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ABSTRACT

One important problem within the WITAS [1] project is
detection of moving objects in aerial images. This paper
presents an original method to estimate the displacement
between two frames, based on multiscale local polynomial
expansions of the images. When the displacement field has
been computed, a plane + parallax approach is used to sep-
arate moving objects from the camera egomotion.

1. INTRODUCTION

WITAS is a research laboratory at Linköping University,
currently involved in one large project focused on devel-
oping information technology for unmanned aerial vehicles
(UAV’s). In concrete terms, this means a small, and un-
manned helicopter carrying computers, video cameras, and
other electronic equipment on board, which make it capa-
ble of observing what goes on on the ground and of making
decisions on the basis of these observations.

The project has two goals; to construct a particular UAV
system, which is to be demonstrated before the end of year
2003, and to do high-class research on topics that are rele-
vant for the design of such UAV’s.

To reach these two goals, the project has focused on
a particular operational environment, namely, roads carry-
ing automobile traffic. The resulting system is therefore
required to ”understand” what happens on those roads in
terms of conventional maneuvers of individual cars and other
road vehicles, dangerous or otherwise exceptional maneu-
vers, or the structure of the traffic, e.g., congestion. It must
also be able to perform tasks that are assigned by the op-
erator or triggered by its own observations, for example to
follow a certain car that flees from the scene of an apparent
crime, or to assist a certain car so that it can make it through
difficult traffic and get to a particular destination as quickly
as possible, or to deliver a parcel to a particular point.

The authors want to acknowledge the financial support of WITAS, the
Wallenberg laboratory for Information Technology and Autonomous Sys-
tems.

The UAV is supposed to perform these functions au-
tonomously, i.e., without the direct intervention of a human
operator. It is therefore not sufficient to design it for re-
mote control of its maneuvers and of other detailed opera-
tions, the operator is only supposed to communicate general
commands, often using a combination of a phrase in natu-
ral language, and pointing to a map or a video image. The
most important capabilities for such a system are therefore
(1) to form a model (”understanding”) of scenes and events
that it observes on the ground, and (2) to make prediction,
planning, and autonomous decisions using that model.

The main sensor of the UAV is a camera linked to an
image processing system which can analyse single images
or an image sequence in order to obtain information rele-
vant for solving a range of tasks. Typically, this includes
finding and classifying individual vehicles, and measuring
their velocity. Motion estimation can be used for both find-
ing objects which are moving relative to the background,
and for determining their ground velocity. Consequently,
a motion estimation analysis has been implemented in the
image processing system, specially designed for the restric-
tions imposed by the helicopter platform which carries the
camera. The goal of this analysis is to allow the system to
detect moving objects which later can be classified as vehi-
cles based on other characteristics, e.g., size, and position
on the ground.

This paper presents the theoretical background of the
chosen motion estimation implementation. It has been made
using the special purpose image processing system of the
UAV system that is constructued within the project, and will
in the following project phase be evaluted and tuned to the
particular environment and tasks which are defined for the
project.

One consequence of the camera being helicopter mounted
is that it is hard to avoid vibrations, which may cause im-
perfect registration of subsequent frames. This makes spa-
tiotemporal motion estimation algorithms less attractive and
we have instead chosen a two-frame approach. This algo-
rithm is based on the same ideas as an earlier disparity esti-
mation algorithm by Farnebäck [2].



2. PRELIMINARIES

2.1. Polynomial Expansion

The first step of the signal analysis is to approximate a neigh-
borhood of each pixel with a second degree polynomial.
Thus we have the local signal model, expressed in a local
coordinate system,

f(x, y) ∼ p(x, y)

= r1 + r2x + r3y + r4x
2 + r5y

2 + r6xy,
(1)

or equivalently

f(x) ∼ p(x) = xT Ax + bT x + c, (2)

where
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)
, c = r1. (3)

The expansion coefficientsr1, . . . , r6 or A, b, and c are
determined by a Gaussian weighted least squares fit of the
signalf with the polynomialp. The details of this are out
of scope for this paper but it turns out that the solution can
be implemented very efficiently by a hierarchical net of 1D
convolutions [3, 4].

2.2. Displacement of a Polynomial

Assume that we have an image containing an exact quadratic
polynomial

f1(x) = p(x) = xT Ax + bT x + c. (4)

Construct a new image from the first one by a global trans-
lationd and expand the new polynomial

f2(x) = p(x − d)

= (x − d)T A(x − d) + bT (x − d) + c

= xT Ax + (b − 2Ad)T x + c + dT Ad − bT d

= xT Ãx + b̃T x + c̃,

(5)

where the new coefficients̃A, b̃ andc̃ are given by

Ã = A, (6)

b̃ = b − 2Ad, (7)

c̃ = c + dT Ad − bT d. (8)

The key observation is that by equation (7) we can formally
solve for the translationd as1

d = −1
2
A−1(b̃ − b). (9)

1Whenever something is written on the formx = A−1b, it should be
interpreted asx being the solution toAx = b.

3. DISPLACEMENT ESTIMATION

3.1. First Attempt

To make practical use of the observations above, we replace
the global polynomial in equation (4) with local polyno-
mial approximations. Thus we start by doing a polyno-
mial expansion of both images, giving us expansion coef-
ficientsA1(x, y), b1(x, y), andc1(x, y) for the first image
andA2(x, y), b2(x, y), andc2(x, y) for the second image.
Ideally this should giveA1 = A2 according to equation (6)
but in practice we have to settle for the approximation

A(x, y) =
A1(x, y) + A2(x, y)

2
. (10)

We also introduce

∆b(x, y) = −1
2
(b2(x, y) − b1(x, y)). (11)

to obtain the primary constraint

A(x, y)d(x, y) = ∆b(x, y), (12)

whered(x, y) indicates that we have also replaced the global
displacement in equation (5) with a spatially varying dis-
placement field.

Simply solving equation (12) pointwise will not give
very good estimates though, so in order to improve these
we make the assumption that the displacement field is only
slowly varying. Thus we try to findd(x, y) satisfying (12)
as well as possible over a neighborhoodI of (x, y), or more
formally minimizing

∑
{∆x,∆y}∈I

w(∆x,∆y)‖A(x + ∆x, y + ∆y)d(x, y) −

∆b(x + ∆x, y + ∆y)‖2,

(13)

where we letw(∆x,∆y) be a Gaussian weight function.
The minimum is obtained for

d(x, y) =
(∑

wAT A
)−1 ∑

wAT ∆b, (14)

where we have dropped some indexing to make the expres-
sion more readable. The minimum value is given by

e(x, y) =
∑

w∆bT ∆b − d(x, y)T
∑

wAT ∆b. (15)

In practical terms this means that we computeAT A, AT ∆b,
and∆bT ∆b pointwise and average these withw before we
solve for the displacement. The minimum valuee(x, y) can
be used as a reversed confidence value, with small numbers
indicating high confidence. The solution given by (14) ex-
ists and is unique unless the whole neighborhood is exposed
to the aperture problem.



3.2. Improved Estimation

A principal problem with the method above is that we as-
sume that the local polynomials at the same coordinates in
the two polynomials are identical except for a displacement.
Since the polynomial expansions are local models these will
vary spatially, introducing errors in the constraints (12). For
small displacements this is not too serious, but with larger
displacements the problem increases. Fortunately we are
not restricted to comparing two polynomials at the same co-
ordinate. If we have a priori knowledge about the displace-
ment field, we can compare the polynomial at(x, y) in the
first image to the polynomial at(x+ d̃x(x, y), y+ d̃y(x, y)),
whered̃(x, y) is the initial displacement field rounded to in-
teger values.

This observation is included in the algorithm by chang-
ing equations (10) and (11) to

A(x, y) =
A1(x, y) + A2(x̃, ỹ)

2
, (16)

∆b(x, y) = −1
2
(b2(x̃, ỹ) − b1(x, y)) + A(x, y)d̃(x, y)

(17)

where

x̃ = x + d̃x(x, y), (18)

ỹ = y + d̃y(x, y). (19)

3.3. Multiscale Estimation

With the modified algorithm we can improve the estimates
by iterating, using the estimated displacement field in one
step as input to the next step. This is useful under the as-
sumption that the input displacements in the first step have
small enough errors that the new estimates are indeed im-
provements. One way to improve the chances for this is to
iterate the algorithm over a scale pyramid. Since the estima-
tion is most reliable for small displacements we start at the
coarsest scale. The estimated field is upsampled and used
as input displacements for the second coarsest scale and so
on.

Figure 1 shows two frames from a test flight at Revinge.
Both cars are moving slowly through the crossing while the
background undergoes a substantial rotation between the
two frames. The displacement field computed through it-
eration over three scales is shown in figure 2(a).

4. MOTION DETECTION

The final purpose of the algorithm is to detect moving ob-
jects, in particular vehicles. We cannot do this directly from
the estimated displacement fields, since these include cam-
era egomotion. To solve the problem we use the plane +

Fig. 1. Two frames from a test flight at Revinge.

(a) (b)

Fig. 2. Estimated displacement field (a) and residual dis-
placement (b), subsampled and magnified.

parallax approach [5, 6, 7]. The idea is that the background
can be approximated by a reference plane, the displacement
field of which can be fit to a parametric model. After sub-
tracting this we obtain a residual parallax displacement field
where moving objects turn up and can be identified. Un-
fortunately also structures not lying in the reference plane
cause a residual displacement, so further processing is re-
quired to distinguish these. In principle it is possible to use
the fact that the parallax induced by stationary objects con-
stitutes an epipolar field [8] but it is probably more robust
and efficient to sort out potential moving objects by using
other cues such as size or temporal coherence.

The motion model used here is the eight parameter model,

vx(x, y) = a1 + a2x + a3y + a7x
2 + a8xy,

vy(x, y) = a4 + a5x + a6y + a7xy + a8y
2.

(20)

The parameters are estimated by solving the weighted least
squares problem

arg min
a1,··· ,a8

∑
x,y

w(x, y)‖d(x, y) − v(x, y)‖2, (21)

where the summation is over all points and the weightsw(x, y)
are computed frome(x, y), equation (15), as

w(x, y) =
k

k + e(x, y)
, (22)



with k a design parameter. To solve (21) we rewrite (20) as

v(x, y) = S(x, y)p, where (23)

S(x, y) =
(

1 x y 0 0 0 x2 xy
0 0 0 1 x y xy y2

)
, (24)

p =
(
a1 a2 a3 a4 a5 a6 a7 a8

)T
.
(25)

Now the solution to (21) is given by

p =
(∑

wST S
)−1 ∑

wST d, (26)

where we once more have dropped some indexing to im-
prove the readability. The practical solution of the problem
involves accumulating the coefficients of the8× 8 equation
system (26) over all points and solving for the parameters.

The residual displacement field for the two frames in
figure 1 is shown in figure 2(b). The residuals corresponding
to the two cars are enlarged due to the averaging in equation
(14).

5. FUTURE IMPROVEMENTS

Instead of fitting the eight parameter motion model in sec-
tion 4 to the previously estimated displacements we can ap-
ply the primary constraint (12) (withA and∆b from (16)
and (17)) directly to the motion modeld(x, y) = S(x, y)p.
This gives us the least squares problem

arg min
p

∑
x,y

‖A(x, y)S(x, y)p − ∆b(x, y)‖2, (27)

where the sum is over all points, and the solution

p =
(∑

ST AT AS
)−1 ∑

ST AT ∆b. (28)

This has not been implemented yet. Since we still need to
compute local displacements in order to obtain the residual
parallax it is not obvious that this method is worth the ex-
tra complexity in the implementation. However, if we only
need the residual field in limited regions of interest, this
gives an efficient method to compute the egomotion from
all points, since we avoid the relatively expensive averaging
in equation (14).

6. CONCLUSIONS

We have presented a new method to estimate displacements
between two frames, which combined with a plane + paral-
lax approach can be used to detect moving objects in aerial
images. Initial results look promising but work remains to
optimize the implementation for the target platform and to
evaluate and tune the algorithm for a wide range of environ-
ments.
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