DATALOGTI
LABORATORIET

Project Technical Report for 1970
and plans for 1971

Erik Sandewall, H~J Holstein

Mats Nordstrdm, Jask Urmi

DATALOGI
LABORATORIET

Project Technical Report for 1970
and plans for 1971

Erik Sandewall, H-J Holstein
Mats Nordstrdm, Jask Urmi

Contents:

A. Research objectives

B. Background; work during 1970
C. Research strategy

D. Proéramming systems

E. Management of small data bases
F. Natural-lancuage processing

G. Formula manipulation

H. Qualitative analysis of models

Sections A through H are individually paginated.

AL

A. Research objectives

Research at DLU(x) aims to apply methods in artificial intelligence to

computer problems that involve intehse processing of small data basesgxx)

By s "small" dsta base, we mean a data base whose size is the order of
magnitude of core on a large-size computer. By "intense" processing,

we mean processing which has a complex logical structure; which requires
complex programs; and where the complexity depends on an inherent com-
plexity in the given task, rather than complexity which was introduced
for efficiency reasons when the problem was formulated for the computer.
Mechanized logical deduction (= "automatic theorem proving") in a
question-answering program is a typical example of intense processing.
Natural-language conversation when the computer is to maintain a data
base of a few hundreds or thousands of cormon expressions or construc~
tions is another. DENDRAL-type systems, which attempt to extract through
conversation the know-how of a human specialist in a particular field,

provide a third example.

We shall shortly refer to this class of problems as "small data base"

problems, but the criterium of complex processing is always implicit

and essential. Among small data base systems, we do not inelude data
bank type systems, where the size of data is very large, where pro-—
cessine is by necessity very shallow, an where the major problem is to
bring data from external storage into, through, and out of the computer
as fast as possible. On the other hand, the requirement that there shall
be some data base implies that we exclude programs, however complex,
where the data represents numerical quantities, or where the data is a

string of charaeters with little or no structure besides the triviel,

(x) DLU stands for Datalogilaboratoriet i Uppsala. "Datalegi® is a

Seandinavian word fer a subset of Computer Science whieh includes systems
programming, data structures, artificial intelligence, etc. but which
does not inelude numerical analysis, information retrieval, or some busi-

ness data processing.

(x=x)

task at DLU but has the standing of a sub-goal. More about this later.

The development of conversational programming systems is one major

A2

linear one (e.g. text editing programs).

Let us meke this more concrete through some examples of application of

small data base systems:

1. Question-answering programs. These are programs which maintain a

data base of simple facts about common-life situations, and which can
accept and answer question in natural language, using the data base plus
some common-sense reasoning. Usually, it is required that new facts can
be added to the system by natural }anguage input. Question-answering

systems have been proposed

la. as public information terminals at airports, railway stations,

department stores, etc.

1b. as public information terminals where anybody can get information
about government and other large organizations: how they are orga-
nized, which services they can offer, how and when their decisions

are made, etc.
lc. for military command and control systems, etc.

A further discussion of this application is in "Artificiell intelligens
(1970)", part B.

2. Model management systems, which maintain a data base of relatively

many, simple models. Detailed example: in ecological research there is

an abundance of circulation models. From a systems point of view, these
are closed compartment models which are normally in a state of equilib-
rium or periodicity. Compartments in the model may represent river -

lake - atmosphere - clouds - rain or (in another model) earth - plants

- decdying organic matter. In each model there is one or a few substan-
ces which circulates, e.g. a poisonous substance. The direction and
velocity of the transfers depends on parameters (like pH value or
temperature), and such parameters may also be affected by the circulating
substances. In an analysis of the models, one is interested in knowing
the state of equilibrium, and in the effects of disturbances in the

system.

A.3

In practice, the models are not independent. Instead, a variable whose
value is affected by one model, may control the behavior of another
model. Thig i# harmless in analysis of the stationary state, since one
can stili measure some variables and use the model to compute the others,
but it is important in the study of effects of a disturbance, e.g.

addition or elimination of a pollutant.

In this situation, it is reasonable to let a program maintain a small
data base of models, and make qualitative énalysis of the model structure
to answer questions like "in which models is the water's oxygen eomtent

a parameter?"; "is there any component in the exhaust which alone could

be responsible for the following four effects:.... ?", or "is there

reason to believe that a change in A could cause a change in B?" If the
answer to the last question is Yes, then it still takes numerical com-
putations té determine whether thresholds were passed etc. so that the
change in A did indeed cause the change in B. On the other hand, if
logical analysis determines that a change in A could not possibly cause
a change in B, then we have been able to avoid a lot of computation,

and we probably have a more reliable answer than we could pget from simu-

lation.

3. Computer-aided instruction. In some advanced CAI systems, ene wants

the computer to carry on a mixed-initiative conversation with the stu-
dent about the subject-matter of instruction. This means that the com-
puter should both make questions to the student and answer the student's
questions. Such a system requires that the computer meintains a small
data base of knowledge abcout the subject-matter, and it is therefore our

third example of applications.

The mere observation that a lot 6f'interesting computing problems in-
volve processing of small data bases, is not ‘sufficient reason to let a
research proeram and research proun concentrdte on such computing prob=-
lems. However, we also have a set of methods:and ideas which we believe
are relevant for most small data base applicétions. These methods and

ideas are outlined in section C ("Research strategy") of this report.

Most applications for small data bases assume intense man-machine inter-

Ak

action. Time-sharing computer systems are therefore an essential tool
for this research, and practical necessity has forced us to make the
development of programming systems for time-sharing one of the major
sub-goals for the group. The PILS system (paged interactive LISP system)
which we presently develop is an example of this. - Other sub-goals
relate more directly to the major source of inspiration, i.e. artificial

intelligence research, and are diseussed in seetion C.

In summary, work at.ﬁﬂU attempts to apply artificial intelligence methods
to small-data-base problems. We have methods, and ideas for further
methods, which we believe are useful for many problems within the given
class. These methods and ideas range from the practidal (e.z. develop-
ment of basic software) to the theoretical (e.g. methods of automatic
logical deduction or "theorem-proving"). The basic work to develop those
jdeas is an essential purpose of the group, and goes on in parallell

with the work on various epplications.

B.1

B. Backeground; work during 1970

Work st DLU is conducted in two research groups with Aistinet but con-

verging history:

The research groupﬁfor "datalqgl"(x) was orsanized in early 1970 after

the advent of some fresh research support. Before 1970, several peopie

in the Computer Sciences department (of Uppsala University) had done
individual projects in the artificial intelligence field, and one perscn
(Erik Sendewall) had participated in the "Swedish Question-Answering
Project" whose other members worked in Stodkholm (at FOA P). The research
group for "datalogi" was set up within the C.S. department to stabilize

these activities. In January, 1971 it has the following members:

Anders Beckman

Mats Cedvall
Lennart Drugge
Anders Haraldsen (§)
Fred Jacohson

Otto Lindgren

Mats Nordstrdm (§)
Frik Sandewall (§)
Arne Tengvald

Jaak Urmi (§)
Olle Willén (§)

Persons marked with a parasraph sign participated in projects during
1970, the others entered the group in January, 1971. The following

persons participsted during 1970 but have new left the srour:

Diz Breslaw (Tanuary - December)
Lars Nilsson (January - May)

Frangois-Yves Villemin (January - May)

The followime persons are associated, and participate in some of the

proup's activities:

(x)

see footnete on pame A.1l

B.2

Rodger Knaus
Kalle M&#kilé
Torgny Tholerus

The research group foflsociocyberﬁetiés oripinated in the department of

sociolory, which has been conducting & relatively larse-scale project
("Marsta=projektet") since 1960. This project required a lot of computer
processing, mostly of & routine character, but there emerged the need
end the interest for using computefs in less trivial ways, e.g. for model
management systems similar to the one that was outlined in section A.
The research proup for sociocybernetics is now part of the Sociology and

the Computer Sciences Departments, and has the following members:

Hans-Jiirgen Holstein
René Reboh
Lennart Stdhlberg

The plans for work during the period Jan. 1, 1970 to July 1, 1971 are
given in "Artificiell intelligens (1970)" (referenceI), and contains

the following main headings:

1. LISP systems, especielly (PILS project) development of a paged

interactive LISP system for the Siemens 300 series computer.

2. Question-answering systems (including deduction problems and

natural-lanpuage processing problems)

3. INTERFORM project: Data base oriented formula manipulation (see

also section G of this report)

L. ATMAN and ECOSYS projects: Model analysis in sociological models

(see section H)

Tt was presumed that programmings in the last three projects should be
done in LISP and run on other LISP systems before the PILS system became

available.

Let us consider each of those four headings and compare plans a year
ago with the actual results during 1970. It must be understoed, then,

that since the very nature of research is discovery, problems under

B.3

attack often turn out to be harder, or easier than expected; some prob-
lems turn out to be irrelevant, and new interesting problems come up.
Therefore, it must never be a puypose in itself to conform to plans. On
the other hand, if we change plans we should at least know what we are
doing. Tt is also interesting to see whether the guantity of results

agrees with what was predicted.

1. LISP systems

Work under this heading is supported mainly by FOA and UDAC. Plans a
year ago called for programming of an interactive LISP system (the PILS
system) for the Siemens 300 series computers. A computer was expected to
arrive in February. The work to write the interpreter and to transfer

a compiler and sorme user service programs (editor, DWIM package, advise

package) was to start immediately and to be finished by July 1, 1971.

LISP F. The Siemens computer was delayed in several ways and the instal-

lation was not available for users until the beginning of October. In

order not to delay various projects which presume access to an inter-

‘active LISP, we then decided to write a LISP interpreter in FORTRAN for

use on commersially available, RAX-like, time-sharing systems. Such an

‘ interpreter must by necessity he relatively slow, and since we are con-

fined to a rather limited core size and can not use secondary storage,
the LISP user does not get very many LISP cells. However, the system is

useful for debuggine and tutorial purposes.

Work on the FORTRAN interpreter for LISP (called LISP F) started in
January, and the system was onerative for users in March and officially
debugged in September. It is available on the DATEMA time-sharing ser-—
vice, and is used regularly. The user presently zets 90C0 LISP cells.
The preliminary version of the documentation was issued in Octobher; the
definite, slirthly updated version is bteins typed. This work was ner-

formed by Mats Nordstrdm, with some assistance of Erik Sandewall.

PILS. The present (January 25) status of the FILS system is as follows:
the interpreter and a number of basic funetions are running, and obvious

bugs have been removed so that simnle test examples come throuch. The

B.h4

reportoire of available functions includes elémentary list functions
prog, and I/0. Peging routines have not been written, so the user is
confined to core. (The system is organized so that the paging routine
can be added without reprogfammihg any of the existing code). Garbage
collection does not work yet, but is expected to work eny day. In sum-
mary, the system is coming to life. £ two—pégéd users' instruction has
been written, and some selected users have tried to run their LISP

programs on the PILS system, with varying results.

Work on PILS has the following history: Jaak Urmi visited BBN (Bolt,
Beranek, and Newman, Inc., in Cambridge, Mass.) from April to August,

to learn about their LISP systems for SDS 940 and PDP-10, from which the
PILS system has heen modeled. System desien for PILS was done in August;
September was spent propramming, and debugging could start in October
when the computer arrived. This work has been done by Jaak Urmi, with
assistance of Anders Haraldson (October - now) and Diz Breslaw (Septem-
ber - December). - Expectations are that the original intention to have
the paged system compiler, and user service programs running by July 1

will succeed.

Besides these rajor efforts, some smaller systems projeets have been

performed, namely :

LISP editing end tracing systems. A small interactive list structure

editor for use on programs and data in LISP systems, and a simple trace
package, were written in LISP by Diz Breslaw. The packages are intended
for use in LISP F and other small, interactive LISP systems. Work startec
in April and was completed in September. Documentetion is in the LISP F1

manual.

Modification of the 3600 LISP interpreter. The existing interpreter for

3600 LISP has been given a careful overhaul. Thg“§¥§§¢m;ga§_been sneeded
up byhio - 70ﬂ%l“Agnumber of new standard funetions and facilit§é§NHAVe

been added, in particular, error handling routines (so that the user can

define a function which is to be called during interpretation if a func-

tion symbol or variable is undefined, thus aveiding an error interrupt

and a LAP facility (so that e user or a LISP prozram can provide an

B.5

assembly languafe program, which is assembled and linked with the LISP
interpreter). Work on LAP has been performed by Kalle M&kild, all other
work by Jaak Urmi. The work was completed in April. Documentation is
available in {Urmi 1970}.

TP-LISP (a eompiler for a modified LISP, for use on the CDC 3600). This
work has been performed by Torgny Tholerus. The system is running dbut

not (yet) documentated.

2. Qestion~answeting systems

Work under this heading is supported mainly by NFR and FOA. Plans as
formulated in "Artificial Intelligence (1970)" expected the SQAP project
(see below) to be terminated during the third quarter of 1970; to use
the PILS system before July 1, 1971 for experiments with a number of
small and medium size programs in various fields, including natural-
language processing, and to do theoretical work(x)
cation to NFR for the period October 1, 1970 to July 1, 1971 this was

. In a grant appli-

further specified to address the following tasks:

(a) Transfer some existing programs to available, interactive program-
ming systems, so that the user (and the prograrmmers that will be
involved in future projects) will get the feeling for computer

conversations.

(b) Modify those programs so that the user can "teach" the pregram new

phrases as the need arises.

(¢) Start work on the problem of making programs "understand" contimuous
text, where the meaning of sentences and the relatiopships between
the sentences are often more complex than the presently assumed,

simple categories of assertion - question - instruction.

Clearly, (c) is the major task.

SQAP project. The SQAP projeet (Swedish ®uestion-Answering Project)

started in early 1968, and is performed im cooperation between FO! and
DLU. The major programming effort is at FOA, and is reported for else-
where. The work in Uppsala is to contribute some of the methods for the
system. Goals for the project and work before 1970 is reported in
{Palme 1970} ard in "Artificiell intelligens (1970)".

(x)n

primarily on heuristic search methods", but not excluding problems

in natural lansuage processine.

0
N

Flans a year ago expected the project to be completed during 1970. This
did not happen, because some problems were harder than we thought, and
because most peovle in the project were partly occunied with other tasks

(planning a time-sharing computer facility =t FOA).

The data base in the SQAP project is an SPB structure, as described in
{Sandewall 1969}. During 1970, the data structure has been extended
through the introduction of a variable-like concept, and the deduction
and retrieval procedures have been extended to accomodate the new data
structures. This work has been performed by Frik Sandewall and is pre-
sently not documented. Moreover, Anders Haraldson and Lars Wilsson have
written and debugged small programs for experiments with various search
methods. One of these programs is deseribed in (Haraldson 1970). Most of
this work was done during the first half of 19TO.

Preliminary studies for SQAP 2. Using the experience from the SQAP pro-

ject, we have studied some possible alternative approaches which might

be used in a future SOAP 2 project. In particular, we have develeped:

(1) An approach to the problem of computer understanding of continuous
text. This is the (c) problem mentioned in the NFR application
(page B.5). Our approach, which has not been documented, makes
rather strong assumptions on internal representation and retrieval
in the question-answering system, which caused us to attemnt the

development of

(2) A new, internal, representation of conceptual (= natiral-language)
information, which relies more heavily on predicate calculus nota-
tion, 2nd therefore is called PCF, for "predicate calculus formu-
lation" (of conceptual infermation). The new notation promises to
he more flexihle than the notation used in the SQAP nroject, but it
may instead make it harder to write efficient retrieval rrecedures
for the data base. PCF is deseribed in {Sandewall 1970a} ang
{Sandewall 19704} Semplc translations of some Swedish sentences

(from a children's book) are given in {Sandewall 1971a}.

(3) System design for a predicate ealeulus data base (PCDR) manazement

system. The PCDB package would be responsible for storings and
retrieving predicate calculus fermulas in a small data base, and for

compiling axioms into relatively efficient LISP propgrams. This is

B.T

an attempt to handle, or at least see if we can hope to handle,

the increased complexity of retrieval if the PCF representation is
used, but we believe that the package will have several other appli-
cations as well. Important parts of the program for the PCDB package
have been written but not yet debugged. Some of the work to date is
described in the PCDB Users' Manual (the first few chapters avail-
able), and in the PCDB/n preliminary program documentation. The work
to set up and debug this package on the PILS system is just being

started.

(4) A LISP function package which generates and simplifies LISP function
definitions. The package is called REDFUN. This work does not
logically fall in the field of natural-language processing, but it
is an essential tool for PCDB, which is essentially a function
generator. REDFUN has the same status as PCDB, i.e. important parts
of the program have been written but not yet debugged. A preliminary

program documentation is avilable.

The REDFUN package uses LISP's FUNARG feature, and this raised some
implementation problems of general interest. A proposed solution is

given in (Sandewall 1970c).

Work under the SQAP 2 heading has been done by Erik Sandewsll. The PCDB
and REDFUN packages are part of the PILS experiments that were postula-
ted in "Artificiall Intelligens (1970)".

QAMEAS. A question-answering program for measurements has been written

in LISP by Lennart Svensson as a term project (trebetygsuppgift). The
program can accept statements like "1 foot is 3 decimeters" and answer
questions like "how many feet per second is 4O kilometers per hour?". It
was developed in batch mode for 3600 LISP during April to August, 1970,
and was later transferred to the interactive LISP F system by Anders
Haraldson. A program documentation is available in one copy and can be
Xeroxed. This is the only work that has yet been performed on NFR problems
(a) above. QAMEAS and several other programs will later be transferred

to the PILS system.

B.8

Two further term projects (trebetygsuppgifter) in the C.S department
during 1970 relate to natural-language processing and shall be briefly

mentioned :
FTNPARS, a FORTRAN program for an arbitrary context-free grammar. This
work 1s performed by Lennart Drugge, who is now a member of the research

group for "datalogi". The work is expected to be finished in February.

Cateporial parser. A parsing program for a categorial grammar was

written in ALGOL by Norbert Schiiller. The program is running but not

yet documented.

3. INTERFORM project

Work under this heading was supported mainly by STU. A description of
the project, results during 1970 and plans for 1971 and 1972 are given
in section G. Shortly, the project started in the spring of 1970 with
a survey of existing litterature. During the auturmn, the structure of
the program and the data has been decided, and some program modules
have been written and debugged. The project is running on schedule and
is expected to be completed in the latter half of 1972.

4., ATMAN and FCOSYS projects

Work under this heading is supported by RJF and conducted within the
research group for sociocybernetics. During 1970, this group has been
working on explorative studies as well as on computer programs in the

three main areas of sociocybernetics:

a. Methodology: Continued development of an interpreter for a language
developed especially for simple and flexible descrit ion of stan-—

dard processing of sociological data (continued from 1968/69).

b. Microsociology/psychology : Explorative studies of artificial attitu
systems, especially an attempt at programming a model of theory
formation.

c. Macrosociology/ecology: Some simple simulations of abstract ecologi

cal systems. The major effort is however on the design of simula-
tion models that will be used during 1971/72.

B.9

This work has been performed by Hans-Jiirgen Holstein, with the assistance

of René Reboh and Lennart Stéhlberg.

This terminates the discussion of the various branches of research. We
concldde that considerable progress is being made in each of these

branches.

The volume of work has grown considerably during 1970, and through the
formation of the research group for "datalogi" it has become more
closely integrated. We have therefore had reason to reconsider and
reformulate the objectives and the strategy for this work. The research
objectives have been described in section A of the present reportg

they are to apply methods in artificial intelligence to computer problems
that involve intense processing of small data bases. We did not find
this formulation of the group's objectives until in the autumn, although
the basic ideas were implicit in the research proposals that were made
earlier in the yeatr: The strategy which has been selected for work

with these objectives, will be described in the next seetion.

Blo

References

1. Erik Sandewall, Jaak Urmi m.fl.
Artificiell Intelligens (1970) (in Swedish)
January, 1970

2. Anders Haraldson
Ett LISP-program som Overfér PROPLAN-notation till
intern SPB-notation (in Swedish)
March, 1970

3. Mats Nordstrém et al.
LISP F1: A LISP Interpreter Written in FORTRAN
February, 1971

4, Jacob Palme
Meking Computers Understand Natural Language
FOA C-rapport, October 1970

5. Erik Sandewall (1969)
A Set-Oriented, Property-Structure Representation for
Binary Relations, SPB

in Machine Intelligence 5 (Meltzer & Michie, eds.)

6. Erik Sandewall (1970a)
Representing Matural-Language Information in Predicate Calculus
in Machine Intelligence 6 (Meltzer & Michie, eds.)

7. Erik Sandewall (1970b)
Formal Methods in the Design of Question-Answering Systems
in Artificial Intelligence, vol. 2 (1971)

8. Erik Sandewall (1970c)
A Proposed Solution to the FUNARG Problem
CS Dept. report nr 29 (Nov. 1970)

9.

10.

11.

12.

130

A1l references are available through Datalogilaboratoriet

(address: Sysslomansgatan 25, 752 23 Uppsala, Sweden)

Erik Sandewall (19704)
PCDB User's Manual

First version, Dec. 1970

Erik Sandewall (1970e)
PCDB/n program documentation
December, 1970

Erik Sandewall (1970f)
REDFUN program documentation
December, 1970

Erik Sandewall (19T71a)
Enkel PCF fOr svenska (in Swedish)
January, 1971

Jaak Urmi (1971)
3600 LISP U3 User's Manual
September 1970

B.11

c.1l

C. Research stratery

When formulating & research strategy, we made some basic assumptions:

"(a) Work on applications projects should be performed in parallell

with basic researchy

(b) The basic research in this field should not merely aim at the
development of methods which may be useful in som applieationms,
but also at programming these methods into subroutines which can
be used in the programs for several applications. We do not believe
that a universal program for handling small-data-base type problems
is possible or desirable, but we do believe in building a "toolbox"

of programs and methods.

(¢) In most of these projects, it is absolutely necessary tc have access
to a highly interactive time-sharing computer facility. Since a
"small" data base can not be expected to be minute, this time-
sharing system must be based on a virtual memory and a swapping

mechanism.

The seeond assumption implies that we need a common programming language
within the group. Since we wish to bring in existing programs from out-
side, this language must be reasonably wide-spread. By the nature of
our tasks, we need a language with good list processing facilities,
whereas facilities for efficient numerical computations are of minor

importance. These considerations leave us a choice between the following

languages:
ALGOL 68
LISP
PL/I
SIMULA 67

Among these, LISP has an advantage in that so many programs in the arti-
ficial intelligence field have been written in LISP. The others have

the advantage of being more general-purpose languages, and PL/I also has

c.2

the advantage of being more wide-spread and more generally available.

In the final decision, two more things had to be teaken into consideration
First, we were given free and ebundant access to a small/pedium—size
computer, a Sieﬁené 305 with 16K 24-bit words,a disk which could be used
as swapping memory (although it would be relatively slow), and so on.
None of the dbove languages were availsble on this computer, so we would
have to implement the language ourselves. We did not want to put more
work than necessary intc this system programming. This was a strong
argument for LISP, since it is well-known how LISP can be implemented

using boot-strapping teehniques.

The o&ther eonsiderstion was that we expect programs in our class of
appliéations to become relatively large. We therefore want computer
support for maintaining and analyzing our programs. Such support can be
given by programs like Warren Teitelmen's DWIM (Do-What-I-~Mean) package
(compare "Artificiell Intelligens (1970)"). This means that we need a
langtiage with a good (easy-to-analyze) program structure, a good data
structurc, and an established method for representing programs in the
format of this data structure. This property is eharacteristic of
interpretation-oriented languages, ineluding LISP, but the other three

languages sbove do not have it.

For these reasons, we decided to use LISP as the common language in our
projects. (Admittedly, some less rationsl faetors also played a part in

the deeision).

With some simplification, we can therefore say that work at DLU is per-

formed on three levels:

(a) Special-purpose systems programming, aiming at the development of

an interactive LISP system, which is to be used as a tool for the

various projects. See section D of this report.

(b) Development of subroutines, auxiliary programs and methods which er
useful for complete programs or for other subroutines. One such

auxiliary program is described in section E.

Cl3

(¢) Work on complete programs which have been designed for the benefit

of a user, rather than for a programmer. This includes both

programs for applications, such as the INTERFORM project (see
section F. of this report), and programs for use in our own research,
such as the experiments with models of natural-language discourse

(see section F.).

The border-line between the levels is very vague, so this has the
character of a spectrum, rather than three distinct floors. For example,
under "systems programming" we fnelude both the machine-code work of
writing an interpreter, and the work of transferring an existing LISP
compiler, structure editing package, DWIM package, M~-notation input
package, etc. to this system for bootstrapping. Similarly, code which
was written as part of one special-purpose, complete program has turned
out to be useful as "tools" in other programs as well. In spite of this,
the description of three levels has a value as an organizational guide-

line.

On the toolbox level, our strategy is to bring in tools from abroad or
develop them ourselves (whichever seems more adequate in each case) at
the time when we know we need the tool. It would be stupid to put a lot
of work into a tool-box before we knew when and how we could use it. In
accordance with this, we like to define applications projects so that
the development of some general-purpose tool becomes a necessary part
of that project. In order to facilitate planning in this respect, we
have prepared a list of tools which are desirable, and which will be
brought in or developed as the need arises. This list is given in an
appendix. It must be understood that the list is dynamic, and that we

update it every few weeks.

The balance between bringing in a program from abroad or developing it
here requires some comment. In most cases, it cost us much less work to
bring in a suitable program from abroad, than to develop it ourselves.
Development of tool-box programs here is only meaningful when we have
formulated our requirements on a tool, and found that there is none
available. On the other hand, it should be stressed that the task of

bringing in outside programs, although less troublesome, is not trouble-

C.h

free. Programs of this character are never "closed"; you always have to
go into them and change something. This means that we need to have
somebody here who understands the workings of the program. Usually, the
best way for him to find out, is to go where the program was written,

for a few weeks. - This explains why the budgets in ocur project proposals

normally assign a relatively large amount to "travelling".

In summary, the research strategy is to do work on three levels: systems
programming for LISP; toolbox development with our cwn and foreign

programss and applications projects.

This terminates the description of the general research strategy. The
remeining sections of this report will describe the plans for each

individual project at DLU.

D. Programming systems

Work during 1971 will be dominated by the PILS system. The LISP F system
desceribed in section B is considered as completed, and we will only do

minor improvements as we need them.

Let us first repeat some of the background for the PILS project. PILS
stands for "Paged Interactive LISP System". The decision to start this
project was made in January 1970. For this purpose Jaak Urmi visited

BBN (Bnlt Beranek and Newman Inc:, Cambridge, Mass.), who were judged to
have the best LISP-system existing. He stayed at BBN from April to August

to learn their systen.

Work on systems design and implementation decisions for PILS started in
August, and programming could start on a small scale in September. Due
to various reasons (mainly delay in the delivery time of the Siemens-305

computer) debugging and tests could not start until October.

Tt was decided to define the PILS project as consisting of U4 phases

as follows

Phase 1 PILS-1

Programming of a basic interpreter with all basic functions. This version
of the system should not be paged (but should be prepared for it), and
should support one user. The system is designed te run under the standard

Stemens Operating system ORG 1,

This system is called PILS-1

Phase 11 PILS-2
Extending PILS-1 to include paging in a 21 bit address-space. The extendid

version is called PILS-2. PILS-2 is intended to support one user.

Phase 111 PILS-3
Writing a special purpose operating system to support PILS-2 and allow
timesharing with up to b users. The limit U users is set out of various

reasons, the most important being performance considerations and a maximum

D.2

of L teletype I/O-charnels on the Siemcns. More teletypes could possibly

be attached on thie A/D-channels. This version has the name PILS-3

Phase IV PILS-4

Writing a compiler in LISP =nd bootstrapping. This phase is implementirg

all kinds of system library functions, structure editor, program correct-

ing, interphases between user and sytem and all kinds of "goodies" as

described in "Artificial Intelligence (1970)".

This is the final siep in PILS.

Time estimates

The following time cstimates were made in August, 1970:

PILS-1
PILS-2

PILS-3

Work on

PILS-4

skould *e finisned 1970

should stnit when PILS-1 wes finished and should be finished
eabout Merci: 15, 1971

was to start when the needs aud demands on an OS became clear
and the weak points in ORG apprared

PILS-3 was supposed to run in parallell with PILS-2 and be
finishes no later than the middile of May, 1971

was supnoced to run in psrolleil with the other phases with a
groving vse of the machine the further the other phases got.

PILS-k cheuld be finished by July 1971.

Present State end Plans mntil July 1, 3971

PILS-1

Due to the delcy in the delivery of the computer and the docu-
mentaticn for it, somethins o7 a state of emergency appeared
for PILE-1. Thonks to hard wo iz made by the group working at

the projiect we managed to keep the deadline.

PILS-1 is today completely finished, and available for users
(though it is guite troublescas to use it). At some points it

surpasses the goals set up {e.s. error handling).

PILS-2

PILS-3

PILS-L

D.3

The people who have worked on PILS-1 are

Diz Breslaw who wrote a macro-expander in LISP and most of the
macros used in PILS-1. The macro expander w&s hever
used but the macros gave a clear hint on what we needed.
(We also plan to use it in the future for some other

purposes).

Anders Haraldson who simulated the logic of the central interpre-

ter in LISP and d4id some prograrming.

Jaak Urmi who supervised the work and did most of the progremming

and debugging

Jaek Urmi has started work on the paging routines, and most

of the program is written but not yet tested.

PILS-2 is expected to be finished ahead of schedule. (February
15 - March 1).

Design work on the OS was stared in the beginning of January.
The programming is expected to start before the end of January.
The work is done by Fred Jacobson. One more person will possibly
be assigned to the programming as Fred Jacobson will not be

able to devote mueh time for the project.

This part is running slowly. The present effort is concentrated
on study of a structure editor by Rodger Knaus. Most functions
which will be bootstrapped into the system are available from
BBN. Under this part Jaak Urmi is planning to visit BBN for a
few weeks to get a detailed knowledge of the techniques used in

a LISP compiler and to learn the bootstrapping process.

Conclusions. All parts of the PILS project have been successful so far,

and all deadlines have been kept. There are no reasons to believe
that there will be any significant delays in the remaining

phases.

D.L

The know-how gathered about LISP systems at DLU has already started to
pay off. UMDAC (Umed computing center) has shown interest in PILS and
plan to start an equivalent project with DLU as consultant.

Plans for 197l[72

In december Jaak Urmi proposed a fifth step in PILS called PILS-5.

This step is systems research oriented by its nature. It involves such
topics as optimizing the page turning routine, using knowledge about how
LISP works. PILS-5 also includes theoretical and practical work on the
lines indicated in a report under preparation by Erik Sandewall. The
basic ideas are to let a user have a back-ground Jjob which operates on
the same data as the foreground conversation. The background job might
be initiated by another job or by the user. The system should also keep

a history of the computation process to facilitate restarts etc.

E.1l

E. Management of small data bases

Since work at DLU centers on applications of small data bases, we would
like to have standard pregrams which facilitate storage and retrieval
in such data bases. Let us first specify our requirements on such a
program,; then discuss how some existing proérams meet the requirements;
and finally describe a project which is performed at DLU, namely the
PCDB (Predicate Calculus Data Base) projecti

We have the following requirements on a standard program for management

of small data bases:

(a) Tt should be possible to use it in a LISP computing environment

(since we use LISP as the common programming system)

(b) It should provide a more problem-oriented and less computer-
oriented language for expressing data (or facts, if you please)
and retrieval requests (questions). It must be significantly
more problem-oriented than LISP's built-in data structure, il.e.

"S-expressions stored on property-lists".

(c) At the same time, the program's requirements on storage space and
retrieval time must be comparable to those for LISP property-lists,

or else the program will never be used.

(a) The primary purpose of the program must be to assist or supplant
the user in writing search routines for retrieval. A program
which stores data for the user, but leaves him on his own when
it comes to search and retrieval, is not very useful. This irme-
diately implies that the program must be able to accept not only
elementary facts, but also inference rules, i.e. descriptions of
those logical properties of the data that form the basis for the

retrieval routines.

Let us illustrate the (b) and (d) criteria in the context of predicate
calculus, which is one candidate (although certainly not the only can-
didate) for a problem-oriented representation. Suppose we want to per-

form that standard exercise: writing a kinship handling, question-—

E.2

answering program. Some simple kinship relationships may be expressed

in predicate calculus as

Sibling(Jesper,Bodil)
Male(Jesper)
Father(Jesper) = Edvin
Wife (Edvin) = Edla

etc. ("Sibling" stands for "brother or sister")., For simple facts there
is no essential difference in effort between making these predicate-
calculus statements and making the obvious ptdperty*list storage instruc-

tions. However, in mere complex eXpreSsiOns; like
Sibling(Father(Hedvig). Wife(Neighbor(Halvard)))

(for "Hedvig's father is a sibling of Halvard's neighbor's wife)
the predicate caleculus formulation is probably more convenient than
what we could immediately do with property-lists. This i$ what we mean

in criterium (b) above.

Moreover, predicate calculus permits us to state general axioms, such

as axioms that characterize these kinship functions and relations, e.gz.
(x) Male(x) = -Female(x)
(x) cChild(x,Father(x))

(x)(y)(z) chila(x,y) A Child(x,z) -5 v = z V Sibling(y,z)

If we write a direct program for the kinship exercise (without the
support of ény standard program), then the information contained in
these axioms must somehow go into that program. Normally, it goes into
the retrieval part, but some of the axioms could alsoc go into the storage
part. For a trivial example, the first axiom could correspond to a
segment of the retrieval procedure which says "if {4 has been asked
whether x is male, and if there is no immediate information in the data
base saying that he is or isn't, then ask as a sub—question whether x
is female, and negate the answer", and to a corresponding segment for
the case where x is female. But alternatively, it could correspond to

a section of the storage procedure which says "if you have to store

~that x is male, then store also that x is not female" and similarly for

E.3

the symmetric case.

If a small-data-base management system uses predicate calculus as its
problem-oriented notation, then it should permit the user to write
axioms like those above, and the system should be responsible for using
the axioms in storage or retrieval. This is what we mean in criterium

(d) above.

Let us now discuss some existing programs against the background of the

aforementioned criteria.

The SPB program. This program has been developed within the SQAP project
(Swedish Question-Answering Project) at FOA in Stockholm, and with our

cooperation. The program is written in PL/360 (for IBM 360 series compu-
ters). It would seem possible, although not trivial to link the program
with a LISP system. There is 'presently no sufficiently big, 360 com-

patible computer in Uppsala, so we can not take over the program directly.

For work in Uppsala, one possibility is to re-program some central parts
of the SPB program in LISP or in the assembly language for some computer
here, while retaining the same system design. In this system elementary

facts must be quantified binary relations like
(¥ xea)(Vyebd) Rx,y)

This is a connection between the nodes (constants) a and b. Arbitrary
quantifiers are permitted. For retrieval, the system can accept inference
rules which are essentially implications ("if the following relations

are present in the network, then the following ones can be added"). It
also has a special facility for handling chaining rules. - This design
works well for the purpose of the SQAP project, i.e. general-purpose
natural-language question-answering, but several features would have to
be added if the system is to be used as the basis for an assortment of

specialized applications. We would need at least the following:

(a) a garbage-collection facility

“E.L

(b) a possibility to store arbitrary expression (strings, list
structures, or numbers) on the property-lists of nodes in
the system, and standard functions for mamipulating those

expressions.

(c¢) substitute or add a ne¥ inference-rule feature, which is
easier to use and more general than the existing one. In
particular, it should accomodate the new types of expressions

introduced in step (b).

The first two amendments come for free if we re-write SPB in LISP or
some other existing language, but they would be cumbersome if we write
in assembly language. (Aetually, they would amount to building a
programming language inside SPB, which is absurd). The third amendment
is less trivial to handle. We could do it by kludges, but we should not,
since we want to live with the system for some years. If we want to
extend SPB in a general and systematic way, it seems better to go the
other way: design a more general system, and see to it that the SPB

notation can be defined as & subset.

The QA3 program. This program was developed at Stanford Research Institute.
Iﬁ iéiwritten in LISP, and we have a copy of it and could use it. QA3

is essentially a resolution theorem-proving program with clause indexing
features which help the resolution program to find relevant clauses.

QA3 permits the user to write facts and rules (formulated as axioms) in
first-order predicate caleulus, which is a more conveniémt notation

than the one used by the SPB program. On the other hand, both test-runs
and our analysis of the program indicate that retrieval using QA3 takes
several orders of magnitude more time than if the same task and the

same axioms are explicitly programmed in LISP. This means that QA3 can
only be used for those applications which are absolutely imposéible to
handle by conventional methods. But this is unnatural, because most
applications projects start with simple problems (for which the program-
mer is strongly tempted to write his things in LISP), and gradually grow
into complex tasks. When the program reaches the limit of what can be done
by conventional programming, it is probably too late to switch to the

predicate calculus representation that QA3 requires.

What has been said here about the SPB and QA3 programs should not be

taken as criticism. Those programs were developed for other purposes

E.S

and serve them well, so they fill other requirements than ours. - We

have looked into a few other programs that might be useful, and made

similar conclusions about them.

For these reasons, we have worked on the design of a system which would

meet the four requirements on page El. This work started in November,

1970. We mow (February, 1971) have a general outline of the system, and

menuscripts for parts of the program.

The proposed program is based on the following assumptions:

(1)

(2)

(3)

(4)

It should menipulate formulas in fifst—order predicate calculus.

We consider this to be a very convenient notation: The SPB data
structufe is a spécial case of predicate calculus, which is good for
compatibility wﬁth our previous work.

The progrem should be written in LISP, and operate on LISP's stan-
dard data strucfures. In principle, we could modify the LISP system

and add special-purpose data structures for a "heavy" program such

as this, but we will probably have to move around between several

comPUters during the next few years, and thé extra programming costs

for going beyond the standard system would be too high.

In order for the system to be attractive right from the start of
applications projects, it shall contain facilities which handle
trivial storage and retrieval operations, and handle them (roughly)
as efficiently as manually coded programs. For example, if a user
programs the kinship problem above in LISP, he would probably
indicate the sex of a person by a flag (MALE or FEMALE) on the
property-list of the atom for this peréon. Therefore, ouf pregram
shall represent a predicate-calculus formula like "Male(Jesper)"
in exactly that way, and it should do retrieval by immediately
selecting an ordinary get operation, so that the user does not
lose anything if he uses our program. (He probably does not win
anything either to start with, but he knows that he werks in a more

powerful system, and therefore has a higher ceiling).

The system should not be restricted to trivial cases in predicate
calculus, but it should contain the full power of a resolution

theorem-proving program. The general-purpose parts of the system

E.6
must of course be carefully integrated with the short-cuts which
are needed to handle simple cases.

Since the p- pose of the system is to manage a small data base of pre-
dicate-calculus formulas, we decided to call it PCDB, for "Predicate

Calculus Data Base".

Outline of PCDB. PCDB is a LISP program which maintains a data base of

formulas in first-order predicate calculus, and which does retrieval

in this data base by various means, inecluding resolution but not exclu-
ding others. When compared to other "theorem-proving" programs, it
stresses efficiency in handling relatively shallow deductions from a
relatively large (hundreds, thousands) number of -axioms. It does not

stress completeness.

One characteristic trait in the system is that ground unit clauses
("facts") and other clauses ("rules") are stored in different ways.
Facts are stored on the property-lists of their arguments. Thus the

relation
Sibling(Jesper,Bodil)

will be represented on the property-lists of the atoms JESPER and BODIL.
When handling the fact

Sibling(Father(Hedvig), Bodil)

the system will create a unique representation for the expression

"Father(Hedvig)™. This unique representation contains a property-list,
on which the relastionship can be stored. Rules, on the other hand, are
assigned a name (which should be an atom), and stored on the property-

list of this name. For example, if CHILFATH is the name of the rule
(x) cChild(x,Father(x))

then this axiom would be stored on the property-list of the atom
CHILFATH. Moreover, there would be references between the property-lists
of the atoms CHILD, FATHER, and CHILFATH, which enables the system to

retrieve this rule whenever it is needed.

A second trait in the system is to assign tailor-made function defini-

E.T

tions to predicate-calculus relations and functions. The definitions are
tailored according to declarations which can be provided by the user,

and which otherﬁiée are given default values. For example, if the user
wants the relation "Sibling", he should tell the system that this is a
relation with two arguments, and he might add that it is not functional
in either arguméhi, fﬁat it is symmetric, and so on. The system then
generates (at 1e§st) two function definitions that are somehow associated
with the atom SIBLiNG: one storage definition, which is used whenever we

want to assert a fact where the leading relation 1is "Sibiing", and one

elementary retrievdl definition, which is used when we want to ask a
question where the leading relation is "Sibling", and which simply checks
whether the corresponding fact has been explicitly stored. Both defini-
tions have been generated by the system, and are geared to conventions
about where and how the "Sibling" relationship is to be storeds those

conventions are selected according to the declarations.

A third feature which we would like to have, but do not yet know if we

can provide, is compilation of rules. This would be desirable during

search-for-retrieval. Such search can be performed by one general
program which essentially takes the question; uses pointers from its
leading relation and constituent functions (functions in the sense of
predicate calculus); and selects rules which it attempts to apply
(resolution-wise, these rules are axioms against which the queétion is
resolved). However, it would be desirable to associate a third function

definition with the relation and functions, namely a retrieval-search

definition, which contains "compiled™ versions of axioms which would
otherwise have to be "interpreted™. On the other hand, several diffi-
culties arise if one tries to do this, and it is not yet clear whether

such compilation is practically feasible.

So much about the PCDB project in general. Some comments about the
schedule:

Present status. (January 31, 1971) Data representation and other crucial

design decisions have been made. Parts of the program, including the
piece that generates and optimizes function definitions for storage and

elementary retrieval in relations, have been written but not debugged. A

E.8

very preliminary user's manual and program documentation for those parts
of the system have been written and mimeographed, so that potential

users of the system can give their comments as early as possible.

Modules and schedules. We have defined a number of relatively independent

function packages, which are described here with their predicted comple-
tion dates. Dates refer to a reasonably debugged but not fool-proof
system, and assume that two research assistants (fdrsteamanuens) work

at the project under the guidance of the undersigned (Erik Sandewall).
A1l date§ refer to 1971.

Network phckage: March 31

Generate function definitions for storage and elementary retrieval

of relations.

H—egpression package : March 31
Gene%ate function definitions which handle what is functions in the

predicate-calculus sense.

Clgusé storage package: April 30
Store what we have here called "rules", i.e. non-ground or non-unit

clauses

Resolutiocn operator package: May 31

Implement the rdsolution operator for combinations of "fact" and
"rule" type axioms, with due respect to the tailor-made represen-

tations of "facts",

Retrieval-search package: First version May 31

Direct the search for an answer to a closed question. Tailor function
definitions for retrieval-search from user declarations about pro-

perties (symmetry, transitivity, etc.) of relations.

Clause compilation package: November 30

Compilation of clauses as described above.

E.9

Function reduction package: First version March 31

Optimize the raw function definitions that have been generated by

other modules.

Input/output package : First version November 30

Provide the user with a_convenient infix notation instead of the

standard LISP prefix.

The retrieval-search and function-reduction packages will have to be

improved continuously.

Summary of schedule: A preliminary package which can do storage and

retrieval, ineluding some search, should be available by May 31, 1971.
Contihued work on the program will take most of the year 1971/72. A nice
and reasonably complete program should be available and documented by
June 30, 1972. '

F.1l

F. Natural-language processing

We have formulated * ¢ following two goals for work on natural-language

processing at DIT.

(1) Develop models for natural-language discourse;

(2) Develop tools which facilitate writing translators for special-

purpose subsets of natural language in applications projects.

Let us discuss both goals in succession.

(1) Models for nstural-lenguage discourse. This goal was formulated as

we participeted ir work on the SQAP question-answering program. That
progran (like other QA programs) assumes all input sentences to be of

two kinds: assertions and questions. Assertions are statements which add

something to the system's data bases questions are requests for fact
retrieval from the data base. When several sentences appear in suceession,
the order is important for the interpretation of pronouns and pronominal
constructions ("he", "the newcomer", "for this reason", etc.), but apert

from this the order of sentences is irrelevant.

We have slowly reclized (1) the belief that everything is either asser-
_tions or questions in this sense is a model of natural language discourse,
and (2) that as a model, it is insufficient. This became painfully
apparent as we tock sone sample natural-language texts and attempted to
put them into the SQAP system. We realized that many sentences which
have the form of assertions serve to emphasize something which the reader
or listener knew before, rather than to tell him something new. In

'pure! assertions, there are a lot of interesting relationships between
successive sentences. In a conversation, one person often makes state-
ments in order to check that he has resolved some potential ambiguities
correctly, and so on. These phenomensa are characteristic of natural-
language communicetion be*ween man and man. Some model of them, however
superficial, is very essential if we hope to provide a relaxed conver-—

sation between man arnd machine.

F.2

To make this more concrete, let us outline two models. One of them is
very simple and cen be realized with only a little prograrming, once a
tool like the PCDB package of last section is available. The other model
is relatively?sophisticated, and it is close to the limit of what we can

hope to provide.

The simple model attempts to deseribe how a person selects an answer to
a closed question (answerable by Yes or No) in a simple conversation.
This model is used in the SQAP program. For the purpose of the model,
we assume thet the listener contains a data base I' of faets, and a
deduction procedure which checks whether a given proposition can be
proved from the data base. If the pfoposition ¥ can be proved from T,

we write T ¢ y. The deduction procedure gives either of three responses:

T'py (y can be proved from I')
Ty (Y can not be proved from T)
- (the procedure has not been able to determine what the

case is)

Suppose now that a question "is it true that y 2" is given to the
listener. Our very simple model says that the listener then calls the
deduction procedure twice. First it is agked whether T } vy, and second
it is asked whether I' } Y, i.e. whether the negation of y follows from
the listener's data base. After this, the answer to the question is

determined by the following table:

Iy ¥y -
Tp -y I'm confused ' No Dog't know
T oy Yes Don't know Don't know
- Don't know Don't know . Don't know

This simple model obviously does not give an adequate description of how

humans really answer closed questions. It does however provide a crude

F.3

approximation. If a_computer is programmed according to this model, then
& human will think of its responses as "reasonable" and "correct",
although certainly also "nafive" and "stereotype". The model gives us a
basis for the program, and then we can think of how the model can be

improved.

So much for the easy model. The difficult model is intended to give a

partial explanation of a text like:

"Be careful with the XYZ company. It is true that they are making
record-high profits for the third year in a row. It is also true
that their model ZYZ belly-buttons have been a roaring success.
But the company is young, and they must market a good new product

every few months to survive. ..."

Problem: what is the purpose of the "It is true that... " sentences?
Let us first discuss what might be going on in the listener's mind, and
then formulate the model. The input to the listener consists essentially

of the following statements:

You should be careful with the XYZ company
They are making record-high profits...

Their belly-buttons are a success

o <X W R

The company is young

They must market new products

™

Of these statements, a is presumably the only real assertion, in the
sense of something that was intended to augment the listener's date
base. The other statements may well be known to the listener before, and
they serve as support for a, so that it shall slip easier into the

listener's mind.

Let us assume, then, that the listener contains an accentance ymeadnre
which checks cvery new "rowi™ 8ssertion and decides whether it should

be let into the data base or not. The acceptance test is similar to the
answering procedure in the first model, i.e. it tries to prove the

assertion or its negation. To handle the present example, we must assume

F.b4

that "proof" and "disproof" are performed, not in strict logie, but in
a vaguer logic of "tends to support" (written as ~~) and the negated

"tends to reject". In the above example, if the listener only hears a,
and if B through € are in his data base, then his acceptance test will

perform

B/\f-)“lu
Y~ .0
S~ a

E~ 0

and it will then have to balance these indications, presumably by
assigning "weights" to them and combining them in a polynomial. Our
model is now ready to explain why 8§ and € are in the text above:

The listener might not know of them, or they might be stored in such a
"passive" way in his data base that the "deduction" procedure does not

notice that 6~2a or that e~~—a.

Furthermore, our model can crudely explain what the B and y statements
are in the text for. If they are not there, the listener might react
like: "Oh, he claims o, and he has 6§ and € for support. But he obviously
does not know that B and Yy . Ee is probably wrong". When 8 and Yy are in
the text, they block such a reaction. Their implicit frame is: "I, the
speaker, know that B and vy. I still claim that o ". The listeners'
reaction could then be "Oh, he knows B, Y, 8§, and €, and in his judge-
ment § and € are " heavier" indications than B and y ." If the coeffi-
cients in the listener's "judgement polynomial™ have been assigned low
"reliability", then the listener is likely to conform to thc speaker's

judgement. But obviously the last word is still with the listener.

Formally, then, our model assumes (1) that whenever the "deduction"
procedure derives an~~ connection, it should also return indications

of "weight" and "reliability" of this connection. The model also assumes
(2) that the acceptance test contains a polynomial which balances these
indieations against each other and against the spesker's estimates.
Finally, our model assumes (3) that a statement in the listener's data

base which tends to reject the given assertion is given considerably

F.5

less weight if the speasker has mentioned that statement in an "It is

true that™ phrase.

The two models that we have discussed so far have been models of the
listener's behavior. A generative model which describes how the sentence
is created, must also contain a model of the speaker. Such a model
necessarily assumes that the speaker has an urge to transmit a certain
message and have it accepted. It should assume, also, that the speaker
contains some model of the listener (which need not be identical to our

model of the listener), and that he is able to use this model.

It can be claimed that models of this kind should belong to psychology,
or linguistics, or philosophy, or any of a number of other disciplines.
Moreover, representatives of each discipline can rightfully state that
the sketchy models above are terribly crude, possibly even incorrect,
and therefore of no value to his discipline. However, models like these
have for us the advantage of being precise, operational, and therefore
useful in our endeavour to write programs that carry on a decent
conversation. A crude model is better than no model, in computer science
like in any other science. This is why the construction of such models

for natural-language discourse is one goal for vur work on provessing

of natural language.

When we build such models for natural-language discourse, we want to
test them on a computer. We therefore need a computer representation
for the natural-language information, and we need an auxiliary progran
which takes care of storage and retrieval in the data base that pretends
to be the "listener" in the model. The first criterium has been met by
the PCF representation (see page B.6 of this report), and the second
requirenent is being met with the PCDB package (see section E). In both
PCF and PCDB there is more work to do (axiomatization of additional
primitives in PCF; addition of more features in PCDB), but we expect
both "tools™ to be usable by July 1, 1971. Therefore, this summer we
plan to start using these tocls for testing models of natural-language

discourse, similar to the models that were outlined above.

F.6

(2) Our second goal is to develop tools which facilitate writing trans-

lators for special-purpose subsets of natural language in applications
projects. Our applications typically require highly interactive programs,
and they aim at manipulating data that do not have a trivial (e.g. numeric)
format, It is therefore very desirable to provide nice, natural-lancuage-
like communication with these programs. On the other hand, we do not

need to provide full natural language, since the domain of the program

is very limited anyway. Experience shows that it is much easier to

write a translator for a smsll subset of natural language, than for the
whole language. What we want, then, is standard programs and other tools

which facilitate writing such special-purpose translators.

One project along these lines is to set up and test Woods's Augumented
Transitional Network Parser, which was deseribed in the Communications
of the ACM (October, 1970). We have a copy of the program, and

fats Cedveldl Je pwacantlv trving it on a test case. We expect that it

can be included in the collection of useful tools. II su, . 13 provide

a framework for various sub-tasks in parsing.

Some other, and very obvious tools are the PCDB package (section E), the
PCF notation (page B.6), and the various models for natural-language
discourse that have been described in previous pages. A maero expander
similar to the one used in Hans-Jiirgen Holstein's ROBOT program is also
desirable. It is available in FORTRAN and shall be re-prograrmed in

LISP.

During the year 1971/72, we plen to work on a third set of tools, namely
routines which handle some feature of some natural language in a chean

way. Examples of this are routines for handling "and"™ and "or" connec-
tions between nouns, or routines for handling the peculiar postfix definite
article in Swedish ("en pojke™ = "a boy™; "pojken™ = "the boy"). In all
such cases, we only expect our routines to handle the simple, regular
cases. Irregularities and peculiarities are important for linguistic
descriptions of a language, but they are a luxury in the input language

for a computer program. - Tools in this set should work within the net-

work parser or another, similar framework for the parsing process.

A fourth type of tool is also on tﬁe schedule for 1971/72, namely a

F.T

language learning program which takes new, previously unknown construc-
tions plus an interpretation of them and which generalizes to an inter-
pretation rule and stores awey the rule in the data base, for use on
later occurrences of the same construction. Such a tool would eneble

the user to extend the communication language gradually.

It is very difficult to estimate how much work will be required for
these projects, and what the logical order of doing them will be. We
shall therefore not set up any schedule for this work, but merely pro-
pose that work during 1971/72 shall concentrate on tool-building,
particularly on tools for special language features and for language
learning. People, ideas, and economical resources will determine how

far we get.

G.1

G. Formula manipulation

Work under this heading is dominated by the INTERFORM project, which is
a combination of formula manipulation and data base hamdling. We shall

now describe this project.

1. Introduction

2; INTERFORM.

2;1 Short description

2.2 .INTERFORM 1 (a subset of INTERFORM)
3. Time-table

3.1 Original time-table

3.2 Present status

3.3 Time schedule for 1971/72

4. The data base and search strategies

G.2

1. Introduction

In several sapplications, one uses mathematical models which are defined
by a set of algebraic relations (e.z. equalities, inequalities) where
it is not deeided in priori which variable are given and which asked

for.

For the study of such systems, one needs a prograrmine system which
provides algebraic manipulation and numerical evaluation of a general
nature. However, prograrming languages like FORTRAN and ALGOL require
an algorithm for the calculation of specified variables, when certain
others have been assigned numerical values. One mist choose such an’
algorithm before writing the program. Morecver, in such languages it is

very complicated to express one variable symbolically in others.

A scientist, physicist a.s.o. could save lots of work if he had an
interactive system which could perform the following tasks:

a) Save relations between variables in a data base.

b) Express some variables in others symbolically, using the relations

in the data base.
c¢) Assign numerical values to variables.
d) Calculate variables numerically.
e) Choose relations which are relevant for a certain problem.

f) 1If the system doesn't have the information needed for solving a

problem, it should ask the user for the missingz information.
g) Calculate symbolic derivatives.

h) If possible, perform symbolic intecration.

The goal for the research project is to build a system, which has the
above described facilities. The system is called INTERFORM (INTERactive
FORMula manipulation). Work at this system started during the spring

of 1970 and is surposed to be fimished during the autumn of 1972.

G.3

2. Short deseription of INTERFORM

The project is described in detail in "Artifieciell Intelligens (19T70)".
In this chapter, an introduction to the project is given in order to
describe the mein ideas. To make the presentation more specific, we can
think of a situation there we have a number of relations describing

optical instruments, which we want to examine.

First of all, you give to the system a set of relations which describe
a certain subject (e.g. optical instruments). The relations are usually
equations where one variable is expressed as a function of others. Let
us associate this relation set with a name (M1l) and the relations with
names (R1, R2, R3,....). Assume also that some variables have had nume-

rical values assigned to them. Then you can give instructions such as:

COMPUTE A1l the relations needed for computing F numeri-
cally are taken from the set M1. If it is not
possible to compute F numerically, the system
asks for the values of the unknown variables cn
which F depends.

EXPRESS F IN A AND B All the relations needed to express F in A, B
and as few other as possible, are taken from the

set M1.

You can also define subsets of relations, combine sets, and create new
sets. In fact the data base contains a set of sets of relations. One
of these is called the work set and is understood if nothing else is

said. Examples:
COMPUTE F Search in the work set for relevant relations.

EXPRESS F IN A USING M3

Search in the set M3 for relevant relations.

If the data base describes optical instruments, one set (ﬁl) may describe

field-glasses, another set (M3) may describe microscopes and o on.

Binding variables to values (numerical or symbolic) can be done temno-

rarily or permanently. Examples:

G.b

a) COMPUTE F WHEN A=2, B=5
or
SOLVE F
GIVE A,B (question from the system to the user)
A=2, B=5
In these two examples, A and B are bound to 2 and

5 only during the evaluation of F.

b) BIND ATO 2, BTO 5
COMPUTE F
A and B are bound to 2 and 5. This holds until
next BIND A

Suppose we wish to bind certain variables to certain values in order to
describe one particular subject which the relation set describes. E.g.,
if M1 describes field-glasses, binding N to 3 and MY to 1.3 may describe
fieldrglasses with three plastic lenses, and binding N to 2 and MY to
1.5 describes field-glasses with two glass lenses. It is now reasonable
that you should be 2ble to define sets of binding variables, and to use

these sets temporarily or permanently. Examples:

COMPUTE F USING Bl Bl is here a set of variables bindings. These
variables are temporarily bound te the values

respectively.

BIND B2 . B2 is a set of variable bindings. These bindings

are made permanent.

Another task for the INTERFORM system is to answer questions like:
"On which variables does F depend?"

"Which variables depend on F2"

"Does F, G or H depend on A, B or C?"

In the last case, the answer is a matrix of the following type:

A B c
F YES NO NO
NO YES NO

H YES YES YES

G-S

In the first case, you will get a print-out of the relation structure

similar to:

F F is defined in R3 and Rk,
R3 In R3, F depends on A, B and C.
A A and C are uddefined but B is
B defined in R4 and RS, etc.
RY
Ql
2
R5
a3
C
RL4
H1
H2

and in the second case:

F
R6 : G=f£(F) F occurs as a right hand variable in
RT : R=f(G) . 3 .
R8: N=£(C) R6 and R9. In R6, G is defined. G is
R : H=f(F) a right hand variable in R7 and R8
R10: A=f(H) cte
R11l: S=f(H) :

The search for the relation structure is mainly an INTERFORM 1 facility
(see 2.2 below) where the distinction between right hand and left hand

variables is relevant.

Before leaving this chapter, we shall indicate the main difficulties.
These arise when we want to do "EXPRESS F IN ..,.." or "COMPUTE F FOR...",
and when we want the system to find the most relevant relations for the

problems. The two main problems are:

a) If we can express F in A, B, C in several ways, which is the "best"

way to express F?

b) How should we handle situations where F depends on a variable, which

depends on F?

These questions were part of the reasons for defining a subset of
INTERFORM, namely INTERFORM 1. In chapter L we shall outline how
INTERFORM 1 treates these problems.

G.6

2.2 INTERFORM 1

The following limitations are proposed for INTERFORM:

a) All definitions of relations should have the form:

<relation name> : <left hand variable> = <arithmetic expression>

b) Variables which never occur as left hand variables, are considered

as undefined.

3. Time-table

3.1 The original time-table was

spring 1970 Reading. Discussions with prospective users to
find out about desirable features.
Dividing the project into modules (representation
of the data base, formuls manipulation modules,
I/0 modules etc.). Programming of simple modules
for batch use on the CDC 3600.

autumn 1970 Continued programming and test runs in batch on
the CDC 3600.

1971 Programming the interactive modules (I/O-modules
ete.).
Test runs on the Siemens 305 (interactive LISP
system).

spring 1972 a large number of test runs.

during the whole

period T0-T2 Linking of the modules in the system. Documenta-
tion.

3.2 Present status

Extensive reading was done during the spring of 1970. We have been in
contact with potential users but that has not given us any further

proposals.

During the autumn of 1970 we have representation of the data base and
defined the modules for INTERFORM 1 (see 2.2). Some of the modules arec

G.T

ready and can be demonstrated on request. These are:

a) Input of the relations to the data base.

b) Relation analysis of the type "which variables is F depending on?"
(page G.L)

c) The COMPUTE and EXPRESS commands explained above under the condi-

tion that every defined variable is defined only once.

Input and output is still in LISP notation (prefix and fully parenthe-

sized).

There is no simplification of expressions (we intend to use existing

simplification programs).

3.3 Time-table for T1/72

The following time-table assumes one person working full-time and one
working half-time.
spring T1 a. Study of different heuristic methods for
search in AND/OR-trees (which are needed for
IRTERFORM 1).
b. Implementation and testruns of these.
c¢. Implementation of a non-heuristic (exhaustive)
search procedure.
d. Time-studies of the programs developed in b
and c.
(Does the heuristic procedure itself take so
much time that it is not worth while?)
autumm 71 a. Implementation of I/O-programs, including
the simplification package.
b. Test-runs, documentatior.
¢c. Interform 1 finished. Test-runs by possible
users.
spring T2 Extension of INTERFORM 1 to INTERFORM (Don't use
the restriction that a variable is undefined if

it occurs only as a left-hand variable).

G.8

autumn T2 A large number of test runs. Documentation.

4, Outline of the data base and the search stratecy.

Consider the following example of a relation set :

Name Equation

Rl =acc oM
R2 E=m . ¢

R3 E=F.S

RL S=v . t

R5 W=E/t

R6 v=ace . t

RT S=acc . t2/2
R8 Fem . v /r

To each relation name we assign a list of the corresponding right-
hand variables. To each left-hand variables we assign a list of names

of the relations where the variable has been defined.

The fcllowimg tree-structure describes hew E depends on ether variables :

G.9

G.10

E might be expressed using R2 or R3. Using R2, we have to express both
m and c. That means that we can choose between relations, but (in
principle) we have to express all right-hand variables in the choosen
relation. This is represented by an AND/OR tree, where the AND nodes

are marked with an arc. Of course it is now possible (and certainly the
most common situation) that there are loops in the tree. It t is a left-
hand variable and s is one of its right-hand variables, we have an
example of such a loop. The idea is now to use methods for heuristic

(1)

seareh in AND/OR-trees with common. subnodes. Sueh methods exist for
the case where solutions to AND-connected branches are independent. We
are now working to generalize the method to the case where solutions to

AND-connected brenched are mutually dependent.

(1)James R Slagle

} Pinding Resolution Proofs and Using Dublicate
Goals in AND/OR-Trees.

Deena A Koniver

H.1

H. Qualitative analysis of models

(1) The Use of Sociocybernetic Research

As our society changes more and more rapidly and grows more and more
complex, it also becomes increasingly important that our power-holding
decision-makers and their experts and planners can be adequately informed.
Increased societal complexity implies increased interdependence of socie-
tal subsystems. It is therefore very important that social conflicts can
be avoided; this, in turn, requires that the consequences of societal
reforms and development projects or policies are well analyzed before

one sets out to realize them. However, the faster the societal change
rate, end the more voluminous the stream of unstructured ("raw") infor-
mation poured out by mass media, the less is the chance for central
decision-makers to be 'rational', that is: to be adequately informed

and to be able to judge all objectively given alternatives adequately.
The price we pay for suboptimal society control is evidently social

problems.

The only ray of hope for an improvement (instead of a continuing
deterioration) of this situation comes today from socioeybernetic research.
Spectacular results cannot be expected for the next couple of years, it ‘
is true. But a non-trivial sclution in the form of an automatically
data-analyzing and theory-synthesizing information system lies not further

than twenty effective man-years ahead,

The Research Group on Sociocybernetics within the DIU has existed for
two years now. It has been funded by the "Riksbank Tercentenary fund"

as a part of a relatively large sociological project on empiriealstudy
of social mobility ("Mdrstaprojektet"); however, the Research Group has
grown more and more independent as it became more and more evident that
the Mirsta Project's information-processing and modelling difficulties
were universal not only among social researchers, but also among behavio-
ral scientists, ecologists and environment planners, and even among

managers and politicians.

The Sociocybernetics Group (RGSC) maintains research in three directions:

(a) methodological research, i.e., investigations of the logical and

practical possibilities of automatization of social researchj
(b) detailed modelling of "biopsychosocial" behavior of humans;

(¢) multi-levelled modelling of social/ecological/economical processes

("macroprocesses").

But the RGSC has actually only a single goal: the automatic system which
integrates the results of the above-mentioned three mutually complementary
subprojects. There is a unique consistency of the Group's every single
research effort with the integrated-system project. (Most of DLU's

general projects can furthermore find obvious applications within the
RGSC's project.)

(2) The Subprojects
(2.1) Methodology. Automatic Data Analysis

We expect sociocybernetics to complement (or even to innovate) 'orthodox'
sociology quite significantly, with regard to both methodology and theory.
Contemporary 'orthodox' sociology comprises itself a broad methodological
and theoretical repertoire, which, however, is mastered by only few in
its entifety and which therefore is exploited far less effectively than
most social researchers would like to. Social researchers usually feel
that they lack the time for exact orientation and for experimentation
with various schemes for analysis; the data need to be analyzed while

they are still 'hot' enough to be of any practical use and interest.

There is also a lack of easy-to-use computer programs for complex
analyses of data; there exist, f.i., to our knowledge, no programs which

automatically (that is: without explicit commands) generally test the

assumptions and adequacy of different statistical schemes of analysis,
then perform those analyses which the tests recommend, and finally after
listing the results, try to combine them in a problem-oriented, not

method-oriented, comment.

H.3

The RGSC has a program of this type as one of its research goals. It
will find two uses in the final system: To relieve the researcher
of the incredibly time-consuming but relatively unqualified data-pro-

cessing drag in order to release his capacity for the interpretation

of the analysis results; and to feed structured information on empiry
into the system's data base (where it is accessible later on during

the system's theorizing endeavors).

A kernel program of great user-oriented flexibility and maximal machine-
design independence has been implemented. The kernel program administrates
master-card interpretation, dynamic storage allocations, and data reading,
and it gives basic computational capabilities. It does not, however,
include programs describing specific statistical tests and techniques;
these are routines to be monitored by, not included in, the kernel
program. Any number of specific routines can be temporarily or per-
manently linked to it with great ease.(This kernel program is called
ROBOT3; it is realized in the form of a task-description interpreter,
written in a maximally CDC/IBM-interchangeable FORTRAN. However, there

are plansvto rewrite ROBOT3 in a special FORTRAN-based [Igp for addi-
tional power and unlimited extendability.)

(2.2) Macromodelling with a Multi-levelled Simulating System

The RGSC is not primarily concerned with ordinary simulation modelling.
A preferred objective, in line with the Group's explicit ultimate goal,
is the implementation of a sociologically general multi-levelled simu-

lating system of utter flexibility, extensibility, and ease to use.

To be more explicit: The RGSC works on the implementation of a simulating
system(ealled ATMAN) with database-handling capabilities. In this system
there is no essential difference between a statement and a simulated
entity. The system shall be able to switch from masking deductions by
formal rules to making deductions by simulating the consequences of a
given situation. The system shall also be able to switch between different
levels of detail, and to improve its predictive reliability by sampling
over alternative competitive part-models (in a fashion already employed

to obtain reliable technical systems made up of unreliable components) .

H.b

(2.2.1) The Plausibility-Estimation Feature

The designed simulating system ATMAN is intended to be able to answer
questions, through formal deductions or through simulations. It shall
also be able to estimate the plausibilities of its own answers or of

submitted hypotheses or theories.

A first program which can rank hypotheses and theories according to
their plausibilities has been implemented by the RGSC; it does demon-
strate the feasability of such programs, but the range of theories it
can handle in its present form is very limited. A much improved and

quite general version is at present under design by the RGSC.

(2.2.2) General Applicability

There has been growing interest from the DLU-colleagues involved in the
planning of the ecological project in the accelerated development of
the ATMAN system. It was therefore decided that the projects should

collaborate under 1971 for common gain.

(It is to be expected that, in the course of time, also other projects
will become interested in such colleboration. We think especially of
the use of an ATMAN system in medicine, where a given patient's data
(physiological, psychological, soeial) can be entered and contrasted
with different hypothetical treatments; ATMAN could, f.i., be used to
test whether a certain set of medicines is (according to all knowledge)
consistent with the physiology of the given patient; a plausibility-

estimate will be ATMAN's answer.)

(2.3) Micromodelling

The micromodelling efforts within the RGSC are aimed at supplying the
very contents (in the form of explicit and operational process and system
definitions) of the ATMAN system's database. Those who have never tried
can hardly imagine how redundant ordinary psychological and sociological
literature is from this point of view. Social reality must be reconstruc-
ted in the form of a single, connected and consistent model, from the

biological level up. It is indeed a formidable task. But the computer

H.5

puts contemporary social researchers into an essentially different

position than philosophers, psychologists and sociologists have been in

in past decades and centuries. Structured knowledge can be accumulated

in the computer in the form of model modules, level of detail of the
definition of one module can be changed without invoking the necessity

of redefining other model modules. Macrophenomena need never be explicitly
deduced - they are automatically generated in the interaction of micro-
processes. And the computer does not put as narrow a limit on details

to be considered as does the human mind.

During 1970 there has been a concentration upon the micromodelling of

interperscnel perception, of coalition formation, and of motivation.

However, none of the models is as yet sufficiently formalized to be
acceptable by ATMAN. This remains to be done during 19T1.

Micromodelling resulted in 1969 in formalized models of social power and

of interpersonal attraction, and in a tentative measure of democracy.

The next areas which the RGSC will attempt to micromodel are social

justice, socialization and resocialization, and concept formation

(including attitude formation and rule learing).

Conclusion

The problem field of sociocybernetics is vast, and it may seem over-
ambitious even to try to cover it with a single, rather small, research
project. In this respect the RGS is purposefully in opposition to the
general trend towards more and more particularized research. It is

today far more important that we arrive at a single coherent, but not
necessarily consistent, and perhaps not yet even quite correct model of
social reality rather than obtain additional models of details of social
reality, which in a more genral framework may be quite trivial. Of
course, the RGSC is only meaningful as a long-term project; hopefully

it will manage to accumulate knowledge and to synthesize the long-desired

operational common base for social research.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

