have any BECAUSE property, gives unless(t) the
property NIL under the attribute BECAUSE (which means that

unless (t) is considered true with no reason);

(2) An operator which operates on recogn(exprizrrue). For each
true ambject t, it checks wether unless(t) is in the system,
and if it is, makes sure that it does not have any BECAUSE

property.

The first of these two operators can immideatily be written down

(all functions have already been introduced):

let ii be an unless in evalq(

if assoc (BECAUSE, cdr(argument (1, xpr(ii)))) then NIL else

putreason (NIL, ambofxpr(ii)))

b1,

The latter cperator can be written
let ii be a recogn (EXPRIZTRUE) in evalg (revokehypoth (ambofxpr (
seleqt»(/ » (v) eq (argument (1, xpr (car(v))),
P ii)/,

cdr(assoc(CASES, cdr(unless))))))) ()

We assume that the expression select (p,l) selects from the list

1, the first member r that satisfies p(r). We write “xpr(car(v))"
rather than "xpr(v)" because car(v) is an ambject (the case of

the ambject unless) and cdr(v) is NIL, i.e. the list of reasons

for car(v) <~ unless.

Case B (indefinite number of "exeptional cases" or "unless"
expressions). It has already been demonstrated thet this can be

reduced to case A.

Notice that as we have (by specialization)
pl(a) A g(a) A unless (w(a)) Dr(a)
v(a) D w(a) ,

and p(a) and q(a), but not v(a) are true, then unless(w(a)) will
tentatively have the BECAUSE property NIL i.e. be true without
reasons, and r(a) will be true. If we later set v(a) true, cur
operators above guarantee that r(a) is set false, unless it has

some glternative reason.

(=)

This use of the function recogn is incorrect under the

conventions of section 2.6 but can be made to work.

k2.

Case C. The whole implication is a guess. We expressit by
"let t be a u in p(t) A q(t) > r(t)"

or a_logiéaii&?equivalent expression. When evaluated by ambeval,
this expression translates into a ro-expression and obtains an
ambject e. Besides, the BECAUSE property of e is set NIL to
indicete that e is an assumption. If the system knows for some

tt that *tt and tt <~ u then it will evaluate

"p(tt) A q(tt) = r(tt)" and give the corresponding ambject

ee the BECAUSEproperty (e), -- not NIL! -- unless it had
previously a BECAUSE property. Also ee will be put on the HELPSIMPLY
list of e. If the guess of the rule in e should later be teken
back, the truth of ee will therefore also be re-inspected. The
sane ié of course done to all conslusions that may have been drawn

from ee.

3.4 Circularities

When guesses are revoked, circular arguments will easily occur.

The purposg,bf?the present section is to explain this phenomencn.

Let us introduceone more surface functicn, the prefix * . It is
used when we want to take back an assumption, and arnihilates a
previous !. If we do (* . EXPRESSION), where EXPRESSION has the

property (BECAUSE), renovehypoth(expressicn) is performed.

Suppose we do
(! AND LOG1L LOG2)

where LOGl and LOG2 have not been used before. The following

thingé will happen (although not necessarily in this order):

(1) The ambjects LOGl, LOG2, (AND LOGl LOG2), and

(* AND LOG1 LOG21 are created.

(2) An operator on thec ambject AND puts ((LOGL LOG2)) as the

DNF proﬁerty cf ﬁAND LOG1 LOG2); checks if both LOG1l and

LOG2 heve any BECAUSE property (because if they had,

(LOG1 LOG2) would be put as the BECAUSE property of

(AND LOGl LOG2); fails; and returns.

(3) By the ! ﬁAND LOGl L0G2) is given NIL as one pessible reason.
Its DNF property is changed into (NIL (LOGl LOG2)), and
it obtains the BECAUSE property NIL. The ambject
(' AND LOG1 LOG2) becones at least implicitly a case of

(RECOGN EXPRIZTRUEZ°

43,

TTe

(4) By an operator on (SLASH AND (RECOGN EXPRIZTRUE)), the

embjects LOGl and LOG2 are made true. Their DNF property is

(((AND LOG1 LOG2))), i.e. a list of a list of the embject

:(AND LOG1 LOG2). Their BECAUSE property is ((AND LOGl L0OG2)).

Now suppose we do later on:

0.9

(4+ AND LOG1l LOG2)

i,e. revoke the assumption. The following will happen:

(5)

(6)

(AND LOG1 LOG2) loses its BECAUSE property, and the DNF

property loses its NIL, If it was (NIL (LOGl LOG2)) it

goes into ((LOGl LOG2)) .

By the routine in section 3.1, we check the DNF property of

(AND LOG1 LOG2) for some alternative reason. As both LOGL

and LOG2 now have a BECAUSE property, they are accepted as

reasons, and the new BECAUSE property of (AND LOG1l LOG2) is

(Locl Log2).

The system now believes that LOGl is true because (AND LOGl LOG2)

is true, end similarly for LOG2, and it believes that (AND LOGl LOG2)

i1s true because becth LOGl and LOG2 are true.

There are several ways of getting around this difficulty:

(a)

When an assumption is revoked, we first remcve the BECAUSE
property from all its diret and indirect consequences, and then
run through those consequences again and look for alternative

reasons in the DNF properties.

(b)

(c)

We keep the revocation method essentially as we first
designed it, but when we lcok through the DNF property of
an ambject aaa for an alternative reason, we chain backwards
thidughfthe BECAUSE properties and verify that the proposed

BECAUSE property of aaa does not rely on aaa.

We keep the revocation method as first designed, and accept
that circularities occur. However, we have an operator which
runs around in the data structure and looks for circularties.
When it finds one, it removes the BECAUSE property of all
members of the circle, and then tries tc find an alternative

reason in the DNF property of each of them.

In a certain sense, alternative (c) is less correct than the other

ones. It admits that circularities can occur in the data base,

and therefore, it admits incorrect conclusions. However, it is

attractive for the following reasons:

(c1)

(c2)

The search for circularities can occur when the computer
"is asleep", when it does not have anything else to do. In
e time-sharing system, it can do this on low priority when
the user of the incremental computer is doing his own
thinking for a couple of minutes, but the program remains

resident.

Search for circularities can be directed to important spots.
Suppose the user has asked the computer "is it really true
that ... (expression) ?"; that he posed the question with an

indication of doubt, and that the computer should therefore

think before it answers.

(e3)

L6,

A reasonable reaction from the computer would then be to
go rather far back through the BECAUSE tree, locking for

circularities. If it does nct find any, but does not either

reach the end of the tree, the computer should (A) ansver

"yes, I belive so" (which it really does), and (B) insert on
the queue of planned operations, a reminder to do a
very-low-priority, very-time-consuming analysis of the
BECAUSE tree for the given expression later on. On the other
hand, if no member of a circular argument in the data
structure is ever questioned or even used, then a system
using alternetive (c) will not waste time on eliminating

this circularity.

Aiternative (c) seems rather similar to the way humans
function. With alternative (c), the really big circularities
(the ones that we can not, and perheps should not eliminate)
will stay, whereas smaller circularities are removed whenever
they are discovered. It would {probably) be impossible to
anaiyse the entire belief structure of a human. Similarly,

it may be practically almost impossible to analyse the complete
data base of our incrementel computer, if it has grown to

the size that is required for handling practical problems. In
both cases, the best we can do is tc state the principle that
circulerities are inccrrect, and remcve them whenever we find

then.

4.

3.5 Conclusion

In this report, we have tried to outline the principles of the
ambeval.érog;ém; Many details arce missing, and other details have
been given a simplified treatment tc facilitate the expositicn.
The reader is referred to a listing of the actual ambeval program
for all details. Such a listing was issued as an appendix to this

report.

Let us put down again the characteristics of ambeval programming:
The program is written as a set of operators. These communicate
only through facts, not through subroutine calls. In cther words,
one operator deposists a facts in the data base, ard another
operatbr is triggered by this fact to deposit some cther fact, cor

to perform an action.

An operator which is triggered by the deposit of a fact, and
which itself deposits a new fact, defacto performs an inference.,
The line of reasoning is stored in the ambeval system This. makes

it possible to guess and to revoke guesses.

Some examples of operators have appeared in this report. More
examples will become availeble when work on the use of ambeval for

actual problems has been completed.

The present LISP implementation of ambeval is very slow. It secms
quite feasible and very desirable to integrate ambevel with eval
(i.e. the LISP system itself) and implement the resulting extended

LISP in machine code throughout.

References

1. Bertram Raphael
SIR, & Computer Program for Semantic Information Retrieval

PhD Thesis, MIT, Math Dept., Cambridge, Mass.

2. John McCarthy

A Besis for a Mathematical Theory of Computation

in [5].

* .

3. P.J. Landin
A Correspondence Between Algol 60 and Church's
Lambda-notatiy)fan. Part I

Comm. ACM 8 (1965), p. 89

4, L.A. Lomberdi and Bertram Raphael

LISP as the Language for an Incremental Computer

in [6].

5. P. Braffort and D. Hirschberg, editors
Computer Programming and Formal Systems

North-Holland, 1963

6. Edmund C. Berkeley and Daniel G. Bobrow, editors
The Programming Language LISP: Its Operation and Applications

MIT Press, 1966

Tkis reference is used on page 11l. The reference [1,3] on
pege 1 should read [1].

Appendix 1: Truib-values for legical connectives in the syl by Jog

a

Truth-values: t = true, I = talze, 5= semetines.,

e
e

P

a b » . -8&AD avb sab 0 &7L e/ b LEN] ah fe

4
-
ot
ot
ot

s
“#
o

-

o+ o ot ot
-
)

M o+ o o
"
e+]
%

S
5

p)
b
L T

k¢
ot
cr
ta
<
2
ot
-y

m

0
w
&2}
13
prs

T
s

n
Y - o o+
W ey
@
w ”
oo«
¥ oo
)
th
0

6]

ry
M vy ok om
A
B o+ o
HooHyoonoom
G N
o th b
Ao >
o Py

o
k]
=
i

3

i

¥ B W W
W W W W
R e
r«s
¥ B » X
iyt
A
<} 4

[t
1’—0
Fad

"

"+ TS S S
w
“oo+ A

1

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

