Shachter, Ross

Interpretation of published articles page

Code, NrCitation

1   

NIL

Publications

Publications

Books


2   

NIL

Eddy, D. M., Hasselblad, V., and Shachter, R. (1992). Meta-Analysis by the Confidence Profile Method: The Statistical Synthesis of Evidence . Boston: Academic Press.

Books Edited


3   

NIL

Shachter, R. D.,Levitt, T. S.,Lemmer, J. F., and Kanal, L. N. (1990). Uncertainty in Artificial Intelligence 4. Amsterdam: North-Holland.

4   

NIL

Henrion, M., Shachter, R. D., Lemmer, J. F., and Kanal, L. N. (1990). Uncertainty in Artificial Intelligence 5. Amsterdam: North-Holland.

Articles in Refereed Journals


5   

NIL

Shachter, R. D. (1986). Evaluating Influence Diagrams. Operations Research, 34(November-December), 871-882.

6   

NIL

Shachter, R. D. (1988). Probabilistic Inference and Influence Diagrams. Operations Research, 36(July-August), 589-605.

7   

NIL

Kent, D. J., Shachter, R. D., Sox, H. C., Ng, H. S., Shortliffe, L. D., Moynihan, S., and Torti, F. M. (1989). Efficient Scheduling of Cystoscopies in Monitoring for Recurrent Bladder Cancer. Medical Decision Making, 9(Jan-Mar), 26-39.

8   

NIL

Shachter, R. D. and Kenley, C. R. (1989). Gaussian Influence Diagrams. Management Science, 35(May), 527-550.

9   

NIL

Eddy, D. M., Hasselblad, V., and Shachter, R. D. (1990). An Introduction to a Bayesian Method for Meta-Analysis: The Confidence Profile Method. Medical Decision Making, 10(Jan-Mar), 15-23.

10   

NIL

Tatman, J. A. and Shachter, R. D. (1990). Dynamic Programming and Influence Diagrams. IEEE Transactions on Systems, Man and Cybernetics, 20(2), 365-379.

11   

NIL

Shachter, R. D. (1990). An Ordered Examination of Influence Diagrams. Networks, 20, 535-563.

12   

NIL

Eddy, D. M., Hasselblad, V., and Shachter, R. D. (1990). A Bayesian Method for Synthesizing Evidence: the Confidence Profile Method. International Journal of Technology Assessment in Health Care, 6, 31-55.

13   

NIL

Peot, M. A. and Shachter, R. D. (1991). Fusion and Propagation with Multiple Observations in Belief Networks. Artificial Intelligence, 48(3), 299-318.

14   

NIL

Kent, D. L.,Nease, R. A.,Sox, H. C.,Shortliffe, L. D., & Shachter, R. D. (1991). Evaluation of Nonlinear Optimization for Scheduling of Follow-up Cystocopies to Detect Recurrent Bladder Cancer. Med. Decn. Making, 11(4), 240-248.

15   

NIL

Jimison, H. B.,Fagan, L. M.,Shachter, R. D., & Shortliffe, E. H. (1992). Patient-Specific Explanation in Models of Chronic Disease. AI in Medicine, 4(3), 191-205.

16   

NIL

Lehmann, H. P., & Shachter, R. D. (1994). A Physician-Based Architecture for the Construction and Use of Statistical Models. Meth Inform Med, 33, 423-32.

17   

pubs/JAIRcaus.pdf

Heckerman, D., & Shachter, R. (1995). Decision-Theoretic Foundations for Causal Reasoning. Journal of Artificial Intelligence Research, 3, 405-430.
j-jair-3-405Not available

18   

NIL

Edwards, D. M., Shachter, R. D., & Owens, D. K. (1998). A Dynamic Model of HIV Transmission for Evaluation of the Costs and Benefits of Vaccine Programs. Interfaces, in press.

19   

NIL

Owens, D. K., Edwards, D. E., & Shachter, R. D. (1998). Population Effects of Preventive and Therapeutic HIV Vaccines in Early- and Late-Stage Epidemics. AIDS, in press.

20   

NIL

Owens, D. K., Shachter, R. D., & Nease, R. F. (1997). Representation and Analysis of Medical Decision Problems with Influence Diagrams. Medical Decision Making, 17(3, July-September), 241-262.

Articles in Other Journals


21   

NIL

Shachter, R. D. and Heckerman, D. E. (1987). Thinking Backwards for Knowledge Acquisition. AI Magazine, 8(Fall), 55-61.

Fully Refereed Symposia Publications


22   

NIL

Shachter, R. D. (1985). Intelligent Probabilistic Inference. Workshop on Uncertainty and Probability in Artificial Intelligence, UCLA, Los Angeles, 237-244.

23   

NIL

Shachter, R. D. (1986). DAVID: Influence Diagram Processing System for the Macintosh. Workshop on Uncertainty in Artificial Intelligence, University of Pennsylvania, Philadelphia, 243-248.

24   

NIL

Shachter, R. D. and Heckerman, D. E. (1986). A Backwards View for Assessment. Workshop on Uncertainty in Artificial Intelligence, University of Pennsylvania, Philadelphia, 237-242.

25   

NIL

Shachter, R. D., Eddy, D. M., Hasselblad, V., and Wolpert, R. (1987). A Heuristic Bayesian Approach to Knowledge Acquisition: Application to Analysis of Tissue-Type Plasminogen Activator. Third Workshop on Uncertainty in Artificial Intelligence,, University of Washington, Seattle, 229-236.

26   

NIL

Shachter, R. D. and Bertrand, L. J. (1987). Efficient Inference on Generalized Fault Diagrams. Third Workshop on Uncertainty in Artificial Intelligence, University of Washington, Seattle, 413-420.

27   

NIL

Shachter, R. D., Eddy, D. M., and Hasselblad, V. (1988). An Influence Diagram Approach to the Confidence Profile Method for Health Technology Assessment. Conference on Influence Diagrams for Decision Analysis, Inference and Prediction, University of California, Berkeley, 299-306.

28   

NIL

Shachter, R. D. (1988). A Linear Approximation Method for Probabilistic Inference. Fourth Workshop on Uncertainty in Artificial Intelligence, University of Minnesota, Minneapolis, 299-306.

29   

NIL

Shachter, R. D. (1989). Evidence Absorption and Propagation through Evidence Reversals. Fifth Workshop on Uncertainty in Artificial Intelligence, University of Windsor, Ontario, 303-310.

30   

NIL

Shachter, R. D. and Peot, M. (1989). Simulation Approaches to General Probabilistic Inference on Belief Networks. Fifth Workshop on Uncertainty in Artificial Intelligence, University of Windsor, Ontario, 311-318.

31   

NIL

Shachter, R. D., D'Ambrosio, B., and Del Favero, B. A. (1990). Symbolic Probabilistic Inference in Belief Networks. In Eighth National Conference on Artificial Intelligence, I (pp. 126-131). July 29-August 3, Boston: AAAI Press/The MIT Press.

32   

NIL

Shachter, R. D., Andersen, S. K., and Poh, K. L. (1990). Directed Reduction Algorithms and Decomposable Graphs. In Proceedings of the Sixth Conference on Uncertainty in Artificial Intelligence, (pp. 237-244). July 27-29, Cambridge, MA:

33   

NIL

Shachter, R. (1991). A Graph-Based Inference Method for Conditional Independence. In B. D'Ambrosio,P. Smets, & P. Bonissone (Eds.), Uncertainty in Artificial Intelligence: Proceedins of the Seventh Conference (pp. 353-360). San Mateo, CA: Morgan Kaufmann.

34   

NIL

Farr, B. R. and Shachter, R. D. (1992). Representation of Preferences in Decision Support Systems. Fifteenth Annual Symposium on Computer Applications in Medical Care (pp. 1018-1024). New York: McGraw-Hill.

35   

NIL

Chan, B. Y., & Shachter, R. D. (1992). Structural Controllability and Observability in Influence Diagrams. In Uncertainty in Artificial Intelligence: Proceedings of the Eighth Conference (pp. 25-32). San Mateo, CA: Morgan Kaufmann.

36   

NIL

Shachter, R. D., & Peot, M. A. (1992). Decision Making Using Probabilistic Inference Methods. In Uncertainty in Artificial Intelligence: Proceedings of the Eighth Conference (pp. 276-283). San Mateo, CA: Morgan Kaufmann.

37   

NIL

Lehmann, H P and R D Shachter (1993). End-User Construction of Influence Diagrams for Bayesian Statistics: Uncertainty in Artificial Intelligence: Proceedings of the Ninth Conference (pp. 48-54). San Mateo, CA: Morgan Kaufmann.

38   

NIL

Poland, W B and R D Shachter (1993). Mixtures of Gaussians and Minimum Relative Entropy Techniques for Modeling Continuous Uncertainties: Uncertainty in Artificial Intelligence: Proceedings of the Ninth Conference (pp. 183-190). San Mateo, CA: Morgan Kaufmann.

39   

NIL

Rutledge, G and R D Shachter (1993). A Method for the Dynamic Selection of Models Under Time Constraints: Fourth International Workshop on Artificial Intelligence and Statistics in Ft. Lauderdale, FL, edited by Peter Cheeseman (pp. 459-468).

40   

NIL

Shachter, R D and P M Ndilikilikesha (1993). Using Potential Influence Diagrams for Probabilistic Inference and Decision Making: Uncertainty in Artificial Intelligence: Proceedings of the Ninth Conference (pp. 383-390). San Mateo, CA: Morgan Kaufmann.

41   

NIL

Azevedo-Filho, A., & Shachter, R. D. (1994). Laplace's Method Approximations for Probabilistic Inference in Belief Networks with Continuous Variables. In Uncertainty in Artificial Intelligence: Proceedings of the Tenth Conference (pp. 28-36). San Mateo, CA: Morgan Kaufmann.

42   

NIL

Heckerman, D. E., & Shachter, R. D. (1994). A Decision-Based View of Causality. In Uncertainty in Artificial Intelligence: Proceedings of the Tenth Conference (pp. 302-310). San Mateo, CA: Morgan Kaufmann.

43   

NIL

Poland, W. B., & Shachter, R. D. (1994). Three Approaches to Probability Model Selection. In Uncertainty in Artificial Intelligence: Proceedings of the Tenth Conference (pp. 478-483). San Mateo, CA: Morgan Kaufmann.

44   

pubs/globcond.pdf

Shachter, R. D., Andersen, S. K., & Szolovits, P. (1994). Global Conditioning for Probabilistic Inference in Belief Networks. In Uncertainty in Artificial Intelligence: Proceedings of the Tenth Conference (pp. 514-522). San Mateo, CA: Morgan Kaufmann.

45   

NIL

Chavez, T., & Shachter, R. D. (1995). Decision Flexibility. In Uncertainty in Artificial Intelligence: Proceedings of the Eleventh Conference (pp. to appear). San Mateo, CA: Morgan Kaufmann.

46   

NIL

Heckerman, D. E., & Shachter, R. D. (1995). A Definition and Graphical Representation for Causality. In Uncertainty in Artificial Intelligence: Proceedings of the Eleventh Conference (pp. 262-273). San Mateo, CA: Morgan Kaufmann.

47   

pubs/UAIflex.pdf

Shachter, R. D., & Mandelbaum, M. (1996). A Measure of Decision Flexibility. In Uncertainty in Artificial Intelligence: Proceedings of the Twelfth Conference (pp. 485-491). San Mateo, CA: Morgan Kaufmann.

48   

pubs/LearnNotSee.pdf

Peot, M. A., & Shachter, R. D. (1998). Learning from What You Don't Observe. In Uncertainty in Artificial Intelligence: Proceedings of the Fourteenth Conference (pp. 439-446). San Francisco, CA: Morgan Kaufmann.
c-uai-98-439Not available

49   

pubs/bayesbl.pdf

Shachter, R. D., & Mandelbaum, M. (1996). Bayes-Ball: The Rational Pastime (for Determining Irrelevance and Requisite Information in Belief Networks and Influence Diagrams). In Uncertainty in Artificial Intelligence: Proceedings of the Fourteenth Conference (pp. 480-487). San Francisco, CA: Morgan Kaufmann.

Contributions to Books


50   

NIL

Shachter, R. D. (1983). An Incentive Approach to Eliciting Probabilities. Low Probability/High Consequence Risk Analysis (pp. 137-152). New York: Plenum Press.

51   

NIL

Shachter, R. D. (1986). Intelligent Probabilistic Inference. In L. N. Kanal and J. F. Lemmer (Ed.), Uncertainty in Artificial Intelligence (pp. 371-382). Amsterdam: North-Holland. (revised form of symposia publication 1)

52   

NIL

Shachter, R. D. (1986). Evaluating Influence Diagrams. In A. Basu (Ed.), Reliability and Quality Control (pp. 321-344). Amsterdam: North-Holland. (revised form of journal article 1)

53   

NIL

Shachter, R. D. and Heckerman, D. E. (1988). A Backwards View for Assessment. In J. F. Lemmer and L. N. Kanal (Ed.), Uncertainty in Artificial Intelligence 2 (pp. 317-324). Amsterdam: North-Holland. (revised form of symposia publication 2)

54   

NIL

Shachter, R. D. (1988). DAVID: Influence Diagram Processing System for the Macintosh. In J. F. Lemmer and L. N. Kanal (Ed.), Uncertainty in Artificial Intelligence 2 (pp. 191-196). Amsterdam: North-Holland. (revised form of symposia publication 3)

55   

NIL

Shachter, R. D., Eddy, D. M., Hasselblad, V., and Wolpert, R. (1989). A Heuristic Bayesian Approach to Knowledge Acquisition: Application to the Analysis of Tissue-Type Plasminogen Activator. In L. N. Kanal, T. S. Levitt, and J. F. Lemmer (Ed.), Uncertainty in Artificial Intelligence 3 (pp. 183-190). Amsterdam: North-Holland. (revised form of symposia publication 4)

56   

NIL

Shachter, R. D. and Bertrand, L. J. (1989). Efficient Inference on Generalized Fault Diagrams. In L. N. Kanal, T. S. Levitt, and J. F. Lemmer (Ed.), Uncertainty in Artificial Intelligence 3 (pp. 325-332). Amsterdam: North-Holland. (revised form of symposia publication 5)

57   

NIL

Shachter, R. D., Eddy, D. M., and Hasselblad, V. (1990). An Influence Diagram Approach to Medical Technology Assessment. In R. M. Oliver and J. Q. Smith (Ed.), Influence Diagrams, Belief Nets, and Decision Analysis (pp. 321-350). Chichester: Wiley. (revised form of symposia publication 6)

58   

NIL

Shachter, R. D. (1990). A Linear Approximation Method for Probabilistic Inference. In R. D. Shachter,T. S. Levitt,J. F. Lemmer, & L. N. Kanal (Eds.), Uncertainty in Artificial Intelligence 4 (pp. 93-103). Amsterdam: North-Holland. (revised form of symposia publication 7)

59   

NIL

Shachter, R. D. (1990). Evidence Absorption and Propagation through Evidence Reversals. In M. Henrion,R. D. Shachter,J. F. Lemmer, & L. N. Kanal (Eds.), Uncertainty in Artificial Intelligence 5 (pp. 173-190). Amsterdam: North-Holland. (revised form of symposia publication 8

60   

NIL

Shachter, R. D., & Peot, M. (1990). Simulation Approaches to General Probabilistic Inference on Belief Networks. In M. Henrion,R. D. Shachter,J. F. Lemmer, & L. N. Kanal (Eds.), Uncertainty in Artificial Intelligence 5 (pp. 221-230). Amsterdam: North-Holland. (revised form of symposia publication 9)

61   

NIL

Shachter, R. D.,Andersen, S. K., & Poh, K. L. (1991). Directed Reduction Algorithms and Decomposable Graphs. In P. Bonnisone,M. Henrion,L. N. Kanal, & J. F. Lemmer (Eds.), Uncertainty in Artificial Intelligence 6 (pp. 197-208). Amsterdam: North-Holland. (revised form of symposia publication 11)

62   

NIL

Rutledge, G., & Shachter, R. D. (1994). A method for the dynamic selection of models under time constraints. In P. Cheeseman & R. W. Oldford (Eds.), Selecting Models from Data: Artificial Intelligence and Statistics IV (pp. 79-88). New York: Springer-Verlag. (revised form of symposia publication 18)

Research Software Published


63   

NIL

Shachter, R. D. and Bertrand, L. J. (1987). DAVID, Influence Diagram Processing System for the Macintosh. Duke University Center for Academic Computing, initial release, December 1987; Updated release, August 1988.

Dissertation


64   

NIL

Shachter, R. D. (1982). The Economics of a Difference of Opinion: An Incentive Approach to Eliciting Probabilities. Ph.D. Thesis, Department of Industrial Engineering and Operations Research, University of California, Berkeley. Ten Selected Publications