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Linköping November 2002



Polynomial Expansion for Orientation and Motion Estimation

c© 2002 Gunnar Farnebäck
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Abstract

This thesis introduces a new signal transform, called polynomial expansion, and
based on this develops novel methods for estimation of orientation and motion.
The methods are designed exclusively in the spatial domain and can be used for
signals of any dimensionality.

Two important concepts in the use of the spatial domain for signal processing
is projections into subspaces, e.g. the subspace of second degree polynomials, and
representations by frames, e.g. wavelets. It is shown how these concepts can be
unified in a least squares framework for representation of finite dimensional vectors
by bases, frames, subspace bases, and subspace frames.

This framework is used to give a new derivation of normalized convolution, a
method for signal analysis that takes uncertainty in signal values into account and
also allows for spatial localization of the analysis functions.

Polynomial expansion is a transformation which at each point transforms the
signal into a set of expansion coefficients with respect to a polynomial local signal
model. The expansion coefficients are computed using normalized convolution. As
a consequence polynomial expansion inherits the mechanism for handling uncertain
signals and the spatial localization feature allows good control of the properties
of the transform. It is shown how polynomial expansion can be computed very
efficiently.

As an application of polynomial expansion, a novel method for estimation of
orientation tensors is developed. A new concept for orientation representation,
orientation functionals, is introduced and it is shown that orientation tensors can
be considered a special case of this representation. By evaluation on a test sequence
it is demonstrated that the method performs excellently.

Considering an image sequence as a spatiotemporal volume, velocity can be
estimated from the orientations present in the volume. Two novel methods for
velocity estimation are presented, with the common idea to combine the orien-
tation tensors over some region for estimation of the velocity field according to
a parametric motion model, e.g. affine motion. The first method involves a si-
multaneous segmentation and velocity estimation algorithm to obtain appropriate
regions. The second method is designed for computational efficiency and uses local
neighborhoods instead of trying to obtain regions with coherent motion. By eval-
uation on the Yosemite sequence, it is shown that both methods give substantially
more accurate results than previously published methods.

Another application of polynomial expansion is a novel displacement estima-
tion algorithm, i.e. an algorithm which estimates motion from only two consecutive
frames rather than from a whole spatiotemporal volume. This approach is nec-
essary when the motion is not temporally coherent, e.g. because the camera is
affected by vibrations. It is shown how moving objects can robustly be detected
in such image sequences by using the plane+parallax approach to separate out the
background motion.

To demonstrate the power of being able to handle uncertain signals it is shown
how normalized convolution and polynomial expansion can be computed for in-
terlaced video signals. Together with the displacement estimation algorithm this
gives a method to estimate motion from a single interlaced frame.
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Chapter 1

Introduction

1.1 Motivation

In this Ph.D. thesis a general framework for spatial domain design of multidi-
mensional signal analysis algorithms is presented. Using this framework, novel
algorithms for estimation of orientation, velocity, and displacement are developed.
It is more conventional for such methods to be designed, at least partially, in
the Fourier domain. To understand why we wish to avoid the use of the Fourier
domain altogether, it is necessary to have some background information.

The theory and methods presented in this thesis are results of the research
within the WITAS1 project [99]. The goal of this project is to develop an au-
tonomous flying vehicle and naturally the vision subsystem is an important com-
ponent. Unfortunately the needed image processing has a tendency to be com-
putationally very demanding and therefore it is of interest to find ways to reduce
the amount of processing. One way to do this is to emulate biological vision by
using foveally sampled images, i.e. having a higher sampling density in an area
of interest and gradually lower sampling density further away. In contrast to the
usual rectangular grids, this approach leads to highly irregular sampling patterns.

Except for some very specific sampling patterns, e.g. the logarithmic polar
[17, 72, 82, 92], the theory for irregularly sampled multidimensional signals is far
less developed than the corresponding theory for regularly sampled signals. Some
work has been done on the problem of reconstructing irregularly sampled band-
limited signals [30]. In contrast to the regular case this turns out to be quite
complicated, one reason being that the Nyquist frequency varies spatially with
the local sampling density. In fact the use of the Fourier domain in general, e.g.
for filter design, becomes much more complicated and for this reason we turn our
attention to the spatial domain.

As is often the case though, research does not always follow the planned routes.
Irregular sampling has its own problems, both with respect to sensor hardware and
software implementations of the algorithms. As a result this approach has not been

1Wallenberg laboratory for Information Technology for Autonomous Systems.
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pursued within the WITAS project.
This is, however, not such a bad failure as it may sound like. The spatial

domain approach has turned out to be very fruitful when applied to regularly
sampled signals, giving efficient and accurate algorithms.

1.2 Organization

An important concept in the use of the spatial domain for signal processing is
projections into subspaces, e.g. the subspace of second degree polynomials. Chap-
ter 2 presents a unified framework for representations of finite dimensional vectors
by bases, frames, subspace bases, and subspace frames. The basic idea is that all
these representations by sets of vectors can be regarded as solutions to various least
squares problems. Generalizations to weighted least squares problems are explored
and dual vector sets are derived for efficient computation of the representations.

In chapter 3 the theory developed in the previous chapter is used to derive
the method called normalized convolution. This method is a powerful tool for
signal analysis in the spatial domain, being able to take uncertainties in the signal
values into account and allowing spatial localization of the analysis functions.
It is shown how this operation relates to ordinary convolution and how to use
normalized convolution to compute filter responses on uncertain data.

Chapter 4 introduces a signal transform called polynomial expansion, which
locally projects each neighborhood of the signal onto a polynomial basis. This
is done by means of normalized convolution and it is shown that under certain
restrictions the polynomial expansion can be computed very efficiently.

Chapter 5 introduces orientation functionals for representation of orientation
and it is shown that orientation tensors can be regarded as a special case of this
concept. A new method to compute orientation tensors, using the polynomial
expansion of the signal, is developed. It is shown by evaluation on a test volume
that it performs excellently.

In chapter 6 the orientation tensors from the previous chapter are utilized
for velocity estimation. With the idea to estimate velocity over whole regions
according to some motion model, two different algorithms are developed. The first
one is a simultaneous segmentation and velocity estimation algorithm, while the
second one gains in computational efficiency by disregarding the need for a proper
segmentation into regions with coherent motion. By evaluation on the Yosemite
sequence it is shown that both algorithms are substantially more accurate than
previously published methods for velocity estimation.

A different method to estimate motion, in the form of displacement between two
signals, is developed in chapter 7. This is also based on the polynomial expansion
of the two signals, but works directly on the expansion coefficients instead of using
orientation tensors. Combined with the plane+parallax approach it gives a robust
method to detect moving objects in aerial scenes.

Chapter 8 discusses how the methods developed in the previous chapters can be
adapted for direct use on interlaced video signals, without needing a de-interlacing
step. This is the only remnant of the plans to study irregularly sampled signals.
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Most algorithms developed in this thesis have been implemented in Matlab.
The source of many of them is freely available as a package called The Spatial
Domain Toolbox. Chapter 9 gives an overview of this toolbox.

The thesis concludes with chapter 10, summarizing the contents of the thesis
and discussing possible directions for future research.

1.3 Contributions

It is never easy to say for sure what ideas and methods are new and which have
been published somewhere previously. The following is an attempt at listing the
parts of the material that originates with the author and are more or less likely to
be truly novel.

The main contribution in chapter 2 is the unification of the seemingly disparate
concepts of frames and subspace bases in a least squares framework, together with
bases and subspace frames. Other original ideas is the simultaneous weighting in
both the signal and coefficient spaces for subspace frames, the full generalization
of dual vector sets to the weighted norm case in section 2.4.4, and most of the
results in section 2.5 on the weighted seminorm case. The concept of weighted
linear combinations in section 2.4.4 may also be novel.

The method of normalized convolution in Chapter 3 is certainly not original
work. The primary contribution here is in the presentation of the method. By
taking advantage of the framework from chapter 2 to derive the method, the goal
is to achieve greater clarity than in earlier presentations. There are also some new
contributions to the theory, such as parts of the discussion about output certainty
in section 3.5, most of sections 3.8 and 3.10, and all of sections 3.11 and 3.12.

In chapter 4 everything is original except sections 4.6.1, 4.8.2, 4.8.3. The ideas
in section 4.5 were developed in close collaboration with Björn Johansson. The
main contribution of the chapter is the efficient implementation of the polynomial
expansion in section 4.3. The results on separable computation of normalized
convolution in section 4.4 are not limited to a polynomial basis but applies to
any set of Cartesian separable basis functions and applicabilities. This makes it
possible to do the computations significantly more efficient and is obviously an
important contribution to the theory of normalized convolution.

In chapter 5 everything is original except section 5.2 about the tensor repre-
sentation of orientation and estimation of tensors by means of quadrature filter
responses. The main contributions are the concept of orientation functionals in
section 5.3, the method to estimate orientation tensors from polynomial expan-
sion coefficients in section 5.4, and the observation of the importance of isotropy
in section 5.7.1.

Chapter 6 mostly contains original work too, with the exception of sections 6.2
and 6.3.1. The main contributions here are the methods for estimation of motion
model parameters in section 6.3, the algorithm for simultaneous segmentation and
velocity estimation in section 6.4, and the fast velocity estimation algorithm in
section 6.5.

All material in both chapters 7 and 8 is original, except the plane+parallax
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approach in section 7.10.1 and the interlaced geometry in section 8.2.

1.4 Previous Publications

Large parts of the material have previously been published in earlier thesis work
and at conferences, as listed below.

[21] Master’s thesis Most of the material in sections 6.2–6.4, although
with a different focus.

[23] Licentiate thesis2 Central parts of chapters 2–6. There are many re-
visions and expansions of the material in this thesis
though.

[22] SSAB 1997 A condensed version of my master’s thesis.
[24] SCIA 1999 Chapter 2 and minor pieces from chapter 3.
[25] ICPR 2000 Chapter 6 except section 6.4. This paper won

an Honorable Mention in the Best Student Paper
Award.

[26] VMV 2000 Large parts of chapters 4 and 5.
[27] SSAB 2001 Sections 7.2 and 7.3.
[28] ICCV 2001 Chapter 6 with emphasis on section 6.4.
[29] SSAB 2002 Most of chapter 7 except section 7.3.

Additionally, the velocity estimation algorithm in section 6.5 participated in
the Algorithm Performance Contest at ICPR 2000 [2].

1.5 Notation

Lowercase letters in boldface (v) are used for vectors and in matrix algebra con-
texts they are always column vectors. Uppercase letters in boldface (A) are used
for matrices. The conjugate transpose of a matrix or a vector is denoted A∗. The
transpose of a real matrix or vector is also denoted AT . Complex conjugation
without transpose is denoted v̄. The standard inner product between two vectors
is written (u,v) or u∗v. The norm of a vector is induced from the inner product,

‖v‖ =
√

v∗v. (1.1)

Weighted inner products are given by

(u,v)W = (Wu,Wv) = u∗W∗Wv (1.2)

and the induced weighted norms by

‖v‖W =
√

(v,v)W =
√

(Wv,Wv) = ‖Wv‖, (1.3)

where W normally is a positive definite Hermitian matrix. In the case that it is
only positive semidefinite we instead have a weighted seminorm. The norm of a

2A licentiate is an intermediate degree between master and doctor.
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matrix is assumed to be the Frobenius norm, ‖A‖2 = tr (A∗A), where the trace of
a quadratic matrix, trM, is the sum of the diagonal elements. The pseudo-inverse
of a matrix is denoted A†. Somewhat nonstandard is the use of u · v to denote
pointwise multiplication of the elements of two vectors. Furthermore v̂ is used to
denote vectors of unit length and ṽ is used for dual vectors. Binomial coefficients
are denoted

(
n
k

)
. Additional notation is introduced where needed, e.g. f ? g to

denote unnormalized cross correlation in section 3.7.
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Chapter 2

A Unified Framework for
Bases, Frames, Subspace
Bases, and Subspace Frames

2.1 Introduction

Frames and subspace bases, and of course bases, are well known concepts, which
have been covered in several publications. Usually, however, they are treated
as disparate entities. The idea behind this presentation of the material is to
give a unified framework for bases, frames, and subspace bases, as well as the
somewhat less known subspace frames. The basic idea is that the coefficients
in the representation of a vector in terms of a frame, etc., can be described as
solutions to various least squares problems. Using this to define what coefficients
should be used, expressions for dual vector sets are derived. These results are then
generalized to the case of weighted norms and finally also to the case of weighted
seminorms. The presentation is restricted to finite dimensional vector spaces and
relies heavily on matrix representations.

2.2 Preliminaries

To begin with, we review some basic concepts from (numerical) linear algebra.
All of these results are well known and can be found in any modern textbook on
numerical linear algebra, e.g. [35].

2.2.1 Notation

Let Cn be an n-dimensional complex vector space. Elements of this space are
denoted by lower-case bold letters, e.g. v, indicating n×1 column vectors. Upper-
case bold letters, e.g. F, denote complex matrices. With Cn is associated the
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standard inner product, (f ,g) = f∗g, where ∗ denotes conjugate transpose, and
the Euclidian norm, ‖f‖ =

√
(f , f).

In this section A is an n×m complex matrix, b ∈ Cn, and x ∈ Cm.

2.2.2 The Linear Equation System

The linear equation system
Ax = b (2.1)

has a unique solution
x = A−1b (2.2)

if and only if A is square and non-singular. If the equation system is overdeter-
mined it does in general not have a solution and if it is underdetermined there are
normally an infinite set of solutions. In these cases the equation system can be
solved in a least squares and/or minimum norm sense, as discussed below.

2.2.3 The Linear Least Squares Problem

Assume that n ≥ m and that A is of rank m (full column rank). Then the equation
Ax = b is not guaranteed to have a solution and the best we can do is to minimize
the residual error.

The linear least squares problem

arg min
x∈Cn

‖Ax− b‖ (2.3)

has the unique solution
x = (A∗A)−1A∗b. (2.4)

If A is rank deficient the solution is not unique, a case which we return to in
section 2.2.7.

2.2.4 The Minimum Norm Problem

Assume that n ≤ m and that A is of rank n (full row rank). Then the equation
Ax = b may have more than one solution and to choose between them we take
the one with minimum norm.

The minimum norm problem

arg min
x∈S
‖x‖, S = {x ∈ Cm;Ax = b} (2.5)

has the unique solution
x = A∗(AA∗)−1b. (2.6)

If A is rank deficient it is possible that there is no solution at all, a case to which
we return in section 2.2.7.
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2.2.5 The Singular Value Decomposition

An arbitrary matrix A of rank r can be factorized by the Singular Value Decom-
position, SVD, as

A = UΣV∗, (2.7)

where U and V are unitary matrices, n×n and m×m respectively. Σ is a diagonal
n×m matrix

Σ = diag
(
σ1, . . . , σr, 0, . . . , 0

)
, (2.8)

where σ1, . . . , σr are the non-zero singular values. The singular values are all real
and σ1 ≥ . . . ≥ σr > 0. If A is of full rank we have r = min(n,m) and all singular
values are non-zero.

2.2.6 The Pseudo-Inverse

The pseudo-inverse1 A† of any matrix A can be defined via the SVD given by
(2.7) and (2.8) as

A† = VΣ†U∗, (2.9)

where Σ† is a diagonal m× n matrix

Σ† = diag
(

1
σ1

, . . . , 1
σr

, 0, . . . , 0
)
. (2.10)

We can notice that if A is of full rank and n ≥ m, then the pseudo-inverse can
also be computed as

A† = (A∗A)−1A∗ (2.11)

and if instead n ≤ m then

A† = A∗(AA∗)−1. (2.12)

If m = n then A is quadratic and the condition of full rank becomes equivalent
with non-singularity. It is obvious that both the equations (2.11) and (2.12) reduce
to

A† = A−1 (2.13)

in this case.
Regardless of rank conditions we have the following useful identities,

(A†)† = A, (2.14)

(A∗)† = (A†)∗, (2.15)

A† = (A∗A)†A∗, (2.16)

A† = A∗(AA∗)†. (2.17)

1This pseudo-inverse is also known as the Moore-Penrose inverse.
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2.2.7 The General Linear Least Squares Problem

The remaining case is when A is rank deficient. Then the equation Ax = b is not
guaranteed to have a solution and there may be more than one x minimizing the
residual error. This problem can be solved as a simultaneous least squares and
minimum norm problem.

The general (or rank deficient) linear least squares problem is stated as

arg min
x∈S
‖x‖, S = {x ∈ Cm; ‖Ax− b‖ is minimum}, (2.18)

i.e. among the least squares solutions, choose the one with minimum norm. Clearly
this formulation contains both the ordinary linear least squares problem and the
minimum norm problem as special cases. The unique solution is given in terms of
the pseudo-inverse as

x = A†b. (2.19)

Notice that by equations (2.11)–(2.13) this solution is consistent with (2.2), (2.4),
and (2.6).

2.2.8 Numerical Aspects

Although the above results are most commonly found in books on numerical linear
algebra, only their algebraic properties are being discussed here. It should, how-
ever, be mentioned that e.g. equations (2.9) and (2.11) have numerical properties
that differ significantly. The interested reader is referred to [11].

2.3 Representation by Sets of Vectors

If we have a set of vectors {fk} ⊂ Cn and wish to represent2 an arbitrary vector v
as a linear combination

v ∼
∑

ckfk (2.20)

of the given set, how should the coefficients {ck} be chosen? In general this
question can be answered in terms of linear least squares problems.

2.3.1 Notation

With the set of vectors, {fk}mk=1 ⊂ Cn, is associated an n×m matrix

F = [f1, f2, . . . , fm], (2.21)

which effectively is a reconstructing operator because multiplication with an m×1
vector c, Fc, produces linear combinations of the vectors {fk}. In terms of the
reconstruction matrix, equation (2.20) can be rewritten as

v ∼ Fc, (2.22)
2Ideally we would like to have equality in equation (2.20) but that cannot always be obtained.
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spans Cn
yes no

linearly independent basis subspace basis
dependent frame subspace frame

Table 2.1: Definitions

where the coefficients {ck} have been collected in the vector c.
The conjugate transpose of the reconstruction matrix, F∗, gives an analyzing

operator because F∗x yields a vector containing the inner products between {fk}
and the vector x ∈ Cn.

2.3.2 Definitions

Let {fk} be a subset of Cn. If {fk} spans Cn and is linearly independent it is
called a basis. If it spans Cn but is linearly dependent it is called a frame. If it
is linearly independent but does not span Cn it is called a subspace basis. Finally,
if it neither spans Cn, nor is linearly independent, it is called a subspace frame.3

This relationship is depicted in table 2.1. If the properties of {fk} are unknown or
arbitrary we simply use set of vectors or vector set as a collective term.

2.3.3 Dual Vector Sets

We associate with a given vector set {fk} the dual vector set {f̃k}, characterized
by the condition that for an arbitrary vector v the coefficients {ck} in equation
(2.20) are given as inner products between the dual vectors and v,

ck = (f̃k,v) = f̃∗kv. (2.23)

This equation can be rewritten in terms of the reconstruction matrix F̃ corre-
sponding to {f̃k} as

c = F̃∗v. (2.24)

The existence of the dual vector set is a nontrivial fact, which will be proved
in the following sections for the various classes of vector sets.

2.3.4 Representation by a Basis

Let {fk} be a basis. An arbitrary vector v can be written as a linear combination
of the basis vectors, v = Fc, for a unique coefficient vector c.4

Because F is invertible in the case of a basis, we immediately get

c = F−1v (2.25)
3The notation used here is somewhat nonstandard. See section 2.3.9 for a discussion.
4The coefficients {ck} are of course also known as the coordinates for v with respect to the

basis {fk}.
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and it is clear from comparison with equation (2.24) that F̃ exists and is given by

F̃ = (F−1)∗. (2.26)

In this very ideal case where the vector set is a basis, there is no need to state
a least squares problem to find c or F̃. That this could indeed be done is discussed
in section 2.3.7.

2.3.5 Representation by a Frame

Let {fk} be a frame. Because the frame spans Cn, an arbitrary vector v can still be
written as a linear combination of the frame vectors, v = Fc. This time, however,
there are infinitely many coefficient vectors c satisfying the relation. To get a
uniquely determined solution we add the requirement that c be of minimum norm.
This is nothing but the minimum norm problem of section 2.2.4 and equation (2.6)
gives the solution

c = F∗(FF∗)−1v. (2.27)

Hence the dual frame exists and is given by

F̃ = (FF∗)−1F. (2.28)

2.3.6 Representation by a Subspace Basis

Let {fk} be a subspace basis. In general, an arbitrary vector v cannot be written
as a linear combination of the subspace basis vectors, v = Fc. Equality only holds
for vectors v in the subspace spanned by {fk}. Thus we have to settle for the c
giving the closest vector v′ = Fc in the subspace. Since the subspace basis vectors
are linearly independent we have the linear least squares problem of section 2.2.3
with the solution given by equation (2.4) as

c = (F∗F)−1F∗v. (2.29)

Hence the dual subspace basis exists and is given by

F̃ = F(F∗F)−1. (2.30)

Geometrically v′ is the orthogonal projection of v onto the subspace.

2.3.7 Representation by a Subspace Frame

Let {fk} be a subspace frame. In general, an arbitrary vector v cannot be written
as a linear combination of the subspace frame vectors, v = Fc. Equality only
holds for vectors v in the subspace spanned by {fk}. Thus we have to settle for
the c giving the closest vector v′ = Fc in the subspace. Since the subspace frame
vectors are linearly dependent there are also infinitely many c giving the same
closest vector v′, so to distinguish between these we choose the one with minimum
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norm. This is the general linear least squares problem of section 2.2.7 with the
solution given by equation (2.19) as

c = F†v. (2.31)

Hence the dual subspace frame exists and is given by

F̃ = (F†)∗. (2.32)

The subspace frame case is the most general case since all the other ones can be
considered as special cases. The only thing that happens to the general linear least
squares problem formulated here is that sometimes there is an exact solution v =
Fc, rendering the minimum residual error requirement superfluous, and sometimes
there is a unique solution c, rendering the minimum norm requirement superfluous.
Consequently the solution given by equation (2.32) subsumes all the other ones,
which is in agreement with equations (2.11)–(2.13).

2.3.8 The Double Dual

The dual of {f̃k} can be computed from equation (2.32), applied twice, together
with (2.14) and (2.15),

˜̃F = F̃†∗ = F†∗†∗ = F†∗∗† = F†† = F. (2.33)

What this means is that if we know the inner products between v and {fk} we
can reconstruct v using the dual vectors. To summarize we have the two relations

v ∼ F(F̃∗v) =
∑
k

(f̃k,v)fk, (2.34)

v ∼ F̃(F∗v) =
∑
k

(fk,v)f̃k. (2.35)

2.3.9 A Note on Notation

Usually a frame is defined by the frame condition,

A‖v‖2 ≤
∑
k

|(fk,v)|2 ≤ B‖v‖2, (2.36)

which must hold for some A > 0, some B < ∞, and all v ∈ Cn. In the finite
dimensional setting used here the first inequality holds if and only if {fk} spans
all of Cn and the second inequality is a triviality as soon as the number of frame
vectors is finite.

The difference between this definition and the one used in section 2.3.2 is that
the bases are included in the set of frames. As we have seen that equation (2.28)
is consistent with equation (2.26), the same convention could have been used here.
The reason for not doing so is that the presentation would have become more
involved.
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Likewise, we may allow the subspace bases to span the whole Cn, making bases
a special case. Indeed, as has already been discussed to some extent, if subspace
frames are allowed to be linearly independent, and/or span the whole Cn, all the
other cases can be considered special cases of subspace frames.

2.4 Weighted Norms

An interesting generalization of the theory developed so far is to exchange the
Euclidian norms used in all minimizations for weighted norms.

2.4.1 Notation

Let the weighting matrix W be an n× n positive definite Hermitian matrix. The
weighted inner product (·, ·)W on Cn is defined by

(f ,g)W = (Wf ,Wg) = f∗W∗Wg = f∗W2g (2.37)

and the induced weighted norm ‖ · ‖W is given by

‖f‖W =
√

(f , f)W =
√

(Wf ,Wf) = ‖Wf‖. (2.38)

In this section M and L denote weighting matrices for Cn and Cm respectively.
The notation from previous sections carry over unchanged.

2.4.2 The Weighted General Linear Least Squares Problem

The weighted version of the general linear least squares problem is stated as

arg min
x∈S
‖x‖L, S = {x ∈ Cm; ‖Ax− b‖M is minimum}. (2.39)

This problem can be reduced to its unweighted counterpart by introducing x′ =
Lx, whereby equation (2.39) can be rewritten as

arg min
x′∈S
‖x′‖, S = {x′ ∈ Cm; ‖MAL−1x′ −Mb‖ is minimum}. (2.40)

The solution is given by equation (2.19) as

x′ = (MAL−1)†Mb, (2.41)

which after back-substitution yields

x = L−1(MAL−1)†Mb. (2.42)

2.4.3 Representation by Vector Sets

Let {fk} ⊂ Cn be any type of vector set. We want to represent an arbitrary vector
v ∈ Cn as a linear combination of the given vectors,

v ∼ Fc, (2.43)

where the coefficient vector c is chosen so that
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1. the distance between v′ = Fc and v, ‖v′ − v‖M, is smallest possible, and

2. the length of c, ‖c‖L, is minimized.

This is of course the weighted general linear least squares problem of the previous
section, with the solution

c = L−1(MFL−1)†Mv. (2.44)

From the geometry of the problem one would suspect that M should not in-
fluence the solution in the case of a basis or a frame, because the vectors span the
whole space so that v′ equals v and the distance is zero, regardless of norm. Like-
wise L should not influence the solution in the case of a basis or a subspace basis.
That this is correct can easily be seen by applying the identities (2.11)–(2.13) to
the solution (2.44). In the case of a frame we get

c = L−1(MFL−1)∗((MFL−1)(MFL−1)∗)−1Mv

= L−2F∗M(MFL−2F∗M)−1Mv

= L−2F∗(FL−2F∗)−1v,

(2.45)

in the case of a subspace basis

c = L−1((MFL−1)∗(MFL−1))−1(MFL−1)∗Mv

= L−1(L−1F∗M2FL−1)−1L−1F∗M2v

= (F∗M2F)−1F∗M2v,

(2.46)

and in the case of a basis

c = L−1(MFL−1)−1Mv = F−1v. (2.47)

2.4.4 Dual Vector Sets

It is not completely obvious how the concept of a dual vector set should be gener-
alized to the weighted norm case. We would like to retain the symmetry relation
from equation (2.33) and get correspondences to the representations (2.34) and
(2.35). This can be accomplished by the weighted dual5

F̃ = M−1(L−1F∗M)†L, (2.48)

which obeys the relations

˜̃F = F, (2.49)

v ∼ FL−2F̃∗M2v, (2.50)

v ∼ F̃L−2F∗M2v. (2.51)

5To be more precise we should say ML-weighted dual, denoted F̃ML. In the current context
the extra index would only weigh down the notation, and has therefore been dropped.
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Unfortunately the two latter relations are not as easily interpreted as (2.34)
and (2.35). The situation simplifies a lot in the special case where L = I. Then
we have

F̃ = M−1(F∗M)†, (2.52)

which can be rewritten by identity (2.17) as

F̃ = F(F∗M2F)†. (2.53)

The two relations (2.50) and (2.51) can now be rewritten as

v ∼ F(F̃∗M2v) =
∑
k

(f̃k,v)M fk, (2.54)

v ∼ F̃(F∗M2v) =
∑
k

(fk,v)M f̃k. (2.55)

Returning to the case of a general L, the factor L−2 in (2.50) and (2.51)
should be interpreted as a weighted linear combination, i.e. FL−2c would be an
L−1-weighted linear combination of the vectors {fk}, with the coefficients given
by c, analogously to F∗M2v being the set of M-weighted inner products between
{fk} and a vector v.

2.5 Weighted Seminorms

The final level of generalization to be addressed here is when the weighting ma-
trices are allowed to be semidefinite, turning the norms into seminorms. This has
fundamental consequences for the geometry of the problem. The primary differ-
ence is that with a (proper) seminorm not only the vector 0 has length zero, but
a whole subspace has. This fact has to be taken into account with respect to the
terms spanning and linear dependence.6

2.5.1 The Seminorm Weighted General Linear Least Squares
Problem

When M and L are allowed to be semidefinite7 the solution to equation (2.39) is
given by Eldén in [20] as

x = (I− (LP)†L)(MA)†Mb + P(I− (LP)†LP)z, (2.56)

where z is arbitrary and P is the projection

P = I− (MA)†MA. (2.57)
6Specifically, if a set of otherwise linearly independent vectors have a linear combination of

norm zero, we say that they are effectively linearly dependent, since they for all practical purposes
may as well have been.

7M and L may in fact be completely arbitrary matrices of compatible sizes.
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Furthermore the solution is unique if and only if

N (MA) ∩N (L) = {0}, (2.58)

where N (·) denotes the null space. When there are multiple solutions, the first
term of (2.56) gives the solution with minimum Euclidian norm.

If we make the restriction that only M may be semidefinite, the derivation in
section 2.4.2 still holds and the solution is unique and given by equation (2.42) as

x = L−1(MAL−1)†Mb. (2.59)

2.5.2 Representation by Vector Sets and Dual Vector Sets

Here we have exactly the same representation problem as in section 2.4.3, ex-
cept that that M and L may now be semidefinite. The consequence of M being
semidefinite is that residual errors along some directions do not matter, while L
being semidefinite means that certain linear combinations of the available vectors
can be used for free. When both are semidefinite it may happen that some linear
combinations can be used freely without affecting the residual error. This causes
an ambiguity in the choice of the coefficients c, which can be resolved by the addi-
tional requirement that among the solutions, c is chosen with minimum Euclidian
norm. Then the solution is given by the first part of equation (2.56) as

c = (I− (L(I− (MF)†MF))†L)(MF)†Mv. (2.60)

Since this expression is something of a mess we are not going explore the
possibilities of finding a dual vector set or analogues of the relations (2.50) and
(2.51). Let us instead turn to the considerably simpler case where only M is
allowed to be semidefinite. As noted in the previous section, we can now use the
same solution as in the case with weighted norms, reducing the solution (2.60) to
that given by equation (2.44),

c = L−1(MFL−1)†Mv. (2.61)

Unfortunately we can no longer define the dual vector set by means of equation
(2.48), due to the occurrence of an explicit inverse of M. Applying identity (2.16)
to (2.61), however, we get

c = L−1(L−1F∗M2FL−1)†L−1F∗M2v (2.62)

and it follows that
F̃ = FL−1(L−1F∗M2FL−1)†L (2.63)

yields a dual satisfying the relations (2.49)–(2.51). In the case that L = I this
expression simplifies further to (2.53), just as for weighted norms. For future
reference we also notice that (2.61) reduces to

c = (MF)†Mv. (2.64)
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Chapter 3

Normalized Convolution

3.1 Introduction

Normalized convolution is a method for signal analysis that takes uncertainties
in signal values into account and at the same time allows spatial localization of
possibly unlimited analysis functions. The method was primarily developed by
Knutsson and Westin [64, 66, 94] and has later been described and/or used in e.g.
[3, 4, 5, 40, 54, 56, 57, 61, 84, 85, 86, 93]. The conceptual basis for the method is the
signal/certainty philosophy [38, 39, 62, 97], i.e. separating the values of a signal
from the certainty of the measurements. Some of the ideas used in normalized
convolution can also be found in [16], further discussed in section 4.8.3.

Most of the previous presentations of normalized convolution have primarily
been set in a tensor algebra framework, with only some mention of the relations to
least squares problems. Here we will skip the tensor algebra approach completely
and instead use the framework developed in chapter 2 as the theoretical basis for
deriving normalized convolution. Specifically, we will use the theory of subspace
bases and the connections to least squares problems. Readers interested in the
tensor algebra approach are referred to [64, 66, 93, 94].

Normalized convolution can, for each neighborhood of the signal, geometrically
be interpreted as a projection into a subspace which is spanned by the analysis
functions. The projection is equivalent to a weighted least squares problem, where
the weights are induced from the certainty of the signal and the desired localization
of the analysis functions. The result of normalized convolution is at each signal
point a set of expansion coefficients, one for each analysis function.

While neither least squares fitting, localization of analysis functions, nor han-
dling of uncertain data in themselves are novel ideas, the unique strength of
normalized convolution is that it combines all of them simultaneously in a well
structured and theoretically sound way. The method is a generally useful tool
for signal analysis in the spatial domain, which formalizes and generalizes least
squares techniques, e.g. the facet model [41, 42, 43, 44], that have been used for a
long time.

A weakness of the presentation used here is that it is not immediately clear how
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normalized convolution can be applied to the problem of computing filter responses
on uncertain data when the convolution kernels are given. This is discussed in
detail in section 3.8.

3.2 Definition of Normalized Convolution

Before defining normalized convolution, it is necessary to get familiar with the
terms signal, certainty, basis functions, and applicability, in the context of the
method. To begin with we assume that we have discrete signals, and explore the
straightforward generalization to continuous signals in section 3.2.4.

3.2.1 Signal and Certainty

It is important to be aware that normalized convolution can be considered as a
pointwise operation, or more strictly, as an operation on a neighborhood of each
signal point. This is no different from ordinary convolution, where the convolution
result at each point is effectively the inner product between the conjugated and
reflected filter kernel and a neighborhood of the signal.

Let f denote the whole signal while f denotes the neighborhood of a given
point. It is assumed that the neighborhood is of finite size1, so that f can be
considered an element of a finite dimensional vector space Cn. Regardless of the
dimensionality of the space in which it is embedded2, f is represented by an n× 1
column vector.3

Certainty is a measure of the confidence in the signal values at each point,
given by non-negative real numbers. Let c denote the whole certainty field, while
the n× 1 column vector c denotes the certainty of the signal values in f .

Possible causes for uncertainty in signal values are, e.g., defective sensor ele-
ments, detected (but not corrected) transmission errors, and varying confidence
in the results from previous processing. The most important, and rather ubiqui-
tous case of uncertainty, however, is missing data outside the border of the signal,
so called border effects. The problem is that for a signal of limited extent, the
neighborhood of points close to the border will include points where no values are
given. This has traditionally been handled in a number of different ways. The
most common is to assume that the signal values are zero outside the border,
which implicitly is done by standard convolution. Another way is to assume cycli-
cal repetition of the signal values, which implicitly is done when convolution is
computed in the frequency domain. Yet another way is to extend with the values
at the border. None of these is completely satisfactory, however. The correct
way to do it, from a signal/certainty perspective, is to set the certainty for points
outside the border to zero, while the signal value is left unspecified.

1This condition can be lifted, as discussed in section 3.2.4. For computational reasons, how-
ever, it is in practice always satisfied.

2E.g. dimensionality 2 for image data.
3The elements of the vector are implicitly the coordinates relative to some orthonormal basis,

typically a pixel basis.
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It is obvious that certainty zero means missing data, but it is not so clear how
positive values should be interpreted. An exact interpretation must be postponed
until section 3.2.4, but of course a larger certainty corresponds to a higher con-
fidence in the signal value. It may seem natural to limit certainty values to the
range [0, 1], with 1 meaning full confidence, but this is not really necessary.

3.2.2 Basis Functions and Applicability

The role of the basis functions is to give a local model for the signal. Each basis
function has the size of the neighborhood mentioned above, i.e. it is an element of
Cn, represented by an n × 1 column vector bi. The set {bi}m1 of basis functions
are stored in an n×m matrix B,

B =

 | | |
b1 b2 . . . bm
| | |

 . (3.1)

Usually we have linearly independent basis functions, so that the vectors {bi} do
constitute a basis for a subspace of Cn. In most cases m is also much smaller than
n.

The applicability is a kind of “certainty” for the basis functions. Rather than
being a measure of certainty or confidence, however, it indicates the significance or
importance of each point in the neighborhood. Like the certainty, the applicability
a is represented by an n× 1 vector with non-negative elements. Points where the
applicability is zero might as well be excluded from the neighborhood altogether,
but for practical reasons it may be convenient to keep them. As for certainty it
may seem natural to limit the applicability values to the range [0, 1] but there is
really no reason to do this because the scaling of the values turns out to be of no
significance.

The basis functions may actually be defined for a larger domain than the
neighborhood in question. They can in fact be unlimited, e.g. polynomials or
complex exponentials, but values at points where the applicability is zero simply
do not matter. This is an important role of the applicability, to enforce a spatial
localization of the signal model. A more extensive discussion on the choice of
applicability follows in section 3.10.

3.2.3 Definition

Let the n× n matrices Wa = diag
(
a
)
, Wc = diag

(
c
)
, and W2 = WaWc.

4 The
operation of normalized convolution is at each signal point a question of represent-
ing a neighborhood of the signal, f , by the set of vectors {bi}, using the weighted
norm (or seminorm) ‖ · ‖W in the signal space and the Euclidian norm in the
coefficient space. The result of normalized convolution is at each point the set of
coefficients r used in the vector set representation of the neighborhood.

4We set W2 = WaWc to keep in line with the established notation. Letting W = WaWc

would be equally valid, as long as a and c are interpreted accordingly, and somewhat more
natural in the framework used here.
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As we have seen in chapter 2, this can equivalently be stated as the seminorm
weighted general linear least squares problem

arg min
r∈S
‖r‖, S = {r ∈ Cm; ‖Br− f‖W is minimum}. (3.2)

In the case that the basis functions are linearly independent with respect to the
(semi)norm ‖ · ‖W, this can be simplified to the more ordinary weighted linear
least squares problem

arg min
r∈Cm

‖Br− f‖W. (3.3)

In any case the solution is given by equation (2.64) as

r = (WB)†Wf . (3.4)

For various purposes it is useful to rewrite this formula. We start by expanding
the pseudo-inverse in (3.4) by identity (2.16), leading to

r = (B∗W2B)†B∗W2f , (3.5)

which can be interpreted in terms of inner products as

r =

 (b1,b1)W . . . (b1,bm)W
...

. . .
...

(bm,b1)W . . . (bm,bm)W


† (b1, f)W

...
(bm, f)W

 . (3.6)

Replacing W2 with WaWc and using the assumption that the vectors {bi} consti-
tute a subspace basis with respect to the (semi)norm W, so that the pseudo-inverse
in (3.5) and (3.6) can be replaced with an ordinary inverse, we get

r = (B∗WaWcB)−1B∗WaWcf (3.7)

and with the convention that · denotes pointwise multiplication, we arrive at the
expression5

r =

 (a · c · b1,b1) . . . (a · c · b1,bm)
...

. . .
...

(a · c · bm,b1) . . . (a · c · bm,bm)


−1 (a · c · b1, f)

...
(a · c · bm, f)

 . (3.8)

3.2.4 Comments on the Definition

In previous formulations of normalized convolution, it has been assumed that the
basis functions do constitute a subspace basis, so that we have a unique solution
to the linear least squares problem (3.3), given by (3.7) or (3.8). The problem
with this assumption is that if we have a neighborhood with lots of missing data,

5This is almost the original formulation of normalized convolution. The final step is postponed
until section 3.3.
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it can happen that the basis functions effectively become linearly dependent in the
seminorm given by W, so that the inverses in (3.7) and (3.8) do not exist.

We can solve this problem by exchanging the inverses for pseudo-inverses, equa-
tions (3.5) and (3.6), which removes the ambiguity in the choice of resulting coef-
ficients r by giving the solution to the more general linear least squares problem
(3.2). This remedy is not without risks, however, since the mere fact that the basis
functions turn linearly dependent, indicates that the values of at least some of the
coefficients may be very uncertain. More discussion on this follows in section 3.5.
Taking proper care in the interpretation of the result, however, the pseudo-inverse
solutions should be useful when the signal certainty is very low. They are also
necessary in certain generalizations of normalized convolution, see section 3.12.

To be able to use the framework from chapter 2 in deriving the expressions
for normalized convolution, we restricted ourselves to the case of discrete signals
and neighborhoods of finite size. When we have continuous signals and/or infinite
neighborhoods we can still use (3.6) or (3.8) to define normalized convolution,
simply by using an appropriate weighted inner product. The corresponding least
squares problems are given by obvious modifications to (3.2) and (3.3).

The geometrical interpretation of the least squares minimization is that the
local neighborhood is projected into the subspace spanned by the basis functions,
using a metric that is dependent on the certainty and the applicability. From the
least squares formulation we can also get an exact interpretation of the certainty
and the applicability. The certainty gives the relative importance of the signal
values when doing the least squares fit, while the applicability gives the relative
importance of the points in the neighborhood. Obviously a scaling of the certainty
or applicability values does not change the least squares solution, so there is no
reason to restrict these values to the range [0, 1].

3.3 Implementational Issues

While any of the expressions (3.4)–(3.8) can be used to compute normalized con-
volution, there are some differences with respect to computational complexity
and numeric stability. Numerically (3.4) is somewhat preferable to the other ex-
pressions, because values get squared in the rest of them, raising the condition
numbers. Computationally, however, the computation of the pseudo-inverse is
costly and WB is typically significantly larger than B∗W2B. We rather wish to
avoid the pseudo-inverses altogether, leaving us with (3.7) and (3.8). The inverses
in these expressions are of course not computed explicitly, since there are more
efficient methods to solve linear equation systems. In fact, the costly operation
now is to compute the inner products in (3.8). Remembering that these compu-
tations have to be performed at each signal point, we can improve the expression
somewhat by rewriting (3.8) as

r =

 (a · b1 · b̄1, c) . . . (a · b1 · b̄m, c)
...

. . .
...

(a · bm · b̄1, c) . . . (a · bm · b̄m, c)


−1 (a · b1, c · f)

...
(a · bm, c · f)

 , (3.9)
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where b̄i denotes complex conjugation of the basis functions. This is actually the
original formulation of normalized convolution [64, 66, 94], although with different
notation. By precomputing the quantities {a · bk · b̄l}, {a · bk}, and c · f , we
can decrease the total number of multiplications at the cost of a small increase in
storage requirements.

To compute normalized convolution at all points of the signal we essentially
have two strategies. The first is to compute all inner products and to solve the
linear equation system for one point before continuing to the next point. The
second is to compute the inner product for all points before continuing with the
next inner product and at the very last solve all the linear equation systems. The
advantage of the latter approach is that the inner products can be computed as
standard convolutions, an operation which is often available in heavily optimized
form, possibly in hardware. The disadvantage is that large amounts of extra stor-
age must be used, which even if it is available could lead to problems with respect
to data locality and cache performance. Further discussion on how normalized
convolution can be computed significantly more efficiently in certain cases can be
found in sections 3.7, 4.3, and 4.4.

3.4 Example

To give a small example, assume that we have a two-dimensional signal f , sampled
at integer points, with an accompanying certainty field c, as defined below.

f =

3 7 4 5 8
9 2 4 4 6
5 1 4 3 7
3 1 1 2 8
4 6 2 3 6
7 3 2 6 3
9 6 4 9 9

c =

0 2 2 2 2
2 1 1 2 2
2 1 1 2 1
2 2 2 2 1
1 0 2 2 2
1 1 2 1 0
2 2 2 1 0

(3.10)

Let the local signal model be given by a polynomial basis, {1, x, y, x2, xy, y2} (it
is understood that the x variable increases from the left to the right, while the y
variable increases going downwards) and an applicability of the form:

a =
1 2 1
2 4 2
1 2 1

(3.11)

The applicability fixes the size of the neighborhood, in this case 3× 3 pixels, and
gives a localization of the unlimited polynomial basis functions. Expressed as
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matrices, taking the points columnwise, we have

B =



1 −1 −1 1 1 1
1 −1 0 1 0 0
1 −1 1 1 −1 1
1 0 −1 0 0 1
1 0 0 0 0 0
1 0 1 0 0 1
1 1 −1 1 −1 1
1 1 0 1 0 0
1 1 1 1 1 1


and a =



1
2
1
2
4
2
1
2
1


. (3.12)

Assume that we wish to compute the result of normalized convolution at the
marked point in the signal. Then the signal and certainty neighborhoods are
represented by

f =



1
6
3
1
2
2
2
3
6


and c =



2
0
1
2
2
2
2
2
1


. (3.13)

Applying equation (3.7) we get the result

r = (B∗WaWcB)−1B∗WaWcf

=


26 4 −2 10 0 14
4 10 0 4 −2 0
−2 0 14 −2 0 −2
10 4 −2 10 0 6
0 −2 0 0 6 0
14 0 −2 6 0 14



−1
55
17
7
27
1
27

 =


1.81
0.72
0.86
0.85
0.41
−0.12


(3.14)

As we will see in chapter 5, with this choice of basis functions, the resulting
coefficients hold much information on the the local orientation of the neighborhood.
To conclude this example, we reconstruct the projection of the signal, Br, and
reshape it to a 3× 3 neighborhood:

1.36 0.83 1.99
1.94 1.81 3.38
2.28 2.55 4.52

(3.15)

To get the result of normalized convolution at all points of the signal, we repeat
the above process at each point.
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3.5 Output Certainty

To be consistent with the signal/certainty philosophy, the result of normalized con-
volution should of course be accompanied by an output certainty. Unfortunately,
this is for the most part an open problem.

Factors that ought to influence the output certainty at a given point include

1. the amount of input certainty in the neighborhood,

2. the sensitivity of the result to noise, and

3. to which extent the signal can be described by the basis functions.

The sensitivity to noise is smallest when the basis functions are orthogonal6,
because the resulting coefficients are essentially independent. Should two basis
functions be almost parallel, on the other hand, they both tend to get relatively
large coefficients, and input noise in a certain direction gets amplified.

Two possible measures of output certainty have been published, by Westelius
[93] and Karlholm [61] respectively. Westelius has used

cout =

(
detG
detG0

) 1
m

, (3.16)

while Karlholm has used
cout =

1
‖G0‖2‖G−1‖2

. (3.17)

In both expressions we have

G = B∗WaWcB and G0 = B∗WaB, (3.18)

where G0 is the same as G if the certainty is identically one.
Both these measures take the points 1 and 2 above into account. A disad-

vantage, however, is that they give a single certainty value for all the resulting
coefficients, which makes sense with respect to 1 but not with respect to the sen-
sitivity issues. Clearly, if we have two basis functions that are nearly parallel, but
the rest of them are orthogonal, we have good reason to mistrust the coefficients
corresponding to the two almost parallel basis functions, but not necessarily the
rest of the coefficients.

A natural measure of how well the signal can be described by the basis functions
is given by the residual error in (3.2) or (3.3),

‖Br− f‖W. (3.19)

In order to be used as a measure of output certainty, some normalization with
respect to the amplitude of the signal and the input certainty should be performed.

One thing to be aware of in the search for a good measure of output certainty,
is that it probably must depend on the application, or more precisely, on how the
result is further processed.

6Remember that orthogonality depends on the inner product, which in turn depends on the
certainty and the applicability.
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3.6 Normalized Differential Convolution

When doing signal analysis, it may be important to be invariant to certain irrel-
evant features. A typical example can be seen in chapter 5, where we want to
estimate the local orientation of a multidimensional signal. It is clear that the
local DC level gives no information about the orientation, but we cannot simply
ignore it because it would affect the computation of the interesting features. The
solution is to include the features to which we wish to be invariant in the sig-
nal model. This means that we expand the set of basis functions, but ignore the
corresponding coefficients in the result.

Since we do not care about some of the resulting coefficients, it may seem
wasteful to use (3.7), which computes all of them. To avoid this we start by
partitioning

B =
(
B1 B2

)
and r =

(
r1

r2

)
, (3.20)

where B1 contains the basis functions we are interested in, B2 contains the basis
functions to which we wish to be invariant, and r1 and r2 are the corresponding
parts of the resulting coefficients. Now we can rewrite (3.7) in partitioned form as

(
r1

r2

)
=
(
B∗1WaWcB1 B∗1WaWcB2

B∗2WaWcB1 B∗2WaWcB2

)−1(B∗1WaWcf
B∗2WaWcf

)
(3.21)

and continue the expansion with an explicit expression for the inverse of a parti-
tioned matrix [60],

(
A C
C∗ B

)−1

=
(
A−1 + E∆−1F −E∆−1

−∆−1F ∆−1

)
,

∆ = B−C∗A−1C, E = A−1C, F = C∗A−1.

(3.22)

The resulting algorithm is called normalized differential convolution [61, 64, 66,
94, 95]. The primary advantage over the expression for normalized convolution is
that we get smaller matrices to invert, but on the other hand we need to actually
compute the inverses here7, instead of just solving a single linear equation system,
and there are also more matrix multiplications to perform. It seems unlikely that
it would be worth the extra complications to avoid computing the uninteresting
coefficients, unless B1 and B2 contain only a single vector each, in which case the
expression for normalized differential convolution simplifies considerably.

In the following chapters we use the basic normalized convolution, even if we
are not interested in all the coefficients.

7This is not quite true, since it is sufficient to compute factorizations that allow us to solve
corresponding linear equation systems, but we need to solve several of these instead of just one.



28 Normalized Convolution

3.7 Reduction to Ordinary Convolution

If we have the situation that the certainty field remains fixed while the signal
varies, we can save a lot of work by precomputing the matrices

B̃∗ = (B∗WaWcB)−1B∗WaWc (3.23)

at every point, at least if we can afford the extra storage necessary. A possible
scenario for this situation is that we have a sensor array where we know that certain
sensor elements are not working or give less reliable measurements. Another case,
which is very common, is that we simply do not have any certainty information at
all and can do no better than setting the certainty for all values to one. Notice,
however, that if the extent of the signal is limited, we have certainty zero outside
the border. In this case we have the same certainty vector for many neighborhoods
and only have to compute and store a small number of different B̃.

As can be suspected from the notation, B̃ can be interpreted as a dual basis
matrix. Unfortunately it is not the weighted dual subspace basis given by (2.53),
because the resulting coefficients are computed by (b̃i, f) rather than by using
the proper8 inner product (b̃i, f)W. We will still use the term dual vectors here,
although somewhat improperly.

If we assume that we have constant certainty one and restrict ourselves to
compute normalized convolution for the part of the signal that is sufficiently far
from the border, we can reduce normalized convolution to ordinary convolution.
At each point the result can be computed as

r = B̃∗f (3.24)

or coefficient by coefficient as
ri = (b̃i, f). (3.25)

Extending these computations over all points under consideration, we can write

ri(x) = (b̃i, Txf), (3.26)

where Tx is a translation operator, Txf(u) = f(u + x). This expression can in
turn be rewritten as a convolution

ri(x) = (ˇ̃bi ∗ f)(x), (3.27)

where we let ˇ̃bi denote the conjugated and reflected b̃i.
The need to reflect and conjugate the dual basis functions in order to get

convolution kernels is a complication that we would prefer to avoid. We can do
this by replacing the convolution with an unnormalized cross correlation, using
the notation from Bracewell [15],

(g ? h)(x) =
∑
u

ḡ(u)h(u + x). (3.28)

8Proper with respect to the norm used in the minimization (3.3).
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With this operation, (3.27) can be rewritten as

ri(x) = (b̃i ? f)(x). (3.29)

The cross correlation is in fact a more natural operation to use in this context
than ordinary convolution, since we are not much interested in the properties that
otherwise give convolution an advantage. We have, e.g., no use for the property
that g ∗ h = h ∗ g, since we have a marked asymmetry between the signal and the
basis functions. The ordinary convolution is, however, a much more well known
operation, so while we will use the cross correlation further on, it is useful to
remember that we get the corresponding convolution kernels simply by conjugating
and reflecting the dual basis functions.

To get a better understanding of the dual basis functions, we can rewrite (3.23),
with Wc = I, as | | |

b̃1 b̃2 . . . b̃m
| | |

 =

 | | |
a · b1 a · b2 . . . a · bm
| | |

G−1
0 , (3.30)

where G0 = B∗WaB as in (3.18). Hence we obtain the duals as linear combina-
tions of the basis functions bi, windowed by the applicability a. The role of G−1

0

is to compensate for dependencies between the basis functions when they are not
orthogonal. Notice that this includes non-orthogonalities caused by the windowing
by a. A concrete example of dual basis functions can be found in section 4.3.1.

3.8 Filter Responses on Uncertain Data

The previous section showed how normalized convolution can be reduced to or-
dinary convolution. The converse problem is also important. I.e. given a set
of convolution kernels, how can we use normalized convolution to compute filter
responses on uncertain data?

3.8.1 Corresponding Basis Functions

Assume that we have a set of convolution kernels given, which we conjugate and
reflect to obtain the equivalent correlation kernels {hi}m1 , so that

ri(x) = (hi ? f)(x). (3.31)

The idea is now to find a set of basis functions and an applicability with the
property that in the case of full certainty, the dual basis functions coincide with the
given correlation kernels. Thus normalized convolution using the computed basis
functions and applicability gives the expected results when all data are certain and
something that is expected to be useful when uncertain data are present.

To solve this problem we first collect the correlation kernels {hi} into the
matrix H. Since we want this to coincide with B̃ in the previous section, (3.23)
with Wc = I gives the equation

H = WaB(B∗WaB)−1, (3.32)
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which we wish to solve for B and Wa. Somewhat surprisingly we can find a B
satisfying this equation for any invertible Wa, with the explicit and easily verified
solution

B = W−1
a H(H∗W−1

a H)−1. (3.33)

An additional requirement is that the correlation kernels are linearly independent,
so that H∗W−1

a H is invertible. Now that we have this B, normalized convolu-
tion is computed as usual and the expansion coefficients give the filter responses.
Obviously we must use the same applicability as in the construction of B.

3.8.2 Practical Considerations

While the presented procedure is simple and straightforward, it must be used with
care. There are several pitfalls, some of them not at all obvious.

• One observation is that we can choose the applicability arbitrarily as long
as all values are non-zero. As is discussed in section 3.10, very little can be
said in general about this choice. One thing to be aware of in this situa-
tion though, is that the presence of very small applicability values invites
numerical problems in (3.33).

• An important property of certain filters is that they have a DC response
which is exactly or very close to zero. This is e.g. the case for gradient
filters. It is easy to show that this property in general will be lost when
filter responses are computed in the proposed way on signals with varying
certainty. There is, however, a simple and important workaround for this
problem. The solution is to add one extra basis function which is identically
one. Clearly any DC variation in the signal will project solely onto this basis
function so the rest of the expansion coefficients (i.e. the filter responses)
will then have zero DC response. This is incidentally the classic application
of normalized differential convolution, section 3.6. Conceivably one may also
want to guarantee invariance to more features than DC variations.

• Assuming we have a set of m filters, the proposed procedure gives m cor-
responding basis functions which must be used together when computing
the normalized convolution. A plausible alternative would be to apply the
construction of corresponding basis functions for one convolution kernel at
a time and compute the filter responses through m normalized convolutions
with a single basis function.

Considering that the number of inner products in equation (3.9) grows with
the square of the number of basis functions, it is easy to see that the latter
approach has computational advantages. Before entering this path, however,
one should be aware that these two approaches in general give different
results. It is not obvious exactly what the significance of these differences
are, but experience seems to indicate that if the filters in the filter set are
designed to work together, it is probably more correct not to split them up.
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• Another interesting question is how to deal with complex filters. For this
discussion it suffices to assume that we have just a single complex filter, with
a correlation kernel hc = hr + ihi. Equation (3.33) is valid also for complex
correlation kernels, so this does not lead to any complications and we obtain
a complex corresponding basis function bc. We do, however, also have the
option to consider the complex filter as a set of two real filters, {hr,hi}.
Once more applying equation (3.33), we obtain the two corresponding basis
functions br and bi. It is easy to verify that in general bc will differ from
br + ibi and more importantly that the filter responses after normalized
convolution will be different. We can also see that the first approach is less
computationally expensive, so we have a situation similar to the previous
one. Here too, it is not obvious what significance the differences have, but
we do believe that the latter, more expensive approach, usually is the more
correct one. However, the quality of the results must always be weighed
against the computational cost. What choice to make depends very much on
the application. This trade-off is also discussed by Westelius in [93] in the
context of quadrature filters. His conclusion is that while real filtering gives
better results, it is not worth the increased computational complexity in his
application.

To illustrate these points, we use two simple orthogonal gradient filters, with
correlation kernels

hx(x, y) = xg(x, y), (3.34)
hy(x, y) = yg(x, y), (3.35)

where g(x, y) is a 9×9 Gaussian with standard deviation 1.2. Figure 3.1(a) shows
a simple test image with linear ramps in different directions and flat areas in the
center and in the corners. To simulate missing data we use the binary certainty
field shown in figure 3.1(b), which has an average density of 30%.

Figure 3.2 shows the filtering results. In (a) we have the original filter responses,
without missing data. Notice the artefacts along the borders. In (b) we have the
result of applying the proposed algorithm with both kernels together, adding a
constant basis function, and using a Gaussian applicability identical to g(x, y).
This result is even better than the original filter responses because the missing data
off the borders is correctly taken into account. The disastrous effect of neglecting
to add a constant basis function is shown in (c). The results are so bad that most
of the response image is saturated. If we add back the constant basis function
and instead compute the filter responses separately we get the result in (d). This
is similar to the result of doing the computations for a single complex filter hx +
ihy, shown in (e). Finally, (f) shows that the choice of applicability in (b) was
ideal. Here a Gaussian applicability with standard deviation 1.4 is used instead.
The explanation for the exceptional result in (b) is that it exactly corresponds
to normalized convolution with the basis functions {1, x, y} on a signal which
perfectly follows the signal model.
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(a) (b)

Figure 3.1: Test image (a) and certainty field (b).

(a) (b)

(c) (d)

(e) (f)

Figure 3.2: Filtering results on uncertain data.
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3.8.3 Alternative Interpretations

Inserting equation (3.33) into (3.7) gives an expression for the filter response at
one point directly in the correlation kernel matrix H,

r = H∗W−1
a H(H∗W−1

a WcH)−1H∗Wcf . (3.36)

Using basis functions obtained by dividing the correlation kernels pointwise with
the applicability, i.e. B = W−1

a H, we get

r = B∗WaB(B∗WaWcB)−1B∗WaWcf = G0(B∗WaWcB)−1B∗WaWcf ,
(3.37)

which can be interpreted as the usual result of normalized convolution transformed
by the matrix G0 from equation (3.18). This is the approach used in [93].

Equation (3.37) can also be rewritten

r = H∗(B(B∗WaWcB)−1B∗WaWcf) = H∗fproj, (3.38)

with the interpretation that f is projected onto the basis B = W−1
a H using nor-

malized convolution to get fproj, which is then filtered by standard correlation (or
convolution) to obtain the filter responses r.

3.9 Application Examples

Applications where normalized convolution has been used include interpolation
[66, 94, 98], frequency estimation [65], estimation of texture gradients [84], gradient
estimation [58], edge detection [37], increased selectivity for rotational symmetry
detection [54, 57], depth segmentation [85, 86], motion compensated prediction [3,
4], phase-based stereopsis and focus-of-attention control [93, 96], and orientation
and motion estimation [61]. In the two latter applications, normalized convolution
is utilized to compute quadrature filter responses on uncertain data.

3.9.1 Normalized Averaging

The most striking example is perhaps, despite its simplicity, normalized averaging
to interpolate missing samples in an image. We illustrate this technique with a
partial reconstruction of the example given in [40, 66, 94, 98].

In figure 3.3(a) the well-known Lena image has been degraded so that only 10%
of the pixels remain.9 The remaining pixels have been selected randomly with
uniform distribution from a 512 × 512 grayscale original. Standard convolution
with a smoothing filter, given by figure 3.4(a), leads to a highly non-satisfactory
result, figure 3.3(b), because no compensation is made for the variation in local
sampling density. An ad hoc solution to this problem would be to divide the
previous convolution result with the convolution between the smoothing filter and
the certainty field, with the latter being an estimate of the local sampling density.

9The removed pixels have been replaced by zeros, i.e. black. For illustration purposes, missing
samples are rendered white in figures 3.3(a) and 3.5(a).
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(a) (b)

(c) (d)

Figure 3.3: Normalized averaging. (a) Degraded test image, only 10% of the
pixels remain. (b) Standard convolution with smoothing filter. (c) Normalized
averaging with applicability given by figure 3.4(a). (d) Normalized averaging with
applicability given by figure 3.4(b).
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{
cos2 πr

16 , r < 8
0, otherwise
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1, r < 1
0.5r−3, 1 ≤ r < 8
0, otherwise

Figure 3.4: Applicability functions used for normalized averaging.

(a) (b)

Figure 3.5: Normalized averaging on an inhomogeneously sampled image. (a)
Degraded test image, only 4% of the pixels remain. (b) Normalized averaging
with applicability given by figure 3.4(b).
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This idea can easily be formalized by means of normalized convolution. The
signal and the certainty are already given. We use a single basis function, a
constant one, and use the smoothing filter as the applicability.10 The result from
this operation, figure 3.3(c), can be interpreted as a weighted and normalized
average of the pixels present in the neighborhood, and is identical to the ad hoc
solution above. In figure 3.3(d) we see the result of normalized averaging with a
more localized applicability, given by figure 3.4(b).

To expand on the example, we notice that instead of having a uniform distri-
bution of the remaining pixels, it would be advantageous to have more samples in
areas of high contrast. Figure 3.5(a) shows such a test image, only containing 4%
of the original pixels. The result of normalized averaging, with applicability given
by figure 3.4(b), is shown in figure 3.5(b).

3.9.2 The Cubic Facet Model

In the cubic facet model [42, 43], it is assumed that in each neighborhood of an
image, the signal can be described by a cubic polynomial

f(x, y) = k1 + k2x + k3y + k4x
2 + k5xy + k6y

2

+ k7x
3 + k8x

2y + k9xy2 + k10y
3.

(3.39)

The coefficients {ki} are determined by an unweighted least squares fit within a
square window of some size. A typical application of the cubic facet model is to
estimate the image derivatives from the polynomial model and to use these to get
the curvature

κ =
f2
xfyy + f2

y fxx − 2fxfyfxy

(f2
x + f2

y )3/2
=

2(k2
2k6 + k3k4 − k2k3k5)

(k2
2 + k2

3)3/2
. (3.40)

We see that the cubic facet model has much in common with normalized con-
volution, except that it lacks provision for certainty and applicability. Hence we
can regard this model as a special case of normalized convolution, with third de-
gree polynomials as basis functions, certainty identically one, and applicability
identically one on a square window. We can also note that in the computation of
the curvature by equation (3.40), some of the estimated coefficients are not used,
which can be compared to the idea of normalized differential convolution, section
3.6.

Facet models in general11 can of course also be described in terms of normal-
ized convolution, by changing the set of basis functions accordingly. Applications
for the facet model include gradient edge detection, zero-crossing edge detection,
image segmentation, line detection, corner detection, three-dimensional shape es-
timation from shading, and determination of optic flow [43]. By extension, the
same approaches can be taken with normalized convolution and probably with

10Notice that by equation (3.30), the equivalent correlation kernel when we have constant
certainty is given by a multiple of the applicability, since we have only one basis function, which
is a constant.

11With other basis functions than the cubic polynomials.
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better results, since the availability of the applicability mechanism allows better
control of the process. As discussed in the following section, an appropriate choice
of applicability is especially important if we want to estimate orientation12. The
facet model is further discussed in section 4.8.2.

3.10 Choosing the Applicability

The choice of applicability depends very much on the application. It is in fact
all but impossible to give general guidelines. For most applications, however, it
seems more or less unavoidable that we wish to give higher importance to points
in the center of the neighborhood than to points farther away. Thus the applica-
bility should be monotonically decreasing in all directions. For an example of an
exception to this rule, see [56].

Another property to be aware of is isotropy. Unless a specific direction de-
pendence is wanted, one probably had better taking care to get an isotropic ap-
plicability. This is, in fact, of utmost importance in the orientation estimation
algorithm presented in chapter 5, see in particular section 5.7.1.

If we look at a specific application, the normalized averaging from section
3.9.1, we can see a trade-off between excessive blurring with a wide applicability
function and noise caused by the varying certainty with a narrow applicability.
The motivation for the very narrow applicability in figure 3.4(a) is that we want
to interpolate from values as close as possible to the point of interest and more or
less ignore information farther away. In other applications it is necessary to have
a wider applicability, because we actually want to analyze a whole neighborhood,
e.g. to estimate orientation. In these cases the size of the applicability is related
to the scale of the analyzed features. Another reason for a wider applicability is to
become less sensitive to signal noise.

3.11 Towards a Statistical Interpretation of Cer-
tainty

As defined in section 3.2, certainty is only characterized by how it affects the
weighting in the least squares problems (3.2) or (3.3). It would be useful if we
could relate certainty to the statistical variations of a measured signal. We do not
have a solution to this problem, but there is an interesting structural similarity to
the following classical result from statistics [80].

Assume f = Br + e, where e is a stochastic variable with zero mean and
covariance matrix V. We want to find the best linear unbiased estimate r̂ of r,
i.e. r̂ = Lf , E[r− r̂] = 0, and E[(r− r̂)(r− r̂)T ] is minimized. This is given by

r̂ = (BTV−1B)−1BTV−1f . (3.41)

12Notice in particular the dramatic difference between a square applicability, implicitly used
by the facet model, and a Gaussian applicability in table 5.3.
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Comparing (3.41) to (3.7) seems to indicate that we should choose the certainty
so that

WaWc = V−1 (3.42)

holds in all neighborhoods. There are two difficulties, however. The first one is
that V cannot be determined only from measurement errors in the signal f . It
is also necessary to include the errors implicit in the signal model f = Br. The
second one is that we have no solution to (3.42) if V is not diagonal.

3.12 Further Generalizations of Normalized Con-
volution

In the formulation of normalized convolution, it is traditionally assumed that the
local signal model is spanned by a set of vectors constituting a subspace basis. As
we have already discussed in section 3.2, this assumption is not without complica-
tions, since the vectors may effectively become linearly dependent in the seminorm
given by W. This typically happens in areas with large amounts of missing data.
A first generalization is therefore to allow linearly dependent vectors in the signal
model, i.e. exchanging the subspace basis for a subspace frame. Except that we
lose the simplifications to the expressions (3.7) and (3.8), this case has already
been covered by the presentation in section 3.2.

With a subspace frame instead of a subspace basis, another possible general-
ization is to use a weighted norm L in the coefficient space instead of the Euclidian
norm, i.e. generalizing the seminorm weighted general linear least squares problem
(3.2) somewhat to

arg min
r∈S
‖r‖L, S = {r ∈ Cm; ‖Br− f‖W is minimum}. (3.43)

If we require L to be positive definite, the solution is now given by (2.61) as

r = L−1(WBL−1)†Wf (3.44)

or by (2.62) as
r = L−1(L−1B∗W2BL−1)†L−1B∗W2f . (3.45)

If we allow L to be semidefinite we have to resort to the solution given by (2.60).
If L is diagonal, the elements can be interpreted as the relative cost of using

each subspace frame vector. This case is not very interesting, however, since the
same effect could have been achieved simply by an amplitude scaling of the frame
vectors. A more general L allows varying the costs for specific linear combinations
of the subspace frame vectors, leading to more interesting possibilities.

That it would be pointless to introduce L in the case of a subspace basis is
clear from section 2.4.3, since it would not affect the solution at all, unless we
have the case where the seminorm W turns the basis vectors effectively linearly
dependent. Correspondingly, it does not make much sense to use a basis or a frame
for the whole space as signal model, since in this case the weighting by W would
be superfluous as the error to be minimized in (3.2) would be zero regardless of
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norm. Hence neither the certainty nor the applicability would make a difference
to the solution.

Another generalization that could be solved by the framework from chapter 2
is to have a non-diagonal weight matrix W. It is not clear how to interpret this
but it is possible that the certainty part Wc could naturally be non-diagonal if the
primary measurements of the signal were collected, e.g., in the frequency domain
or as line integrals. See also section 3.11.

A different generalization, that is not covered by the framework from the pre-
vious chapter, is to replace the general linear least squares problem (3.2) with the
simultaneous minimization of signal error and coefficient norm,

arg min
r

α‖Br− f‖W + β‖r‖. (3.46)

This approach could possibly be more robust when the basis functions are nearly
linearly dependent, but we will not investigate it further here.

A generalization which allows arbitrary positioning of sample points, called
continuous normalized convolution, has recently been presented by Andersson [3,
5].
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Chapter 4

Polynomial Expansion

4.1 Introduction

Instead of working directly on the image intensity values, most image analysis
methods start with some, often linear, transformation of the data. Examples of
this include Fourier transforms, Wavelet transforms, and all kinds of filtering, e.g.
a Gabor filter bank. This chapter introduces a transformation we call polynomial
expansion, which is the basis for the orientation estimation algorithm in chapter
5 and the displacement estimation algorithm in chapter 7.

The basic idea of polynomial expansion is to approximate a neighborhood of
each pixel with a polynomial. For this to be useful it is assumed that the poly-
nomial coefficients capture sufficient information about the signal. Polynomials of
any degree can be used, but in this thesis the primary interest is on quadratic poly-
nomials. Then the local DC level is captured by the constant term, the odd part
of the signal by the linear term, and the even part of the signal by the quadratic
term.

Readers who are familiar with Haralick’s facet model [41, 42, 43, 44] undoubt-
edly will notice that polynomial expansion looks very similar. They do have el-
ements in common but for reasons explained in section 4.8.2 we consider this
method sufficiently dissimilar to be called by a different name. In particular,
being based on normalized convolution, this method allows uncertain signal val-
ues and weighted least squares fitting. The latter is a very important feature, as
demonstrated in section 5.7.

Applications of polynomial expansion include orientation and displacement es-
timation, as described later in this thesis, and detection of rotational symme-
tries [54]. Additionally most of the applications of the cubic facet model should
work at least as well with polynomial expansion, e.g. gradient edge detection,
zero-crossing edge detection, image segmentation, line detection, corner detection,
three-dimensional shape estimation from shading, and determination of optic flow
[43].
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4.2 Estimating the Coefficients of a Polynomial
Model

To simplify the presentation we exclusively study expansion into quadratic poly-
nomials and comment on the generalization to other degree polynomials in section
4.7. Thus we have the local signal model, expressed in a local coordinate system,

f(x) ∼ xTAx + bTx + c, (4.1)

where A is a symmetric matrix, b a vector and c a scalar. The coefficients of
the model can be estimated in terms of normalized convolution with the basis
functions

{1, x, y, x2, y2, xy} (4.2)

for the 2D case and obvious generalizations to higher dimensionalities. The relation
between the coefficients {ri} obtained from normalized convolution and the signal
model (4.1) is straightforward. In 2D we have

c = r1, b =
(

r2

r3

)
, and A =

(
r4

r6
2

r6
2 r5

)
, (4.3)

so that(
x y

)
A
(

x
y

)
+ bT

(
x
y

)
+ c = r1 + r2x + r3y + r4x

2 + r5y
2 + r6xy. (4.4)

The choice of applicability depends on the application. In the context of ori-
entation estimation isotropy is an important property, as we will see in sections
5.5 and 5.7. More generally this holds for any application where we wish to avoid
a directional bias. For certain other applications, on the other hand, anisotropy
may be a desired feature. When it comes to performance it is very advantageous
to have a Cartesian separable applicability, as is shown in section 4.3. The size of
the applicability determines the scale of the structures captured by the polynomial
expansion. This is further discussed in section 4.5.

We can notice that A captures information about the even part of the signal,
excluding DC, that b captures information about the odd part of the signal, and
that c varies with the local DC level. In the applications presented in the following
chapters c does not give any useful information1 but is still necessary to include
in the signal model because otherwise the DC level would affect the computation
of A and sometimes also b.

The use of normalized convolution allows us to have signals with varying cer-
tainty, but we are not going to explore this case in full depth. In particular we
will assume that the basis functions are always effectively linearly independent2 so
that we can use equation (3.8) to compute normalized convolution. As noted in

1It may do in other applications.
2Notice that even with constant certainty this requires the applicability not to be too small.

E.g. in 2D an applicability with only five non-zero values can never be sufficient for the six basis
functions.



4.3 Fast Implementation 43

section 3.2.4, that equation can also be used for continuous signals if we introduce
a suitable inner product. Here we use the standard L2 inner product

(f, g) =
∫
RN

f(x)g(x) dx. (4.5)

Although we do not limit ourselves to L2 functions, it is assumed that all integrals
are convergent, typically by requiring that the applicability has finite support or
decreases exponentially while the basis functions and the signals are bounded by
some polynomial.

4.3 Fast Implementation

A drawback with normalized convolution is that it is computationally demanding.
If we assume that the certainty is constant, however, it can be reduced to ordinary
convolution or cross correlation3, as shown in section 3.7. To further improve on
the computational complexity, it turns out that the resulting correlation kernels
are Cartesian separable for suitable choices of applicability.

4.3.1 Equivalent Correlation Kernels

To find the equivalent correlation kernels, assuming constant certainty, we need to
compute the dual basis functions according to equation (3.30), | | |

b̃1 b̃2 . . . b̃m
| | |

 =

 | | |
a · b1 a · b2 . . . a · bm
| | |

G−1, (4.6)

where

G =

 (a · b1,b1) . . . (a · b1,bm)
...

. . .
...

(a · bm,b1) . . . (a · bm,bm)

 . (4.7)

Now equation (3.29) tells us that we get the coefficients in the signal model (4.1)
by the cross correlation

ri(x) = (b̃i ? f)(x), (4.8)

where we can skip i = 1 in applications which do not make use of the DC level.
To illustrate these equivalent correlation kernels, we show the six basis func-

tions for 2D in figure 4.1 and in figure 4.2 the dual basis functions for a Gaussian
applicability, a(x) = e−0.5xTx, on a 9 × 9 grid. In figure 4.3 finally we have the
Fourier transforms of the equivalent correlation kernels4.

3We prefer to use the latter operation, but remember that a real correlation kernel always
can be transformed into a convolution kernel simply by reflecting it.

4See also section 4.8.1 for an interpretation of the dual basis functions when the applicability
is Gaussian.
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Figure 4.1: Basis functions in 2D.
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Figure 4.2: Dual basis functions in 2D.
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Figure 4.3: Fourier transforms of equivalent correlation kernels.
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4.3.2 Cartesian Separability

It turns out that all the correlation kernels in figure 4.2, except the somewhat less
interesting one corresponding to the constant basis function, have the property
that they are Cartesian separable, i.e. that they can each be decomposed as the
outer product of two 1D kernels, one horizontal and one vertical. This means that
each cross correlation can be computed by means of two consecutive 1D cross cor-
relations, which computationally is significantly more efficient than a full 2D cross
correlation. This advantage is even more important for higher dimensionalities
than two.

If we have a Cartesian separable applicability we can see that the products
{a · bk} in equation (4.6) also have that property, because the basis functions
obviously are Cartesian separable. This means that the polynomial coefficients,
for signals of any dimensionality, can be computed solely by 1D correlations, since
(4.6) and (4.8) together give us

r(x) = G−1

 ((a · b1) ? f)(x)
...

((a · bm) ? f)(x)

 . (4.9)

The next step is to explore the structures of G and G−1. It turns out that they
become extremely simple if we restrict ourselves to applicabilities which are even
and identical along all axes, i.e. invariant under reflection and permutation of the
axes. Then most of the inner products {(a ·bk,bl)} in equation (4.7) become zero
since most of the products {a ·bk ·bl} are odd along at least one axis. In fact, the
only non-zero inner products are {(a ·bk,bk)}, {(a ·b1,bx2

i
)}, and {(a ·bx2

i
,bx2

j
)}.

Thus we have the structure of G, illustrated in the 3D case,

G =

a b b b 1
b x

b y
b z

b c d d x2


b d c d


y2

b d d c z2

d xy
d xz

d yz
1 x y z x2 y2 z2 xy xz yz

. (4.10)
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Surprisingly enough we get an even simpler structure for the inverse,

G−1 =

a e e e 1
b x

b y
b z

e c x2


e c


y2

e c z2

d xy
d xz

d yz
1 x y z x2 y2 z2 xy xz yz

. (4.11)

This result is proved in appendix A.
Now we can see that all the dual basis functions except the first one5 are indeed

separable. By (4.9) and (4.11) the duals can be written as

b̃1 = a · (ab1 + e
∑

bx2
i
),

b̃xi = ba · bxi ,
b̃x2

i
= a · (eb1 + cbx2

i
) = β a · (bx2

i
− αb1),

b̃xixj = da · bxixj , i 6= j,

(4.12)

where the constant α turns out to have precisely the value which makes the DC
response of those dual basis functions zero. This should come as no surprise since
we included the constant basis function precisely for this purpose.

The final step to get an efficient correlator structure is to notice that the
decompositions into 1D correlation kernels have a lot of common factors. Figure
4.4 shows how the correlations for 3D can be structured hierarchically in three
levels, where the first level contains correlations in the x direction, the second in
the y direction, and the third in the z direction. The results are the correlations
{((a ·bk) ? f)(x)} and the desired polynomial coefficients are then computed from
equation (4.9) using the precomputed G−1 according to equation (4.11). It should
be noted that only three different correlation kernels are in use, ax, ax · x, and
ax ·x2 in the x direction and identical kernels in the other directions. These kernels
are illustrated in figure 4.5. It should also be clear that this correlator structure
straightforwardly can be extended to any dimensionality.

This scheme can be improved somewhat by replacing x2 with x2−α, doing the
same for the other squares, and then, if the DC level is not needed, removing the
leftmost box of the bottom level. Additionally the remaining coefficients in G−1

could be multiplied into the bottom level kernels to save another few multiplica-
tions. We do not consider these improvements in the complexity analysis in the
following section.

5Notice that we always have the constant function as b1. Thus there is no ambiguity whether
the subscript refers to the position number or to the zeroth degree monomial.
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Figure 4.4: Correlator structure. There is understood to be an applicability factor
in each box as well.

Finally one may ask oneself whether there exist applicabilities which are simul-
taneously Cartesian separable and isotropic. Obviously the Gaussians, e−ρx

Tx,
satisfy these requirements. This is the only solution, which is proved in appendix
B.

4.4 Computational Complexity

The computational complexity of polynomial expansion depends on a number of
factors, such as

• the dimensionality d of the signal space,

• the size of the applicability per dimension, n,

• whether the certainty is assumed to be constant, and

• whether the applicability is separable and sufficiently symmetric.

Obviously it also depends on the degree of the polynomial signal model, but here
we continue to restrict ourselves to quadratic polynomials.

We consider the following four variations of the method:

Normalized Convolution (NC) The certainty is allowed to vary and the appli-
cability is arbitrary. The polynomial coefficients are computed by equation
(3.9), using the point by point strategy. It should be noticed that there are a
number of duplicates among the quantities {a ·bk ·bl}, reducing the number
of inner products that must be computed.

Correlation (C) The certainty is assumed to be constant (ignoring border ef-
fects) while the applicability is arbitrary. The polynomial coefficients are
computed by equation (4.8).
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Figure 4.5: One dimensional correlation kernels.
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Method Time complexity Memory overhead
NC d4

24nd 0

C d2

2 nd 0

SC d3

6 n 1

SNC d5

120n + d6

48
d4

24

Table 4.1: Asymptotic complexities, d and n large, leading terms.

Separable Correlation (SC) The certainty is assumed to be constant and the
applicability to be Cartesian separable and sufficiently symmetric. The poly-
nomial coefficients are computed by the correlator structure in figure 4.4
followed by multiplication with G−1, having the structure (4.11).

Separable Normalized Convolution (SNC) With varying certainty but Car-
tesian separable applicability, all inner products in equation (3.9) can be
computed as separable correlations. They can in fact even be computed
hierarchically with a more complex variation of the structure in figure 4.4.
The 2D case is illustrated in appendix C.

Independent of method we always have m = (d+1)(d+2)
2 basis functions. We

count the complexity per computed set of expansion coefficients and only the
number of multiplications involved; usually there is a slightly lower number of
additions as well. This is consistent with the traditional count of coefficients
for convolution kernels. Without going into details we present the asymptotic
complexities, for both d and n large, in table 4.1. Memory overhead should be
multiplied by the number of neighborhoods for which expansion coefficients are
computed, to get the necessary size of temporary storage, measured in floating
point values of the desired precision.

Usually, however, we are more interested in small values of d rather than in
large values. A more detailed estimation of the complexity for 2D, 3D, and 4D can
be found in table 4.2. The values relate to reasonably straightforward implemen-
tations of the methods and can likely be improved somewhat. The first term of
the time complexities is the total number of coefficients involved in the correlation
kernels, while the second term is the count for the transformation from correlation
results to expansion coefficients. Included in the latter part for NC and SNC is
the solution of an m×m symmetric positive definite equation system, estimated
at m3

6 + 3m2

2 + m
3 operations [77].

To sum this analysis up, it is clear that separable correlation is by far the most
efficient method. The restriction set on the applicability is no severe limitation
because those properties are usually desired anyway. The requirement of constant
certainty is a problem, however, since such an assumption surely fails at least in
a neighborhood of the borders and the method is more than likely to yield signif-
icantly biased results there. Proper attention to the vanishing certainty outside
the border is paid by the NC and SNC methods, which on the other hand have a
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Time complexity Memory overhead
Method d = 2 d = 3 d = 4 d = 2 d = 3 d = 4
NC 21n2 + 92 45n3 + 320 85n4 + 905 0 0 0
C 6n2 10n3 15n4 0 0 0
SC 9n + 10 19n + 16 34n + 23 1 1 1
SNC 29n + 92 74n + 320 159n + 905 16 36 71

Table 4.2: Time complexity and memory overhead for 2D, 3D, and 4D.

high time complexity and a large memory overhead, respectively. A good solution
for signals with constant certainty would be to use separable correlation for the
central part of the signal and normalized convolution or separable normalized con-
volution for the border parts. It must be stressed, however, that while normalized
convolution will reduce the negative impact of missing information outside the
borders, it will certainly not remove it completely. The best solution is, as always,
to keep away from those parts as much as possible.

4.5 Polynomial Expansion in Multiple Scales

As was noted in section 3.10, the size of the applicability is related to the scale
of the analyzed features. Thus it may be useful to do polynomial expansion in
multiple scales. If speed issues are disregarded, this is trivially implemented by
doing multiple polynomial expansions with a sequence of scaled applicabilities, e.g.
a sequence of Gaussians with varying standard deviations.

In most cases, however, we cannot disregard speed. At coarse scales the appli-
cabilities tend to become very large, and even if we are using one of the separable
methods, the computations may become too slow. A computationally less ex-
pensive solution is to first compute a lowpass pyramid from the signal and apply
polynomial expansion to this. This is particularly efficient computationally if the
lowpass pyramid includes subsampling.

The question is how these approaches relate to each other. We can analyze this
exactly in a special case. Assume that we apply quadratic polynomial expansion
with Gaussian applicability to a signal which has passed a Gaussian lowpass filter.
We do this continuously in 1D for the case of constant certainty. Let

g1(x) =
1√

2πσ1

e
− x2

2σ2
1 , (4.13)

g2(x) =
1√

2πσ2

e
− x2

2σ2
2 , (4.14)

g3(x) =
1√

2πσ3

e
− x2

2σ2
3 , (4.15)

σ2
3 = σ2

1 + σ2
2 . (4.16)

The original signal f is lowpass filtered by correlation with g1, giving g1 ? f .
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Polynomial expansion of this signal with applicability g2 gives by (4.7), (4.9), and
results from appendix D,

r′(x) =

 (g2, 1) (g2, x) (g2, x
2)

(g2, x) (g2, x
2) (g2, x

3)
(g2, x

2) (g2, x
3) (g2, x

4)

−1 (g2 ? (g1 ? f))(x)
(xg2 ? (g1 ? f))(x)
(x2g2 ? (g1 ? f))(x)



=

 1 0 σ2
2

0 σ2
2 0

σ2
2 0 3σ4

2

−1
 (g3 ? f)(x)

σ2
2
σ2

3
(xg3 ? f)(x)

σ4
2
σ4

3
(x2g3 ? f)(x) + σ2

1σ
2
2

σ2
3

(g3 ? f)(x)



=


3
2 0 − 1

2σ2
2

0 1
σ2

2
0

− 1
2σ2

2
0 1

2σ4
2


 1 0 0

0 σ2
2
σ2

3
0

σ2
1σ

2
2

σ2
3

0 σ4
2
σ4

3


 (g3 ? f)(x)

(xg3 ? f)(x)
(x2g3 ? f)(x)

 .

(4.17)

If we instead apply polynomial expansion directly to f with g3 as applicability, we
obtain, still by (4.7), (4.9), and (D.22)–(D.26),

r(x) =

 (g3, 1) (g3, x) (g3, x
2)

(g3, x) (g3, x
2) (g3, x

3)
(g3, x

2) (g3, x
3) (g3, x

4)

−1 (g3 ? f)(x)
(xg3 ? f)(x)
(x2g3 ? f)(x)


=

 1 0 σ2
3

0 σ2
3 0

σ2
3 0 3σ4

3

−1 (g3 ? f)(x)
(xg3 ? f)(x)
(x2g3 ? f)(x)

 .

(4.18)

Combining (4.17) and (4.18) we can express r′ in terms of r as

r′(x) =


3
2 0 − 1

2σ2
2

0 1
σ2

2
0

− 1
2σ2

2
0 1

2σ4
2


 1 0 0

0 σ2
2
σ2

3
0

σ2
1σ

2
2

σ2
3

0 σ4
2
σ4

3


 1 0 σ2

3

0 σ2
3 0

σ2
3 0 3σ4

3

 r(x)

=

1 0 σ2
1

0 1 0
0 0 1

 r(x).

(4.19)

We see that the expansion coefficients are the same, with the exception of the
DC coefficient, which gets an extra contribution from the quadratic coefficient.
This result generalizes to higher dimensionalities. In summary polynomial expan-
sion of a lowpass filtered signal is equivalent to a polynomial expansion, with a
different applicability, of the original signal, with exception for the DC coefficient
and under a number of fairly limiting assumptions.

Unfortunately we cannot lift any more assumptions. In the discrete case the
approximation is good if σ1 is small but not if we instead try to make σ2 small.
An evaluation of this in the context of orientation estimation can be found in
section 5.7.2. For higher degree polynomials a similar relation can be derived
but it becomes more complex. For other applicabilities and lowpass filters than
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Gaussians the derivation is obviously not valid and it seems difficult to find similar
relations.

However, applying polynomial expansion to a lowpass filtered signal is a per-
fectly reasonable operation, regardless whether it coincides with a polynomial ex-
pansion of the original signal for some applicability. What matters is whether it
works well enough for the intended application.

Multi-scale computations also work well with the approximative methods in the
following section. Those can naturally be extended to the case of non-constant
certainty, using separate lowpass pyramids for c and cf .

4.6 Approximative Methods

The computational complexity of polynomial expansion can be reduced somewhat
by using approximative methods, naturally at the cost of accuracy. In this section
two such methods are presented, both limited to the important special case of
Gaussian applicability.

4.6.1 Derivative Filters

Johansson [54] derives an approximative method from the observation that deriva-
tives of Gaussians become polynomials times Gaussians, i.e.,

g(x) = e−
x2

2σ2 , (4.20)

g′(x) = − x

σ2
g(x), (4.21)

g′′(x) =
x2 − σ2

σ4
g(x). (4.22)

This makes it possible to replace the correlator structure 4.4 with a structure
consisting of correlation with Gaussians followed by a sequence of partial differen-
tiations. In the 2D case this looks like figure 4.6. The mapping from correlation
outputs to expansion coefficients obviously becomes different from G−1 used in
section 4.3 but is still linear.

The reason why this method is approximative is that the derivative relations
(4.20)–(4.22) hold for the continuous case while we in reality have discretized
Gaussians and discrete approximations of differentiation. Furthermore we want
to keep the differentiation kernels small in order to improve speed but that is a
trade-off against the quality of the result.

The reduction of the computational complexity as reported by Johansson for
three cases is listed in table 4.3. Evaluation results for this method are included
in section 5.7.4. For further information about the method, the reader is referred
to [54].
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Figure 4.6: Correlator structure for approximative polynomial expansion in 2D
with full certainty. From [54].

Method Standard Approximative
SC, 2D 9n + 10 2n + 5m + 12
SNC, 2D 29n + 92 4n + 17m + 92
SC, 3D 19n + 16 3n + 9m + 22

Table 4.3: Computational complexity for standard polynomial expansion and the
approximative method using derivative filters. n is the size of the Gaussian kernel
and m of the differentiation kernels.

4.6.2 Binomial Filters

Binomial filters are popular as approximations of Gaussians because they can be
computed by cascading [1 1] filters. This allows an implementation with only
additions, which on certain platforms can be very beneficial.

The way to make use of this for polynomial expansion is to let the applicability
be binomial. This does not make it an approximative method per se, since the
binomial is a perfectly valid applicability. It only becomes approximative when
the binomial is considered as a replacement for a Gaussian applicability.

We construct a binomial applicability in 1D with 2n + 1 binomial coefficients
as

bn(k) =

{(
2n
n+k

)
, −n ≤ k ≤ n,

0, otherwise,
(4.23)

and extend to higher dimensionalities through Cartesian products. To obtain
the highest possible speed we want to use the hierarchical correlator structure in
figure 4.4. This involves the three correlation kernels bn(k), kbn(k), and k2bn(k).
Interestingly enough we have the identities, for n > 0,

bn(k) = bn−1(k − 1) + 2bn−1(k) + bn−1(k + 1), (4.24)
kbn(k) = nbn−1(k − 1)− nbn−1(k + 1), (4.25)

k2bn(k) = n2bn−1(k − 1)− 2n(n− 1)bn−1(k) + n2bn−1(k + 1). (4.26)
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What this means is that the three correlation kernels can be factorized as the
smaller binomial kernel bn−1 convolved with the kernels [1 2 1], [−n 0 n], and
[n2 −2n(n−1) n2] respectively. The identities (4.24)–(4.26) are proved in appendix
E.

This property is obviously very useful for multi-scale polynomial expansion
since the results of correlation with the bn kernel can be reused in the following
scale. Identities similar to (4.24)–(4.26) can be derived for higher exponents kp

too, allowing this approach to be used for the separable normalized convolution
method as well, with the same multi-scale advantages.

The binomials have (at least) two disadvantages compared to Gaussians, how-
ever. The first one is that the scale of Gaussians can be varied continuously while
binomials come at discrete sizes. Whether this is significant obviously depends on
the application. The second disadvantage is that binomials, at least of moderate
size, are not quite as isotropic as Gaussians. This can be seen in the comparison
of different applicabilities in section 5.7.1.

4.7 Higher Degree Polynomial Expansion

In this thesis we primarily take an interest in quadratic polynomial expansion.
There are no difficulties extending this to higher degree polynomials, however.
The definition of polynomial expansion in terms of normalized convolution clearly
applies and so does the computation of equivalent correlation kernels in the case
of constant certainty. In the separable correlation method the products {a · bk}
remain separable. The G−1 matrix obtains a different structure, but remains fairly
sparse. The hierarchical correlator structure in figure 4.4 generalizes straightfor-
wardly and so does the corresponding structure in C.1 for separable normalized
convolution.

If the dimensionality is d and the degree is n, the number of basis functions is(
n+d
d

)
. This number increases rapidly with the degree, especially if the dimension-

ality is high, with consequences for the computational complexity. It may also be
necessary to adapt the size of the applicability so that the basis functions do not
become linearly dependent simply by being too many.

Of course polynomials of lower degree than two can be used as well, although
degree zero reduces to normalized averaging, see section 3.9.1. It is also conceivable
to use a basis consisting of monomials which do not span all polynomials of some
degree, e.g. the bilinear basis {1, x, y, xy} or the even degree basis {1, x2, y2, xy}.

4.8 Relation to Other Approaches

4.8.1 Relation to First and Second Derivatives

By the Maclaurin expansion, a sufficiently differentiable signal can in a neighbor-
hood of the origin be expanded as

f(x) = f(0) + (∇f)Tx +
1
2
xTHx + O(‖x‖3), (4.27)
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where the gradient ∇f contains the first derivatives of f at the origin and the
Hessian H contains the second derivatives,

∇f =

fx1(0)
...

fxn(0)

 , H =

fx1x1(0) . . . fx1xn(0)
...

. . .
...

fxnx1(0) . . . fxnxn(0)

 . (4.28)

Clearly this expansion looks identical to the signal model (4.1) with A = 1
2H,

b = ∇f , and c = f(0). There is, however, an important conceptual difference.
The Maclaurin expansion is intended to be correct for an infinitesimal neighbor-
hood, while our signal model is intended to approximate the signal over a larger
neighborhood, specified by the applicability.

The Maclaurin expansion also has the principal problem that the mathematical
definition of derivatives requires signal values arbitrarily close to the origin, which
are not available for discretized signals. Another complication is that perfect
differentiation would be extremely sensitive to noise. One way to get around this,
which also allows computing derivatives at different scales, is to first convolve the
signal with a Gaussian,

h = f ∗ g, g(x) = e−
xT x
2σ2 (4.29)

and then differentiate the filtered signal h. By the laws of convolution, the partial
derivatives of h can be computed as f convolved with the partial derivatives of g,
which are known explicitly. In e.g. 2D we have

hx = f ∗ gx, gx = − x

σ2
g,

hy = f ∗ gy, gy = − y

σ2
g,

hxx = f ∗ gxx, gxx =
(

x2

σ4
− 1

σ2

)
g, (4.30)

hxy = f ∗ gxy, gxy =
xy

σ4
g,

hyy = f ∗ gyy, gyy =
(

y2

σ4
− 1

σ2

)
g,

and we can see that the structure of the partial derivatives of g agrees with the
dual basis functions in (4.12) for a Gaussian applicability. These functions are also
illustrated in figure 4.2.

We would like to stress, however, that this fact is purely coincidental and an
effect of the special properties of the Gaussians. For other applicabilities we do
not have this relation. Likewise we cannot start with an arbitrary filter set that
implements some approximation of first and second derivatives and expect it to
be equivalent to a polynomial expansion for some applicability. Still it may help
the intuition to think of A and b in terms of image derivatives.

For higher degree polynomials the relation partly breaks down even for Gaus-
sian applicability, in that the expansion coefficients become linear combinations
of multiple partial derivatives. Already in the quadratic case this happens for the
coefficient c, which becomes a linear combination of h, hxx, and hyy.
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4.8.2 Comparison with Polynomial Facet Models

The facet model principle is that the observed signal can be considered as a noisy,
discretized sampling of a distorted version of an underlying continuous or piecewise
continuous function. In order to process the signal, models are introduced for
both the underlying function and the noise and distortion, and parameters for the
models are estimated [43].

This principle is very general and covers a wide area. When considering the
facet model as a signal processing method we are of the opinion that one should
also take into account the proposed computational techniques.

The most common facet models involve low degree polynomials, e.g. the cubic
facet model,

f(x, y) = k1 + k2x + k3y + k4x
2 + k5xy + k6y

2

+ k7x
3 + k8x

2y + k9xy2 + k10y
3,

(4.31)

which was also discussed in section 3.9.2. Following [43], the parameters are deter-
mined by solving an unweighted least squares problem over a rectangular neighbor-
hood. To find the solution efficiently, the polynomial basis is transformed into an
orthogonal one by the construction of discrete Chebyshev polynomials in 1D and
a tensor product extension to higher dimensions. It is noticed that the coefficients
in the orthogonal basis can be computed as linear combinations of the neighbor-
hood values and that this property carries over to the coefficients in (4.31). The
coefficients of the corresponding correlation kernels for the 5×5 neighborhood are
listed but no explicit formulas are given. There is no comment about the com-
putational advantages available from the separable construction of the orthogonal
polynomials, but this is emphasized in a more recent publication [101].

If we compare this to cubic polynomial expansion, we see that the signal model
is the same and that both methods use a least squares approach to determine the
parameters. The computations can in both methods be done through correlation
kernels or by a separable correlation scheme. The difference, which is very signif-
icant, is that the facet model method does not include any weighting of the least
squares problem, neither through certainty nor through applicability. Although
there is a comment in [43] that the mathematics for weighted least squares is sim-
ilar to the mathematics for unweighted least squares, the presented theory does
not suffice to make inclusion of weighting practically feasible, in particular not a
weighting which varies over the signal like the certainty does.

The conclusion is that while polynomial facet models and polynomial expansion
are similar at the outset, the inclusion of applicability and certainty, plus the
explicit formulas for the correlation kernels, makes polynomial expansion into a
substantially different method.
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4.8.3 Relation to Polynomial Fit Filters

Burt [16] describes a surface interpolation method using moment images and poly-
nomial fit filters. Moment images are defined in 1D as

Ip(i) =
∞∑

m=−∞
W (m)I(i + m)mp, (4.32)

where I(i) are intensity values and W (m) is a window function centered at m = 0.
The polynomial fit filter is derived for the bilinear polynomial

P (m,n) = α + βm + γn + δmn (4.33)

by minimizing

Err(i, j) =

K−1
2∑

m,n=
−(K−1)

2

W (m,n)S(i + m, j + n) (I(i + m, j + n)− P (m,n))2
,

(4.34)
where S(i, j) is a support image, not necessarily binary, and the filter width K is
odd. The polynomial coefficients can be computed by setting the partial deriva-
tives of (4.34) to 0 and solving the resulting equation system. Only the first
coefficient is needed since the output of the filter is G(i, j) = P (0, 0) = α. The
solution is given in terms of moment images as

G =
I00D − I10E − I01F

S00D − S10E − S01F
, (4.35)

where

Ips(i, j) =
∑
m,n

W (m,n)S(i + m, j + n)I(i + m, j + n)mpns, (4.36)

Sps(i, j) =
∑
m,n

W (m,n)S(i + m, j + n)mpns, (4.37)

D = S20S02 − S11S11, (4.38)
E = S10S02 − S01S11, (4.39)
F = S01S20 − S10S11. (4.40)

It is also shown how these computations can efficiently be done in a scale
pyramid for a certain class of window functions, and how the results apply to
surface interpolation.

If we compare this approach to normalized convolution we can see similarities
in that we have a signal I, certainties S, an applicability W , and that (4.34) is
equivalent to equation (3.3). The main differences is that only polynomial basis
functions are considered, only the coefficient corresponding to the constant basis
function is computed, and that no general theory is developed.

The comparison to polynomial expansion is mostly the same. The idea of local
weighted least squares fitting of a neighborhood to a polynomial is common but
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only one coefficient is computed and only a specific polynomial model is consid-
ered. It is also interesting to analyze the solution (4.35). We recognize (4.36) as
elements of the vector B∗WaWcf in equation (3.7) and (4.37) as elements of the
matrix B∗WaWcB. Then (4.35) together with (4.38)–(4.40) give the Cramer’s
rule solution of the equation system for α. However, (4.35) does not give the
correct solution for the stated signal model (4.33) but for P (m,n) = α+βm+γn.



Chapter 5

Orientation Estimation

5.1 Introduction

Orientation is a feature that fundamentally distinguishes multidimensional signals
from one-dimensional signals, since the concept lacks meaning in the latter case.
It is also a feature that is far from trivial both to represent and to estimate, as
well as to define strictly for general signals.

The one case where there is no question how the orientation should be defined
is for non-constant simple signals, i.e. signals that can be written as

f(x) = h(xTn) (5.1)

for some non-constant function h of one variable and for some vector n. This
means that the function is constant on all hyper-planes perpendicular to n and we
say that the signal is oriented in the direction of n. Notice however that n is not
unique in (5.1) since we could replace n by any multiple. Even if we normalize n
to get the unit directional vector n̂, there is still an ambiguity between n̂ and −n̂.
This ambiguity must be addressed by the representation of orientation.

Of course the class of globally simple signals is too restricted to be of much
use, so we need to generalize the definition of orientation to more general signals.
To begin with we notice that we usually are not interested in a global orientation.
In fact it is understood throughout the rest of this thesis that by “orientation”
we mean “local orientation”, i.e. we only look at the signal behavior in some
neighborhood of a point of interest. We can, however, still not rely on always
having locally simple neighborhoods.

Unfortunately there is no obvious way in which to generalize the definition
of orientation to non-simple signals. Assume for example that we have a signal
composed as the sum of two simple signals with different orientations. Should the
orientation now be some mean value of the two orientations, both orientations, or
something else? To illustrate what kind of problems we have here we take a closer
look at two examples. They are both two-dimensional and we are interested in
the orientation at a neighborhood of the origin.

1. Let f1(x, y) = x and f2(x, y) = y. Now the sum f(x, y) = f1(x, y) +
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f2(x, y) = x + y is simple as well, oriented in the (1 1)T direction.

2. Let f1(x, y) = x2 and f2(x, y) = y2. This time the sum f(x, y) = f1(x, y) +
f2(x, y) = x2 + y2 is entirely isotropic and we cannot possibly prefer one
direction over another.

In practice, exactly how we define the orientation of non-simple signals tends to
be a consequence of how we choose to represent the orientation and what procedure
we use to estimate it. In this presentation we represent orientation by tensors,
essentially along the lines of Knutsson [40, 62], although with a somewhat different
interpretation.

Tensors can be computed in multiple ways and still obtain about the same
qualitative properties. The first method, independently proposed by Bigün and
Granlund [9, 10] and Förstner and Gülch [33], computes the tensor as local averages
of the outer product of gradients. The method by Knutsson computes them from
quadrature filter responses, as briefly described in section 5.2. In this chapter we
introduce a third method based on polynomial expansion of the signal.

These tensors are known in the literature both as orientation tensors [40] and
structure tensors [53]. The reason for the second name is that they contain more
information about the local strucure than only the dominant orientation. In 3D
they can, e.g., distinguish between line structures and plane structures. Here we
choose to use the name orientation tensors to signify that they really only contain
information related to orientation, as opposed to, e.g., phase or frequency.

5.2 The Orientation Tensor

In this section we give an overview of Knutsson’s orientation tensor representation
and estimation by means of quadrature filter responses [40, 62]. It should be noted
that this estimation method is included only for reference and comparison. The
estimation method used in this thesis is described in section 5.4.

5.2.1 Representation of Orientation for Simple Signals

The orientation tensor is a representation of orientation that for N-dimensional
signals takes the form of an N ×N real symmetric matrix1. A simple signal in the
direction n, as defined by equation (5.1), is represented by the tensor

T = An̂n̂T , (5.2)

where A is some constant that may encode other information than orientation,
such as certainty or local signal energy. It is obvious that this representation maps
n̂ and −n̂ to the same tensor and that the orientation can be recovered from the
eigensystem of T.

By design the orientation tensor satisfies the following two conditions:
1Symmetric matrices constitute a subclass of tensors. Readers who are more familiar with

matrix algebra than with tensor algebra may safely substitute “symmetric matrix” for “tensor”
throughout this chapter.
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Invariance The normalized tensor T̂ = T
‖T‖ does not depend on the function h

in equation (5.1).

Equivariance The orientation tensor locally preserves the angle metric of the
original space, i.e.

‖δT̂‖ ∝ ‖δn̂‖. (5.3)

The tensor norm used above is the Frobenius norm, ‖T‖2 = tr (TTT).

5.2.2 Estimation

The orientation tensor can be computed by means of the responses of a set of
quadrature filters. Each quadrature filter is spherically separable and real in the
Fourier domain,

Fk(u) = R(‖u‖)Dk(û), (5.4)

where the radial function R can be chosen more or less arbitrary, with typical
design restrictions given by desired center frequency, bandwidth, locality, and
scale. The directional function is given by

Dk(û) =

{
(ûT n̂k)2, ûT n̂k > 0,

0, otherwise,
(5.5)

where {n̂k} is a set of direction vectors, usually evenly distributed in the signal
space. It turns out that the minimum number of filters is 3 in 2D, 6 in 3D, and
12 in 4D.

The orientation tensor is constructed from the magnitudes of the filter re-
sponses {qk} at each point by

T =
∑
k

|qk|Mk, (5.6)

where {Mk} are the duals of the outer product tensors {n̂kn̂Tk }.

5.2.3 Interpretation for Non-Simple Signals

The above construction is guaranteed to give a tensor as defined in equation (5.2)
only for simple signals. For non-simple signals the tensor is analyzed by means of
the eigenvalue decomposition, which can be written as

T =
∑
k

λk êkê
T
k , (5.7)

where λ1 ≥ λ2 ≥ . . . ≥ λN are the eigenvalues and {êk} are the corresponding
eigenvectors. In 3D, e.g., this can be rewritten as

T = (λ1 − λ2)ê1ê
T
1 + (λ2 − λ3)(ê1ê

T
1 + ê2ê

T
2 ) + λ3I. (5.8)

The tensor is here represented as a linear combination of three tensors. The first
corresponds to a simple neighborhood, i.e. locally planar, the second to a rank 2
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neighborhood, i.e. locally constant on lines, and the last term corresponds to an
isotropic neighborhood, e.g. non-directed noise. For further details the reader is
referred to [40].

5.3 Orientation Functionals

Here we take the view that the orientation tensor is an instance of a new concept
called orientation functionals, defined below.

Let U denote the set of unit vectors in RN ,

U = {u ∈ RN ; ‖u‖ = 1}. (5.9)

An orientation functional φ is a mapping

φ : U −→ R+ ∪ {0} (5.10)

that to each direction vector assigns a non-negative real value. The value is inter-
preted as a measure of how well the signal locally is consistent with an orientation
hypothesis in the given direction. Since we do not distinguish between two opposite
directions, we require that φ be even, i.e. that

φ(−u) = φ(u), all u ∈ U . (5.11)

We also set some restrictions on the mapping from signal neighborhoods to
the associated orientation functionals. The signal f is assumed to be expressed in
a local coordinate system, so that we always discuss the local orientation at the
origin.

1. Assume that the signal is rotated around the origin, so that

f(x) is replaced by f̃(x) = f(Rx), where R is a rotation matrix. Then the
orientation functional φ̃ associated to f̃ should relate to φ by φ̃(u) = φ(Ru),
i.e. be rotated in the same way. This relation should also hold for other
orthogonal matrices R, characterized by RTR = I. These matrices repre-
sent isometric transformations, which in addition to rotations also include
reflections and combinations of rotation and reflection.

2. In directions along which the signal is constant, φ should be zero.

3. For a simple signal in the direction n̂, φ should have its maximum value for
n̂ and −n̂. It should also decrease monotonically as the angle to the closer
of these two directions increases.

4. If a constant is added to the signal, φ should not change, i.e. the orientation
functional should be invariant to the DC level.

5. If the signal is multiplied by a positive constant α, f̃(x) = αf(x), the new
orientation functional should be proportional to the old one, φ̃(u) = βφ(u),
where the positive constant β is not necessarily equal to α but should vary
monotonically with α.
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(a) φ(u) = uT
(

1 0
0 0

)
u (b) φ(u) = uT

1 0 0
0 0.5 0
0 0 0

u

Figure 5.1: Polar plots of orientation functionals.

6. If the signal values are negated, φ should remain unchanged.

One might also think that the orientation functional should remain unchanged if
the signal is scaled. This is, however, not the case. Orientation is a local property
and a signal may look completely different at different scales. Thus we have the
following non-requirement.

7. If the signal is uniformly scaled, f̃(x) = f(λx), |λ| 6= 1, no additional re-
striction is set on the behavior of φ.

To transform an orientation tensor into an orientation functional, we simply
use the construction

φT(u) = uTTu. (5.12)

Hence the orientation tensors are the subclass of orientation functionals which are
positive semidefinite2 quadratic forms in u.

Orientation functionals can in 2D and 3D be illustrated by polar plots, as
shown in figure 5.1. For a generalization of the orientation functional concept, see
section 5.9.

2As it happens, the estimation method described in section 5.2.2 can sometimes yield an
indefinite tensor. We will not consider that case further.
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Figure 5.2: Linear neighborhood, f(x, y) = x + 2y.

5.4 Tensor Estimation Based on Polynomial Ex-
pansion

To estimate orientation we use the assumption that local projection onto second
degree polynomials gives sufficient information. In other words we perform a
polynomial expansion to obtain the coefficients A, b, and c of the local signal
model

f(x) ∼ xTAx + bTx + c, (5.13)

as described in the previous chapter.
To determine how the orientation tensor should be constructed from the coef-

ficients of the local signal model, we start by studying purely linear and quadratic
neighborhoods.

5.4.1 Linear Neighborhoods

A linear neighborhood can always be written as

f(x) = bTx (5.14)

for some vector b. Obviously this implies that the signal is simple with orientation
given by b. It should be clear that we get a suitable orientation tensor from the
construction

T = bbT . (5.15)

An illustration of a linear neighborhood in 2D is given in figure 5.2.

5.4.2 Quadratic Neighborhoods

For quadratic neighborhoods,

f(x) = xTAx, (5.16)
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(a) f(x, y) = x2
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(b) f(x, y) = x2 + 0.5y2
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(c) f(x, y) = x2 + y2
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(d) f(x, y) = x2 − y2

Figure 5.3: Quadratic neighborhoods.

the situation is more complicated. These neighborhoods are simple if and only if
A is of rank 1. To get an idea of how to deal with higher rank neighborhoods we
take a look at four different neighborhoods in 2D, depicted in figure 5.3. In (a)
we have f(x, y) = x2, a simple signal, so the orientation is clearly horizontal. In
(b), where f(x, y) = x2 + 0.5y2, the horizontal direction still dominates but less
distinctly. In (c) we have the perfectly isotropic neighborhood f(x, y) = x2 + y2,
where no direction can be preferred. The signal illustrated in (d), f(x, y) = x2−y2

is more confusing. Although it can be argued that it is constant on the two lines
y = ±x, this is not sufficient to consider it a simple signal in either direction. In
fact we treat this signal too as completely isotropic, in a local orientation sense.

Analogously to the linear case we get a suitable orientation tensor by the
construction

T = AAT . (5.17)

The tensors corresponding to the quadratic neighborhoods in figure 5.3 are
given in figure 5.4 together with their polar plots.
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(a) T =
(

1 0
0 0

)
(b) T =

(
1 0
0 0.25

)

(c) T =
(

1 0
0 1

)
(d) T =

(
1 0
0 1

)
Figure 5.4: Tensors corresponding to quadratic neighborhoods.
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(a) f(x, y) = 3x + y2 (b) T =
(

2.25 0
0 1

)
Figure 5.5: Linear plus quadratic neighborhood and corresponding tensor.

5.4.3 General Neighborhoods

For a general neighborhood we consider the local signal model

f(x) ∼ xTAx + bTx + c. (5.18)

Here we add the tensors which would be obtained from the linear and quadratic
components separately, i.e.

T = AAT + γbbT , (5.19)

where γ is a non-negative weight factor. An example of a linear plus quadratic
neighborhood is given in figure 5.5 together with the polar plot of the correspond-
ing tensor for γ = 0.25. As we can see from the example, the proper value of
γ depends on the scale at which we study the orientation. At a small scale the
linear component should dominate while at a large scale the quadratic part is more
significant. In general the value of γ should decrease when the size of the neigh-
borhood under consideration becomes larger. Further discussion on the choice of
γ can be found in sections 5.5 and 5.7.3.

5.5 Properties of the Estimated Tensor

Ideally we would like the estimated tensor to exactly satisfy the requirements of
an orientation functional, listed in section 5.3. This is indeed the case if we restrict
ourselves to the ideal case of continuous signals with constant certainty and require
that the applicability be isotropic.

To begin with we can notice that from the construction of the tensor, T =
AAT + γbbT , it is clear that T is symmetric and positive semidefinite. Thus the
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corresponding functional φT(u) = uTTu maps to non-negative real values and is
even because φT(−u) = (−u)TT(−u) = uTTu = φT(u).

To verify the numbered requirements in section 5.3 we assume that we have a
signal f , a projection onto a quadratic polynomial according to equation (5.13),
the corresponding tensor T given by equation (5.19), and the corresponding ori-
entation functional φ(u) = uTTu.

1. If f is rotated to yield f̃(x) = f(Rx), the projection onto a quadratic poly-
nomial is rotated similarly,

f̃(x) ∼ (Rx)TA(Rx) + bTRx + c = xT (RTAR)x + (RTb)Tx + c. (5.20)

This follows from the fact that the set of quadratic polynomials is closed
under rotation and the assumptions that the certainty is constant (and thus
isotropic) and that the applicability is isotropic. Now we get the tensor
corresponding to f̃ by

T̃ = (RTAR)(RTAR)T + γ(RTb)(RTb)T

= RTAATR + γRTbbTR = RTTR.
(5.21)

From this it follows that

φ̃(u) = uT T̃u = uTRTTRu = (Ru)TT(Ru) = φ(Ru). (5.22)

The only property of R that we have used above is RRT = I, so this
derivation is equally valid for other isometric transformations.

2. Assume that f is constant along the first coordinate axis, and let u1 be the
corresponding direction vector. Then f does not depend on the first variable
and neither does the projection onto a quadratic polynomial. Thus we have
Au1 = ATu1 = 0 and bTu1 = 0 so that

φ(u1) = uT1 AATu1 + γuT1 bbTu1 = 0. (5.23)

If f is constant along some other direction the conclusion still follows because
property 1 allows us to rotate this direction onto u1.

3. If f is N-dimensional and simple in the direction n̂, there is a set of N − 1
orthogonal directions along which it is constant. From property 2 it follows
that these directions are eigenvectors of T corresponding to the eigenvalue
zero and as a consequence T is at most of rank one. Hence we have

T = αn̂n̂T , (5.24)

for some non-negative α and

φ(u) = αuT n̂n̂Tu = α(n̂Tu)2 = α cos2 θ, (5.25)

where θ is the angle between n̂ and u.
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4. If a constant is added to f , this only affects the value of c in the projection
onto a quadratic polynomial. Since c is discarded in the construction of T,
the tensor remains unchanged.

5. If the amplitude of the signal is multiplied by a constant α, f̃(x) = αf(x),
the projection is multiplied by the same constant, i.e.

f̃(x) ∼ xT (αA)x + (αb)Tx + αc. (5.26)

Hence the new tensor is given by

T̃ = (αA)(αA)T + γ(αb)(αb)T = α2T (5.27)

and the corresponding orientation functional becomes

φ̃(u) = α2φ(u). (5.28)

6. If the signal values are negated, the tensor is unchanged. This follows from
equation (5.27) with α = −1.

7. If the signal is uniformly scaled, f̃(x) = f(λx), things become more compli-
cated. To begin with, if the signal is a quadratic polynomial, we have

f̃(x) = (λx)TA(λx) + bT (λx) + c = xT (λ2A)x + (λb)Tx + c, (5.29)

and the new orientation tensor is given by

T̃ = λ4AAT + λ2γbbT . (5.30)

Hence the relative weight between the quadratic and linear parts of the tensor
is altered. For a general signal the projection onto a polynomial may change
arbitrarily, because it may look completely different at varying scales. In the
case where the applicability is scaled identically with the signal, however,
the projection is scaled according to equation (5.29) and to get a new tensor
proportional to the old one, we need to scale the weight factor γ by λ2.

In practice, with discretized signals of limited extent, we cannot guarantee that
all of these requirements be perfectly fulfilled. The primary reason is that we can-
not even perform an arbitrary rotation of a discretized signal without introducing
errors, so we cannot really hope to do any better with the orientation descriptor.

5.6 Computational Complexity

The major part of the computational complexity of the tensor estimation algorithm
is the computation of the polynomial expansion. Thus we use the same notation
as in section 4.4 with d dimensionality, n size of applicability, and NC, C, SC, and
SNC being names of the different methods to compute polynomial expansion.

Since we do not use the local DC level in the tensor construction, we do not
have to compute the expansion coefficient corresponding to the constant basis
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function. This gives a reduction by one filter for the C method and by d + 1
multiplications per point for the SC method.

The tensor construction from the expansion coefficients requires d(d+1)(d+2)
2

multiplications per point.
The memory overhead differs slightly from the polynomial expansion case.

The m = (d+1)(d+2)
2 expansion coefficients, which in the polynomial expansion

algorithm were the output, are now only of temporary interest. Since the number
of independent tensor elements, d(d+1)

2 , is smaller, the difference must count as
memory overhead. This is not a problem for the NC method, however, since we
can make the computation all the way to the tensor elements point for point.

All this is summarized in tables 5.1 and 5.2, which are direct counterparts to
tables 4.1 and 4.2 for the complexity of the polynomial expansion only.

The discussion about the relative merits of the different methods in section 4.4
is valid also in the context of tensor estimation.

5.7 Evaluation

The tensor estimation algorithm has been evaluated on a 3D test volume consisting
of concentric spherical shells. The volume is 64 × 64 × 64 and selected slices are
displayed in figure 5.6. Except at the center of the volume the signal is locally
planar and all possible orientations are present. As in [6, 63] the performance of
the tensors is measured by an angular RMS error

∆φ = arcsin


√√√√ 1

2L

L∑
l=1

‖x̂x̂T − ê1ê
T
1 ‖2

 , (5.31)

where x̂ is a unit vector in the correct orientation, ê1 is the eigenvector corre-
sponding to the largest eigenvalue of the estimated tensor, and L is the number of
points. To avoid border effects and irregularities at the center of the volume, the
sum is only computed for points at a radius between 0.16 and 0.84, with respect
to normalized coordinates. As is shown in appendix F, the angular RMS error can

Method Time complexity Memory overhead
NC d4

24nd 0

C d2

2 nd d

SC d3

6 n d + 1

SNC d5

120n + d6

48
d4

24

Table 5.1: Asymptotic complexities, d and n large, leading terms.
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Time complexity Memory overhead
Method d = 2 d = 3 d = 4 d = 2 d = 3 d = 4
NC 21n2 + 104 45n3 + 350 85n4 + 965 0 0 0
C 5n2 + 12 9n3 + 30 14n4 + 60 2 3 4
SC 9n + 19 19n + 42 34n + 78 3 4 5
SNC 29n + 104 74n + 350 159n + 965 18 39 75

Table 5.2: Time complexity and memory overhead for 2D, 3D, and 4D.

(a) slice 5 (b) slice 14

(c) slice 21 (d) slice 32

Figure 5.6: Slices from the 64-cube test volume.
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(a) SNR = 10 dB (b) SNR = 0 dB

Figure 5.7: White noise added to slice 32 of the test volume.

equivalently be written as

∆φ = arccos


√√√√ 1

L

L∑
l=1

(x̂T ê1)2

 . (5.32)

Although the slices in figure 5.6 may give the impression that the volume con-
tains structures at a wide range of scales, this is not the case from a 3D perspective.
As can be seen from slice 32, the distance between two shells varies between about
3 and 6 pixels within the tested part of the volume. Hence it is possible to obtain
very good performance by orientation estimation at a single scale.

The algorithm has also been tested on degraded versions of the test volume,
where white noise has been added to get a signal to noise ratio of 10 dB and 0 dB
respectively. One slice of each of these are shown in figure 5.7.

5.7.1 The Importance of Isotropy

As we saw in section 5.5, isotropy is a theoretically important property of the
applicability. To test this in practice a number of different applicabilities have
been evaluated. The test set consists of:

• Cubes of four different sizes, with sides being 3, 5, 7, and 9 pixels wide.

• A sphere of radius 3.5 pixels.

• The same sphere but oversampled, i.e. sampled regularly at 10 × 10 points
per pixel and then averaged. The result is a removal of jaggies at the edges
and a more isotropic applicability.

• A 3D cone of radius 4 pixels.
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shape ∞ 10 dB 0 dB
cube 3× 3× 3 3.74◦ 7.27◦ 24.06◦

cube 5× 5× 5 13.50◦ 14.16◦ 18.48◦

cube 7× 7× 7 22.99◦ 23.57◦ 27.30◦

cube 9× 9× 9 30.22◦ 30.64◦ 33.62◦

Sphere 6.69◦ 8.20◦ 15.34◦

Sphere, oversampled 0.85◦ 5.78◦ 14.30◦

Cone 1.39◦ 6.10◦ 13.89◦

Cone, oversampled 0.28◦ 5.89◦ 14.13◦

Tent, oversampled 21.38◦ 21.86◦ 25.16◦

Binomial 5× 5× 5 2.07◦ 3.74◦ 10.76◦

Binomial 7× 7× 7 2.00◦ 4.46◦ 11.42◦

Binomial 9× 9× 9 1.97◦ 6.68◦ 13.65◦

Gaussian, σ = 1.2 0.17◦ 3.53◦ 10.88◦

Table 5.3: Evaluation of different applicabilities.

• The same cone oversampled.

• A “tent” shape, 8 pixels wide, oversampled.

• Binomial applicabilities with sides being 5, 7, and 9 pixels wide.

• A Gaussian with standard deviation 1.2, sampled at 9× 9× 9 points.

The first twelve applicabilities are illustrated in figure 5.8 in form of their 2D
counterparts. The Gaussian can be found in figure 5.9 (b).

The results are listed in table 5.3 and we can see that the cube and tent shapes,
which are highly anisotropic,3 perform significantly worse than the more isotropic
shapes. This is of particular interest since the cube applicability corresponds to
the naive use of an unweighted subspace projection; cf. the cubic facet model,
discussed in sections 3.9.2 and 4.8.2.

The main reason why the cubes are anisotropic is that they extend farther
into the corners than along the axes. The spheres and the cones eliminate this
phenomenon by being cut off at some radius. Still there is a marked improvement
in isotropy when these shapes are oversampled, which can clearly be seen in the
results from the noise-free volume.

The difference between the spheres and the cones is that the latter have a
gradial decline in the importance given to points farther away from the center.
We can see that this makes a difference, primarily when there is no noise, but that
the significance of isotropy is much larger can clearly be seen from the poor results
of the tent shape.

The Gaussian, finally, turns out to yield superior performance, which is very
fortunate considering that this shape is separable and therefore allows computation
of the polynomial expansion with the fast algorithm described in section 4.3.2. The

3The 3× 3× 3 cube is actually too small to be significantly anisotropic.
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Figure 5.8: Applicabilities used to test orientation estimation.
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(c) σ = 4.8

Figure 5.9: Gaussian applicabilities with different standard deviations.

binomials are also separable but not quite as isotropic and perform clearly worse
on the noise-free volume.

5.7.2 Gaussian Applicabilities

With Gaussian applicabilities there is only one parameter to vary, the standard
deviation σ. The Gaussian must be truncated, however, and with the separable
algorithm the truncation is implicitly made to a cube of some size. Figure 5.9
shows three Gaussians with widely varying standard deviations, truncated to a
cube with side 9. There are three aspects to note with respect to the choice of σ:

1. The size of the applicability should match the scale of the structures we want
to estimate orientation for.

2. For small applicabilities the estimation is typically more sensitive to noise
than for larger ones.

3. If the standard deviation is large relative to the size to which the Gaussian
is truncated, the contributions from the corners tend to make the applica-
bility anisotropic, as is illustrated in figure 5.9(c). Fortunately the Gaussian
decreases very fast sufficiently far from the origin, so with a proper choice of
the truncation size the Gaussian remains very isotropic.

The results are shown in figure 5.10. It is noteworthy that the anisotropic ten-
dencies affect the performance of the algorithm, in the absence of noise, quite
significantly already for σ about 1.5. For very large σ the Gaussian approaches
the cube applicability, which explains why the 11 × 11 × 11 kernel ultimately
performs worse than the 9× 9× 9 kernel.

Section 4.5 discussed the effects of applying polynomial expansion to a lowpass
filtered signal. If both the lowpass filter and the applicability are Gaussians,
with standard deviations σ1 and σ2 respectively, this would in the continuous
case be equivalent to a polynomial expansion of the original signal, where the
applicability is Gaussian with standard deviation

√
σ2

1 + σ2
2 . Figure 5.11 shows

the angular errors when this approach, in the discrete case, is used in the tensor
computations. For a given σ2, σ1 is chosen so that σ2

1 + σ2
2 = 1.12. The results

would probably be much worse for small σ2 if the test volume was more complex.
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Figure 5.10: Angular errors for Gaussians with varying standard deviations. The
solid lines refer to 9 × 9 × 9 kernels while the dashed lines refer to 11 × 11 × 11
kernels. The three curve pairs are for 0, 10, and ∞ SNR respectively.
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Figure 5.11: Angular errors for tensors computed on a lowpass filtered signal.
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Figure 5.12: (a) Angular errors for varying γ values. The three curves are for 0,
10, and ∞ SNR respectively. (b) A magnification of the results for the noise-free
test volume.

We can see that the best result is obtained when no prefiltering is used. With a
reduced σ2 we can use a smaller applicability in the polynomial expansion, which
reduces the computational complexity. It is not clear from this example how large
reductions are safe, however.

5.7.3 Choosing γ

Another parameter in the tensor estimation algorithm is the relative weight for
the linear and quadratic parts of the signal, γ. In the previous experiments γ has
been chosen reasonably, with only a small optimization effort. To see how the
value of γ typically affects the performance we have varied γ for a fixed Gaussian
applicability with optimal standard deviation, 1.06. The results are shown in figure
5.12. We can clearly see that neither the linear nor the quadratic part are very
good on their own but suitably weighted together they give much better results.
We also observe that the linear part on its own works better than the quadratic
part in the absence of noise, but that it is more noise sensitive. It is interesting
to note here that the linear part, interpreted in terms of derivatives (see section
4.8.1), essentially is a gradient, which is a classic means to estimate orientation.

5.7.4 Best Results

Table 5.4 lists the best results obtained for different sizes of the applicability. All
computations have been made with the separable algorithm and σ and γ have
been tuned for each applicability size, n.

The results for 9 × 9 × 9 applicabilities, and equivalently kernels of the same
effective size, can readily be compared to the results given in [6, 63] for a sequential
filter implementation of the quadrature filter based estimation algorithm described
in section 5.2.2. As we can see in table 5.5, the algorithm proposed in this thesis
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kernel total
n ∞ 10 dB 0 dB coefficients operations
3 0.87◦ 6.69◦ 23.18◦ 57 99
5 0.37◦ 3.51◦ 10.70◦ 85 127
7 0.15◦ 3.05◦ 10.26◦ 133 175
9 0.11◦ 3.03◦ 10.24◦ 171 213
11 0.11◦ 3.03◦ 10.24◦ 209 251

Table 5.4: Smallest angular errors for different kernel sizes.

Andersson,
Wiklund, Farnebäck Johansson

SNR Knutsson
345 coeff. 171 coeff. 72 coeff. 90 coeff.

∞ 0.76◦ 0.11◦ 0.78◦ 0.28◦

10 dB 3.02◦ 3.03◦ 3.39◦ 3.05◦

0 dB 9.35◦ 10.24◦ 10.25◦ 10.37◦

Table 5.5: Comparison with Andersson, Wiklund & Knutsson [6, 63] and Johans-
son [54].

performs quite favorably4 in the absence of noise while being somewhat more noise
sensitive. Additionally it uses only half the number of kernel coefficients. Included
in the table are also results for the approximative polynomial expansion algorithm
by Johansson [54], described in section 4.6.1. This reduces the number of kernel
coefficients further with only small impact on the angular errors.

5.8 Discussion

Although the orientation estimation algorithm has been shown to work very well,
see also the results in section 6.6, there are still a number of areas where it could
be improved.

5.8.1 Multiple Scales

The algorithm is quite selective with respect to the scale of the structures in
the signal, which depending on the application may be either an advantage or a
disadvantage. If it is necessary to estimate orientation over a large range of scales,
the best solution probably is to compute a number of tensors at distinct scales and
subsequently combine them into a single tensor. Preliminary experiments indicate

4To be fair it should be mentioned that the filters used in [6, 63] are claimed not to have
been tuned at all for performance on the test volume. One would still guess that the available
parameters have been chosen quite reasonably though.
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that it is sufficient to simply add the tensors together, taking the scaling relations
of equation (5.30) into account.

5.8.2 Different Radial Functions

The basis functions can in 2D be written in polar coordinates as

{1, ρ cos φ, ρ sin φ, ρ2 cos2 φ, ρ2 sin2 φ, ρ2 cos φ sinφ}. (5.33)

It is easy to show that it is only the angular functions that are essential for the
rotation equivariance and other properties of the tensor. The radial functions
may well be something other than ρ for the linear basis functions and ρ2 for the
quadratic ones. One possibility would be to use the radial function ρ for all the
basis functions except the constant. As a consequence both parts of the tensor
would scale equally when both signal and applicability are scaled and there would
be no need to adjust γ, cf. equation (5.30). Another possibility would be to try
to obtain matching radial functions in the Fourier domain, which currently is not
the case.

One should be aware, however, that changing the radial functions would destroy
the separability of the basis functions.

5.8.3 Additional Basis Functions

It would be conceivable to expand the signal model, equation (5.13), e.g. with
higher degree polynomials. It is not obvious that this would actually improve
anything, however, but it would certainly increase the computational complexity.

To make the increased complexity worthwhile it would probably be necessary to
find a way to ensure that the additional basis functions reduce the noise sensitivity
of the algorithm, possibly by introducing some kind of redundancy.

5.9 Phase Functionals

This chapter concludes with a preliminary discussion about phase functionals, a
possible generalization of orientation functionals to also include phase information.
This gives us a novel and powerful representation for phase, or rather a combined
orientation and phase representation.

With U defined by equation (5.9), a phase functional is a mapping

θ : U −→ C (5.34)

that to each direction vector assigns a complex value. The magnitude of the value
is interpreted as a measure of the signal variation along the direction, while the
argument of the value is interpreted as the local phase of the signal with respect
to the direction. If we reverse the direction the magnitude should be unchanged
while the argument should be negated. Hence we require that θ be Hermitian, i.e.
that

θ(−u) = θ(u)∗, all u ∈ U . (5.35)
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arg φ ei arg φ interpretation
0 1 even, local maximum
π
2 i odd, decreasing
π −1 even, local minimum
−π2 −i odd, increasing

Table 5.6: Interpretation of local phase.

It is clear that by taking the magnitude5 of a phase functional we obtain an
orientation functional.

The method for estimation of orientation tensors in section 5.4 can be extended
to estimation of phase after some preparations. To begin with we use a more liberal
definition of signal phase than what is usually used. Instead of relating it to the
phase of a sinusoidal it is interpreted as some relation between the odd and even
parts of the signal, DC component excluded. A similar approach to the definition
of phase is taken by Nordberg [74]. Table 5.6 lists the primary characteristics of the
phase. With the signal model given by equation (5.13) it is clear that A represents
the even part of the signal, excluding the DC component, while b represents the
odd part. Thus it should be possible to construct a phase functional from A and
b.

Unfortunately we cannot use a quadratic form to represent phase, as we did
with the tensor for orientation. The reason for this is that quadratic forms by
necessity give even functionals, a property that is compatible with being Hermitian
only if they are also real-valued, which would be useless in this context. A way to
get around this is to add one dimension to the representation and use a quadratic
form with respect to

ũ =
(
u
1

)
. (5.36)

By setting the phase tensor

P = −
(

A iγb
iγbT 0

)
, (5.37)

where γ has a similar role to that in the construction of the orientation tensor, we
obtain the phase functional

θP(u) = ũTPũ = −uTAu− i2γbTu. (5.38)

If we take the magnitude of this phase functional we obtain an orientation func-
tional that is different from the orientation tensor in section 5.4 but it is interesting
to notice that the latter appears in

ũTPP∗ũ = uT (AAT + γ2bbT + γ2(bTb)I)u, (5.39)

with only an extra isotropic term in the tensor.
5Or the squared magnitude or something similar.



Chapter 6

Velocity Estimation

6.1 Introduction

If an image sequence is considered as a spatiotemporal volume, it is possible to
use the orientation information in the volume for estimation of the motion in the
sequence. In particular the tensor representation of orientation allows straight-
forward estimation of the motion, see e.g. [40, 49, 50, 51, 52, 53, 94] and section
6.2. The tensor can also be used more indirectly to provide constraints on the
motion in order to estimate parameterized motion models, which is the basis for
the methods developed in this chapter. Related approaches have also been used by
Karlholm [61]. For overviews of other methods for motion estimation, the reader
is referred to [8] and [19].

The algorithms presented in sections 6.3 and 6.4 have their origins in my mas-
ter’s thesis [21, 22], at that time using orientation tensors estimated by quadrature
filters and with emphasis on segmentation of the motion field rather than on veloc-
ity estimation. The simplified algorithm in section 6.5 and the results in section
6.6 were first published in my licentiate thesis [23] and have subsequently also
appeared in [2, 25, 28]. All these algorithms are novel and together with ori-
entation tensors estimated by the algorithms from chapter 5 they give excellent
performance, as demonstrated in section 6.6.

6.2 From Orientation to Motion

By stacking the frames of an image sequence onto each other we obtain a spatiotem-
poral image volume with two spatial dimensions and a third temporal dimension.
It is easy to see that there is a strong correspondence between the motions in the
image sequence and the orientations in the image volume. A moving line, e.g., is
converted into a plane in the volume and from the orientation of the plane we can
recover the velocity component perpendicular to the line. The fact that we can
only obtain the perpendicular component is a fundamental limitation known as
the aperture problem; the parallel velocity component of a linear structure cannot
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be determined simply because it does not induce any change in the local signal. A
moving point, on the other hand, is converted into a line in the volume and from
the direction of the line we can obtain the true motion.

In terms of orientation tensors, the first case corresponds to a rank 1 tensor,
where the largest eigenvector gives the orientation of the planar structure, while
the second case corresponds to a rank 2 tensor, where the smallest eigenvector
gives the direction along the linear structure. More precisely, with the tensor T
expressed by the eigenvalue decomposition as in equation (5.7),

T = λ1e1e
T
1 + λ2e2e

T
2 + λ3e3e

T
3 , (6.1)

the velocity in the two cases can be computed by, taken from [40],


vnormal = −x3(x1ξ̂1 + x2ξ̂2)/(x2

1 + x2
2)

x1 = êT1 ξ̂1

x2 = êT1 ξ̂2

x3 = êT1 t̂

moving line case, (6.2)

and


v = (x1ξ̂1 + x2ξ̂2)/x3

x1 = êT3 ξ̂1

x2 = êT3 ξ̂2

x3 = êT3 t̂

moving point case, (6.3)

where ξ̂1 and ξ̂2 are the orthogonal unit vectors defining the image plane and t̂ is
a unit vector in the time direction.

One problem with this approach to velocity estimation is that we at each point
must decide whether we can compute true velocity or have to be content with the
normal component. Another problem is robustness. The method is sensitive both
to noise and to errors in the tensor estimation. A common method to increase the
robustness is averaging of the tensors in a neighborhood of each point, discussed
further in section 6.5.

6.3 Estimating a Parameterized Velocity Field

Rather than estimating the velocity from the tensors point for point we assume
that the velocity field over a region can be parameterized according to some motion
model and we use all the tensors in the region to compute the parameters. To begin
with we assume that we somehow have access to a region in the current frame of
the sequence, within which the motion can be described, at least approximately,
by some relatively simple parametric motion model.
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6.3.1 Motion Models

The simplest possible motion model is to assume that the velocity is constant over
the region,

vx(x, y) = a,

vy(x, y) = b,
(6.4)

where x and y are the spatial coordinates, vx and vy are the x and y components
of the velocity, and a and b are the model parameters. Geometrically this motion
model corresponds to objects undergoing a pure translation under orthographic
projection. A more powerful alternative is the affine motion model,

vx(x, y) = ax + by + c,

vy(x, y) = dx + ey + f,
(6.5)

which applies to planar patches undergoing rigid body motion, i.e. translation
plus rotation, under orthographic projection. To also account for a perspective
projection we need the eight parameter motion model,

vx(x, y) = a1 + a2x + a3y + a7x
2 + a8xy,

vy(x, y) = a4 + a5x + a6y + a7xy + a8y
2.

(6.6)

The usefulness of these models does of course depend on the application but it
is useful to notice that sufficiently far away most surfaces can be approximated as
planar and if the distance to the scene is much larger than the variation in distance
within the scene, perspective projection can be approximated by orthographic
projection. More details on the derivation of these motion models can be found in
[19].

Of course it would be possible to design other motion models for specific ex-
pected velocity fields, but we will only consider those listed above in this presenta-
tion. Requirements on the motion models in order to be useful with the methods
developed in this chapter are given in section 6.3.3.

6.3.2 Cost Functions

A 2D velocity vector (vx, vy)T , measured in pixels per frame, can be extended to
a 3D spatiotemporal directional vector v and a unit directional vector v̂ by

v =

vx
vy
1

 , v̂ =
v
‖v‖ . (6.7)

Ideally, in the case of a constant translation1, we obtain a spatiotemporal
neighborhood which is constant in the v̂ direction. By property 2 of section 5.3
we therefore have the constraint that

φT(v̂) = v̂TTv̂ = 0. (6.8)
1In the image plane.
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This is consistent with the discussion in section 6.2 since in the moving point case,
the least eigenvector has eigenvalue zero and is parallel to v̂, while in the moving
line case, all v̂ with the correct normal velocity component satisfies equation (6.8).

In a less ideal case, where the motion is not a translation, where the motion is
a translation but it varies over time, or in the presence of noise, we typically have
to deal with rank 3 tensors, meaning that the constraint (6.8) cannot be fulfilled.
As discussed in section 5.3, the interpretation of the orientation functional φT is
that the value in a given direction is a measure of how well the signal locally is
consistent with an orientation hypothesis in that direction. In this case we are
searching for directions along which the signal varies as little as possible and thus
we wish to minimize v̂TTv̂.

Rewriting the tensor as

T = λ1e1e
T
1 + λ2e2e

T
2 + λ3e3e

T
3

= (λ1 − λ3)e1e
T
1 + (λ2 − λ3)e2e

T
2 + λ3I = T̃ + λ3I,

(6.9)

where λ3I is the isotropic part of the tensor, cf. section 5.2.3, we can see that

v̂TTv̂ = v̂T T̃v̂ + λ3v̂T Iv̂ = v̂T T̃v̂ + λ3. (6.10)

Thus it is clear that the isotropic part of the tensor can be removed without
affecting the minimization problem, i.e. the minimum is obtained for the same
directions. In fact it is necessary to remove it, because we will see that for compu-
tational reasons it is preferable to minimize an expression involving v rather than
v̂.2 Then we have the minimization of

vTTv = vT T̃v + λ3vTv, (6.11)

which would be clearly biased against large velocities compared to (6.10). Hence
we remove the isotropic part of the tensor in a preprocessing step to obtain an
isotropy compensated tensor

T̃ = T− λ3I. (6.12)

Notice that this operation does not require a full eigenvalue decomposition of T;
it is sufficient to compute the smallest eigenvalue. An efficient algorithm for this
is given in appendix G.

To simplify the notation it is understood throughout the rest of the chapter that
T denotes the preprocessed tensor.

Now we can define two cost functions,

d1(v,T) = vTTv, (6.13)

d2(v,T) =
vTTv
‖v‖2 trT

=
v̂TTv̂
trT

, (6.14)

both giving a statement about to what extent a velocity hypothesis is consistent
with a given tensor. A perfect match gives the value zero, while increasing values

2Notice that both problems are well-defined. In the latter case we have the constraint that v̂
be of unit length while in the former case the last component of v has to be 1.
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indicate increasing inconsistencies. The distinction between the two cost functions
is that d1 is suitable for minimization over a region, while d2 is more useful for
comparisons of the consistency of motion hypotheses at different points.

6.3.3 Parameter Estimation

Assume now that we again have a region given and that we have a motion model
that assigns velocities vi to each point of the region. By summing the costs at
each point we obtain

dtot =
∑
i

d1(vi,Ti), (6.15)

giving a total cost for the motion model over the entire region. With a parame-
terized motion model the next step is to find the parameters that minimize dtot.
To explain this procedure we use the affine motion model (6.5), which can be
rewritten as

v =

vx
vy
1

 =

a b c
d e f
0 0 1

x
y
1

 =

x y 1 0 0 0 0
0 0 0 x y 1 0
0 0 0 0 0 0 1


︸ ︷︷ ︸

S



a
b
c
d
e
f
1


︸ ︷︷ ︸

p

. (6.16)

Hence we get
d1(v,T) = vTTv = pTSTTSp = pTQp, (6.17)

where Q = STTS is a positive semidefinite quadratic form. Summing these over
the region transforms equation (6.15) into

dtot(p) =
∑
i

d1(vi,Ti) =
∑
i

pTSTi TiSip

= pT
(∑

i

Qi

)
p = pTQtotp,

(6.18)

which should be minimized under the constraint that the last element of p be 1.3

In order to do this we partition p and Qtot as

p =
(
p̄
1

)
, Qtot =

(
Q̄ q
qT α

)
, (6.20)

3Now it should be clear why we prefer to minimize an expression involving vTTv rather than
v̂TTv̂. In the latter case equation 6.18 would be replaced by

dtot(p) =
∑
i

pTSTi TiSip

pTSTi Sip
(6.19)

and the minimization problem would become substantially harder to solve.
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turning (6.18) into

dtot(p) = p̄T Q̄p̄ + p̄Tq + qT p̄ + α. (6.21)

If Q̄ is invertible we can complete the square to get

dtot(p) = (p̄ + Q̄−1q)T Q̄(p̄ + Q̄−1q) + α− qT Q̄−1q (6.22)

and it is clear that the minimum value

α− qT Q̄−1q (6.23)

is obtained for
p̄ = −Q̄−1q. (6.24)

If Q̄ should happen to be singular, the minimum value α+qT p̄ is obtained for all
solutions to the equation

Q̄p̄ = −q (6.25)

and to choose between the solutions some additional constraint is needed. One
reasonable possibility is to require that the mean squared velocity over the region
is taken as small as possible, i.e. minimizing

∑
i

p̄T S̄Ti S̄ip̄ = p̄T
(∑

i

S̄Ti S̄i

)
p̄ = p̄TL2p̄ = ‖p̄‖L, (6.26)

where S̄ is S with the last column removed. The solution to this problem can be
found in section 2.4.2 or in section 2.5.1 if L should be semidefinite.

In order to use this method of parameter estimation, the necessary and suf-
ficient property of the motion model is that it is linear in its parameters. This
property is demonstrated by equation (6.16) for the affine motion model. The
corresponding matrices S and p for the constant velocity motion model (6.4) are
given by

S =

1 0 0
0 1 0
0 0 1

 , p =

a
b
1

 , (6.27)

and for the eight parameter motion model (6.6) by

S =

1 x y 0 0 0 x2 xy 0
0 0 0 1 x y xy y2 0
0 0 0 0 0 0 0 0 1

 , (6.28)

p =
(
a1 a2 a3 a4 a5 a6 a7 a8 1

)T
. (6.29)

A more complex class of motion models which also are linear in their parame-
ters, and therefore can be used in this framework, are deformable linear meshes,
described by Hemmendorff [46].

There are two important advantages to estimating the velocity over a whole
region rather than point by point. The first advantage is that the effects of noise
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and inaccuracies in the tensor estimation typically are reduced significantly. The
second advantage is that even if the aperture problem is present in some part of
the region, information obtained from other parts can help to fill in the missing
velocity component. There does remain a possibility that the motion field cannot
be uniquely determined, but that requires the signal structures over the whole
region to be oriented in such a way that the motion becomes ambiguous; a gener-
alized aperture problem.4 This case is characterized by Q̄ becoming singular, so
that equation (6.25) has multiple solutions. The secondary requirement to mini-
mize the mean squared velocity generalizes the idea to compute only the normal
velocity component in the case of the ordinary aperture problem.

A disadvantage with velocity estimation over a whole region is that it is as-
sumed that the true velocity field is at least reasonably consistent with the chosen
motion model. A problem here is that even if we know, e.g. from the geometry
of the scene, that the velocity field should be patchwise affine, we still need to
obtain regions not covering patches with different motion parameters. There are
many possible solutions to this problem, including graylevel segmentation and the
ideal case of a priori knowledge of suitable regions. Another solution is given in
the following section, where a simultaneous segmentation and velocity estimation
algorithm is presented. A different alternative is to ignore the need for correct seg-
mentation and instead simply average the Q matrices. This approach is described
in section 6.5.

6.4 Simultaneous Segmentation and Velocity Es-
timation

In this section we present an efficient algorithm for simultaneous segmentation
and velocity estimation, only given an orientation tensor field for one frame. The
goal of the segmentation is to partition the image into a set of disjoint regions, so
that each region is characterized by a coherent motion, with respect to the chosen
motion model. In this section a region R is defined to be a nonempty, connected set
of pixels. The segmentation algorithm is based on a competitive region growing
approach. The basic algorithm is first presented in abstract form.

6.4.1 The Competitive Algorithm

To each region R is associated a cost function CR(x), which is defined for all
pixels in the image. Regions are extended by adding one pixel at a time. To
preserve connectivity the new pixel must be adjacent to the region, and to preserve
disjointedness it must not already be assigned to some other region. The new pixel
is also chosen as cheap as possible. The details are as follows.

Let the border ∆R of region R be the set of unassigned pixels in the image
which are adjacent to some pixel in R. For each region R, the possible candidate,

4A nontrivial example of this generalized aperture problem is a signal consisting of concentric
circles, which simultaneously expand and rotate around their center. Only the radial velocity
component can be recovered.
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N(R), to be added to the region is the cheapest pixel bordering to R, i.e.

N(R) = arg min
x∈∆R

CR(x). (6.30)

The corresponding minimum cost for adding the candidate to the region is denoted
Cmin(R). In the case of an empty border, N(R) is undefined and Cmin(R) is infinite.

Assuming that a number of regions {Rn} in some way have been obtained, the
rest of the image is partitioned as follows.

1. Find the region Ri for which the cost to add a new pixel is the least, i.e.
i = arg minn Cmin(Rn).

2. Add the cheapest pixel N(Ri) to Ri.

3. Repeat the first two steps until no unassigned pixels remain.

Notice that it does not matter what the actual values of the cost functions
are. It is only relevant which of them is lowest. Hence the algorithm is called
competitive.

6.4.2 Candidate Regions

A fundamental problem with the simultaneous segmentation and velocity estima-
tion approach is that we typically need a segmentation in order to compute the
motion model parameters, and we need motion models in order to partition the
image into regions. Since we assume no a priori knowledge about the segmenta-
tion of the image, we use the concept of candidate regions to introduce preliminary
regions into the algorithm.

To begin with we arbitrarily fill the image with a large number of overlapping
rectangular candidate regions5. For each candidate region we then compute the
optimal motion model parameters as described in section 6.3. Obviously these
rectangular regions are not at all adapted to the motion field of the image and as
a consequence the computed motion models are likely to be suboptimal. In order
to improve the candidate regions we use a procedure called regrowing.

The regrowing procedure is the first application of the competitive algorithm.
Regrowing is performed for one candidate region at a time, which means that
there is no competition between different regions but rather between the pixels.
To begin with the candidate region contains only one pixel, its starting point,
which was also the center point of the initial rectangle. The cost function used is
d2 from equation (6.14), where v is the velocity given by the candidate region’s
current motion model. The competitive algorithm is then run until the candidate
region has grown to a specified size. This size is called the candidate region size,
m0 and is a design parameter of the segmentation algorithm. The effect of the
regrowing procedure is that the candidate region now consists of the m0 connected
pixels, starting from a fixed point, that are most consistent with the candidate

5e.g. squares of the size 21 × 21, with a distance between the center points of 4 pixels. The
exact numbers are not critical.
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region’s motion model. When the candidate region has been regrown, new optimal
parameters are computed.

Each candidate region is regrown twice, a number which seems to be sufficient
to obtain reasonably coherent regions.

6.4.3 Segmentation Algorithm

Having obtained candidate regions, the rest of the segmentation algorithm is a
matter of alternately converting candidate regions into real regions and letting the
latter grow. In contrast to the candidate regions, the real regions are not allowed
to overlap but have to be disjoint. While the candidate regions are allowed to
overlap each other they must not overlap the real regions, which means that they
have to be regrown from time to time, taking this restriction into account. To
accomodate the inclusion of new regions, the competitive algorithm is extended
to have the following steps, to be iterated as long as there are empty pixels left:

1. Regrow the candidate regions which are currently overlapping a real region.
If a candidate region cannot be regrown to its full size, it is removed. The
same thing happens when a candidate region’s starting point becomes occu-
pied by a real region. The cost of the most expensive included pixel is called
the maximum cost of the candidate region.

2. Find the candidate region with the least maximum cost. This is the aspirant
for inclusion among the real regions.

3. As in the competitive algorithm, find the cheapest pixel that may be added
to one of the already existing real regions.

4. Compare the least maximum cost from step 2 with the cost of the cheapest
pixel in step 3.

(a) If the least maximum cost is smallest, raise the corresponding candidate
region to the status of a real region.

(b) Otherwise, add the cheapest pixel to the corresponding region.

In the first iteration there are no real regions yet, so the first thing that happens
is that the best candidate region is transformed into the first real region.

To see how the segmentation algorithm works, frame 12 of the flower garden
sequence, illustrated in figure 6.1, has been segmented. In figure 6.2 we can see
how the regions develop and how new regions are added.

While the comparison in step 4 can be made directly between the given values,
it is beneficial to introduce a design parameter λ, with which the least maximum
cost is multiplied before the comparison is made. The effect of λ is that for a
large value, new regions are added only if it would be very expensive to enlarge
the existing ones. This may be desired e.g. if the segmentation is intended for a
video coding application, where excessive fragmentation into regions can be costly.
A small λ value means that existing regions are enlarged only if there are pixels
available that are very consistent with the motion models, which is preferable if we
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(a) frame 6 (b) frame 12 (c) frame 18

Figure 6.1: Selected frames from the flower garden sequence.

are more interested in the velocity field than in the segmentation. The difference
in segmentation for varying λ values is illustrated in figure 6.3.

The regrowing of candidate regions in step 1 of the algorithm may seem pro-
hibitively computationally expensive. In practice though, it is reasonable to as-
sume that the maximum cost always increases when a candidate region has to be
regrown.6 Therefore it is sufficient to regrow candidate regions only when the least
maximum cost is smaller than the cheapest pixel and also only a few of the top
candidate regions need to be regrown.

More details on the segmentation algorithm, a few variations, and a discus-
sion on possible improvements can be found in [21]. An algorithm with basic
elements in common with the competitive algorithm can be found in [1], being
applied to grayscale segmentation.7 Initial inspiration for the development of this
segmentation algorithm was given by the results in [89, 90, 91].

6.5 A Fast Velocity Estimation Algorithm

To avoid the complexities of the segmentation algorithm we may also choose to
completely ignore the need for segmentation into regions with coherent motion.
Instead we minimize a weighted distance measure for a motion model around each
point, i.e. equation (6.18) is replaced by

dtot(p) =
∑
i

wid1(vi,Ti) = pT
(∑

i

wiQi

)
p = pTQtotp, (6.31)

where the sum is taken over a neighborhood of the current point and the weights wi
are given by, e.g., a Gaussian. In effect this means that we convolve the quadratic
forms Qi over the image with the weight function, and this operation can be
efficiently computed by separable convolution as soon as the weight function is
separable. Another way to look at this operation is as an application of normalized
averaging, see section 3.9.1, with the weight function as applicability.8 By taking

6This would have been strictly correct if the motion model parameters were not recomputed
each time the candidate region is regrown.

7The competitive algorithm presented here was developed independently, although being pre-
dated by the mentioned paper.

8Notice that this gives a somewhat different scaling of the results, especially at the borders.
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(a) 17% coverage (b) 33% coverage

(c) 50% coverage (d) 67% coverage

(e) 83% coverage (f) 100% coverage

Figure 6.2: Development of the regions in the segmentation algorithm.
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(a) λ = 0.1 (b) λ = 0.5

(c) λ = 2 (d) λ = 10

(e) λ = 50 (f) λ = 500

Figure 6.3: Segmentation results for different λ values.
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this view we have the opportunity to set the certainty field to zero close to the
borders, which is appropriate if we only use the very fast separable correlation
method from section 4.3 to compute the tensors, as that method gives incorrect
results at the borders.

The optimal parameters and the corresponding velocity estimates at each point
are computed exactly as in section 6.3.3 and it also turns out that the minimum
value (6.23) can be used as a confidence measure,9 since it indicates how well the
local neighborhood is consistent with the motion model in use.

In the simplest case of a constant velocity motion model, we have S = I and
hence the averaging of the quadratic forms Qi reduces to an averaging of the tensor
field. This is in fact a well known idea to improve the robustness of the tensors
[94], but there are a few important differences. The first one is that here we do
not average the original tensor field, but rather the isotropy compensated field.
The second difference is that we compute the velocity by equation (6.24), solving
an equation system, rather than by (6.2) or (6.3), which involves the computation
of at least one eigenvector.

To summarize the whole algorithm we have the following five steps:

1. Compute the orientation tensor field for the frame, preferably using the
separable correlation method for maximum computational efficiency.

2. Remove the isotropic part of the tensors.

3. Compute quadratic forms, Qi = STi TiSi, according to the chosen motion
model.

4. Apply normalized averaging to the quadratic forms.

5. Solve for the optimal parameters pi and compute the corresponding velocity
estimates vi = Sipi.

6.6 Evaluation

The velocity estimation algorithms have been evaluated on two commonly used test
sequences with known velocity fields, Lynn Quam’s Yosemite sequence [45], figure
6.4, and David Fleet’s diverging tree sequence [31], figure 6.5. Both sequences are
synthetic but differs in that the Yosemite sequence is generated with the help of
a digital terrain map and therefore has a motion field with depth variation and
discontinuities at occlusion boundaries. The diverging tree sequence on the other
hand is only a textured planar surface towards which the camera translates. Hence
the motion field is very regular but the lack of image details leads to difficulties in
the velocity estimation.

Additionally the algorithms have been tested on three real image sequences
without known velocity fields. A few more evaluation results can be found in
the report from the ICPR 2000 Algorithm Performance Contest [2] but are not
reproduced here.10

9Actually it is a reversed confidence measure since small values indicate high confidence.
10For readers of the report it may be useful to know that the false alarm rate counts the fraction
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(a) frame 2 (b) frame 9

(c) frame 16 (d) velocity field

Figure 6.4: Selected frames from the Yosemite sequence and the true velocity field
corresponding to frame 9 (subsampled).
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(a) frame 20 (b) velocity field

Figure 6.5: One frame from the diverging tree sequence and the corresponding
true velocity field (subsampled).

6.6.1 Implementation and Performance

All algorithms have been implemented in Matlab, with Normalized Convolution,
ordinary convolution/correlation, the segmentation algorithm, and solution of mul-
tiple equation systems in the form of C mex files and the rest as highly vectorized
matlab code.

Typical running times for the different algorithms on a 360 MHz SUN Ultra
60 are given below and relate to the computation of the velocity for one frame of
the 252× 316 Yosemite sequence.

Velocity estimation with the segmentation algorithm takes about 30 seconds,
distributed with 1.6 seconds for tensor estimation with the separable convolution
method, 1.1 seconds for estimation of the tensors along the border with the sepa-
rable normalized convolution method, 0.5 seconds for isotropy compensation, and
27 seconds for the segmentation algorithm, most of which is spent on the construc-
tion of candidate regions. Here the affine motion model is used, effective size of
the kernels in the tensor estimation is 9 × 9 × 9, and candidate region size m0 is
500.

The fast algorithm with the affine motion model, 11 × 11 × 11 tensors, and a
41×41 averaging kernel takes about 16 seconds. Of these, 1.8 seconds are spent on
tensor estimation with the separable convolution method, 0.5 seconds on isotropy
compensation, 0.3 seconds on computation of the quadratic forms, 8.6 seconds on
normalized averaging, and 4.8 seconds on solving for the velocity.

Finally we have the fast algorithm with the constant velocity motion model,
9 × 9 × 9 tensors and 15 × 15 normalized averaging. Here the running time is

of non-zero velocity estimates in the uniformly gray background of the test sequences. We leave
it to the readers to decide whether this is a useful measure or relevant to their applications.
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about 3.5 seconds, with 1.6 seconds for tensor estimation, 0.5 seconds for isotropy
compensation, 1.2 seconds for normalized averaging, and 0.2 seconds for solving
for the velocity.

6.6.2 Results for the Yosemite Sequence

The accuracy of the velocity estimates has been measured using the average spa-
tiotemporal angular error, arccos(v̂Testv̂true) [8]. In the Yosemite sequence the sky
region is excluded from the error analysis.11

To see how the various design parameters affect the results, we present a fairly
detailed analysis. Common parameters for all algorithms are the values of σ and
γ in the tensor estimation, cf. sections 5.7.2 and 5.7.3.12 Additional parameters
for the segmentation algorithm are the factor λ and the candidate region size m0.
The fast algorithm only adds the standard deviation σavg for the averaging kernel,
which is chosen to be Gaussian. The kernel sizes used by the various algorithms
are the same as in the discussion on running times.

For the segmentation algorithm, we begin by varying m0 while having σ = 1.4,
γ = 1

8 , and λ = 0.06. The results are shown in figure 6.6(a) and we can see that
the errors vary between 1.25◦ and 1.45◦ in a rather unpredictable way. The main
reason for this peculiar phenomenon is that the final partitioning into regions as
well as the motion model parameters, which are computed only from the initial
pixels in the region, can change significantly with a small change in m0. In figure
6.6(b)–(d) we plot the minimum, mean, and maximum values for the average
angular errors over the interval 400 ≤ m0 ≤ 600, while in turn varying σ, γ, and
λ around the values given above.

While the sensitivity to the value of m0 is disturbing, it turns out that this
problem can be eliminated nicely at the cost of some extra computation. The
solution is to estimate the velocity for a number of different values of m0 and then
simply average the estimates.13 This has the double effect of both stabilizing the
estimates and improving them. Using 11 evenly spaced values 400, 420, . . . , 600 of
m0 we get an average angular error of 1.14◦ and a standard deviation of 2.14◦.
Picking 11 m0 values randomly in the same interval, we consistently get average
angular errors between 1.13◦ and 1.18◦.

In figure 6.7(a)–(c) we see the results for the fast algorithm with the affine
motion model, in turn varying σ, γ and σavg around the point σ = 1.6, γ = 1

256
and γavg = 6.5. Of interest here is that a large part of the errors are due to
discontinuities in the velocity field, especially along the horizon. It turns out that
the confidence measure is rather successful in identifying the uncertain estimates.
Sorting the estimates with respect to the confidence, we can compute average
angular errors at different levels of coverage, shown in figure 6.7(d). At 100%

11Notice that the sky region is only excluded from the error analysis, however. It is not blanked
out or otherwise removed prior to estimating the velocity field.

12We only consider Gaussian applicabilities. To some extent the kernel size may also be
regarded as a design parameter, but its only effect is a trade-off between the computation time
and the usable range for σ.

13Notice that we only need to rerun the segmentation algorithm. The tensor field can be
reused. The running time is thus increased to about five minutes when 11 m0 values are used.
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Figure 6.6: Average angular errors for the segmentation algorithm on the Yosemite
sequence, while varying the design parameters.



100 Velocity Estimation

1 1.2 1.4 1.6 1.8 2 2.2
0

0.5

1

1.5

2

2.5

3

σ

av
er

ag
e 

er
ro

r,
 d

eg
re

es

(a)

10
−4

10
−2

10
0

10
2

10
4

0

0.5

1

1.5

2

2.5

3

γ

av
er

ag
e 

er
ro

r,
 d

eg
re

es

(b)

2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

3

σ
2

av
er

ag
e 

er
ro

r,
 d

eg
re

es

(c)

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

Coverage (%)

av
er

ag
e 

er
ro

r,
 d

eg
re

es

(d)

Figure 6.7: (a)–(c): Average angular errors for the fast algorithm with the affine
motion model on the Yosemite sequence, while varying the design parameters. (d):
Average angular errors at different levels of coverage. The dashed lines are the
corresponding standard deviations.

coverage we have an average angular error of 1.40◦ ± 2.57◦, at 90% the error is
1.00◦ ± 1.09◦, and at 70% it is 0.75◦ ± 0.73◦.14

Using the constant velocity motion model instead of affine motion we obtain
average angular errors at different levels of coverage according to figure 6.8 for
σ = 1.4, γ = 1

32 , and σavg = 3.5. The errors are increased to 1.94◦ ± 2.31◦ at
100% coverage, 1.61◦ ± 1.57◦ at 90%, and 1.43◦ ± 1.24◦ at 70%. These results
can be compared to results for a similar simple method, reported by Karlholm
in [61]. He uses orientation tensors estimated from quadrature filter responses at
multiple scales. From these the isotropic part is removed and they are normalized
with respect to the largest eigenvalue. Finally the squared tensors are averaged
using a 21 × 21 Gaussian kernel with standard deviation 6 and the velocity is

14a ± b is used here as a shorthand for average error and standard deviation, but has no
meaningful interpretation in terms of an interval.
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Figure 6.8: Average angular errors for the fast algorithm with the constant velocity
motion model on the Yosemite sequence at different levels of coverage. The dashed
line gives the corresponding standard deviations.

segmentation fast, affine fast, constant
Average error 1.14◦ 1.40◦ 1.94◦

Standard deviation 2.14◦ 2.57◦ 2.31◦

< 0.5◦ 32.0% 35.8% 14.1%
Proportion < 1◦ 64.4% 65.0% 39.7%
of estimates < 2◦ 87.8% 82.1% 70.5%
with errors < 3◦ 94.0% 89.7% 83.4%
below: < 5◦ 98.0% 95.4% 92.8%

< 10◦ 99.7% 98.8% 98.6%

Table 6.1: Distribution of errors for the Yosemite sequence.

estimated from the smallest eigenvector as in equation (6.3). This gives average
angular errors of 2.44◦ ± 2.06◦ at 90% coverage and 2.23◦ ± 1.94◦ at 70%, using
the quotient λ2

λ1
as confidence measure.

It would also be conceivable to use the eight parameter motion model with the
fast algorithm but it turns out to give no better results than the affine motion
model. In fact the results are slightly worse, probably due to model overfitting.15

Some statistics on the distribution of errors for the three evaluated methods
are given in table 6.1. Comparison with previously published results, table 6.2,
shows that the algorithms presented here are substantially16 more accurate than
existing methods.

15The constant velocity motion model and the eight parameter motion model can of course
be used with the segmentation algorithm too, but do not lead to any improvements for this
sequence.

16The margins are, however, considerably smaller than when this comparison was made in [23].
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Technique Average Standard Density
error deviation

Lucas & Kanade [71] 2.80◦ 3.82◦ 35%
Uras et al. [87] 3.37◦ 3.37◦ 14.7%
Fleet & Jepson [31] 2.97◦ 5.76◦ 34.1%
Xu [100] 4.90◦ 7.34◦ 99.8%
Black & Anandan [12] 4.46◦ 4.21◦ 100%
Szeliski & Coughlan [81] 2.45◦ 3.05◦ 100%
Black & Jepson [13] 2.29◦ 2.25◦ 100%
Ju et al. [59] 2.16◦ 2.0◦ 100%
Karlholm [61] 2.06◦ 1.72◦ 100%
Lai & Vemuri [69] 1.99◦ 1.41◦ 100%
Bab-Hadiashar & Suter [7] 1.97◦ 1.96◦ 100%
Mémin & Pérez [73] 1.58◦ 1.21◦ 100%
segmentation 1.14◦ 2.14◦ 100%
fast, affine 1.40◦ 2.57◦ 100%
fast, affine 0.75◦ 0.73◦ 70%
fast, constant 1.94◦ 2.31◦ 100%
fast, constant 1.43◦ 1.24◦ 70%

Table 6.2: Comparison of error results for the Yosemite sequence. All errors are
computed without the sky region. The compilation of the old results is based on
a similar table by Karlholm [61].
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Technique Average Standard Density
error deviation

Horn & Schunck (modified) 2.55◦ 3.67◦ 100%
Lucas & Kanade 1.65◦ 1.48◦ 24.3%
Uras et al. 3.83◦ 2.19◦ 60.2%
Nagel 2.94◦ 3.23◦ 100%
Fleet & Jepson 0.73◦ 0.46◦ 28.2%
Liu et al. [70] 1.86◦ 1.35◦ 100%
Xu [100] 4.11◦ 6.56◦ 93.7%
Gökstorp [34] 0.94◦ 0.60◦ 50.0%
segmentation 0.54◦ 0.28◦ 100%
fast, affine 0.56◦ 0.23◦ 100%
fast, constant 1.79◦ 1.34◦ 100%

Table 6.3: Comparison of error results for the diverging tree sequence.

6.6.3 Results for the Diverging Tree Sequence

The diverging tree sequence is characterized by having a continuous velocity field,
in contrast to the discontinuities in the Yosemite sequence. On the other hand
there is less texture and large regions which are completely featureless. One result
of these changed circumstances is that the confidence measure for the fast method
turns ineffective, since the larger estimation errors mainly are caused by a lack
of image details rather than incoherency in the local velocity field.17 Hence no
results are given for partial levels of coverage.

The segmentation algorithm, with σ = 1.25, γ = 1
8 , λ = 0.25, and the velocity

averaged over m0 = 500, 520, . . . , 700 gives an average angular error of 0.54◦ and
a standard deviation of 0.28◦. The fast algorithm with the affine motion model
and σ = 1.6, γ = 1

4 , and σavg = 9.5 (51 × 51 Gaussian kernel) gives an average
angular error of 0.56◦±0.23◦. The fast algorithm with the constant velocity motion
model and σ = 1.1, γ = 1

32 , and σavg = 1.5 results in an average angular error of
1.79◦ ± 1.34◦.

That the segmentation algorithm gives only marginally better results than the
fast algorithm with the affine motion model is not surprising given the lack of
discontinuities in the velocity field. A comparison with other methods is given in
table 6.3. Entries without an explicit citation are from [8].

6.6.4 Results for Real Image Sequences

The velocity estimation algorithms have also been tested on three real image se-
quences also used in [8]. No ground truth data are available for these and therefore
we only present arrow plots of the estimated velocity fields in figures 6.9–6.11.

17Necessary information to detect this kind of uncertainty should be available in the tensor
field.
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(a) sample frame (b) fast, constant

(c) fast, affine (d) segmentation

Figure 6.9: SRI Trees sequence. Sample frame and estimated velocity fields (sub-
sampled).

The first velocity field in each figure is estimated by the fast algorithm with
the constant motion model, the second field by the fast algorithm with the affine
motion model, and the third field by the segmentation algorithm with the affine
motion model. In all cases 9 × 9 × 9 tensors with σ = 1.2 have been used. The
averaging for the fast algorithm has been done over 11×11 areas with σavg = 1.5 for
the constant motion model and over 13×13 areas with σavg = 1.8 for the constant
motion model. The segmentation algorithm uses the parameters m0 = 400 and
λ = 0.6.
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(a) sample frame (b) fast, constant

(c) fast, affine (d) segmentation

Figure 6.10: Rubik Cube sequence. Sample frame and estimated velocity fields
(subsampled).
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(a) sample frame (b) fast, constant

(c) fast, affine (d) segmentation

Figure 6.11: Hamburg Taxi sequence. Sample frame and estimated velocity fields
(subsampled).



Chapter 7

Displacement Estimation

7.1 Introduction

A limitation of the motion estimation algorithms in chapter 6, and methods based
on spatiotemporal filtering in general, is that they require the motion field to be
consistent over several frames for good results. Unfortunately this is not always
the case.

This limitation has turned out to be a real problem in the WITAS project (see
section 1.1), where image sequences are obtained by a helicopter-mounted cam-
era. Six consecutive frames from a test flight at Revinge are shown in figure 7.1.
The camera system is affected by vibrations from the helicopter, causing small
but still significant displacements of the images at each frame. Moreover these
displacements change very quickly and are therefore difficult to predict or com-
pensate for. Figure 7.2 shows the estimated displacement fields between successive
frames. These include motion induced both by the regular movement of the heli-
copter and by vibrations. Since the former should be mostly constant within the
short sequence of frames involved here, it is clear that the vibrations are indeed
significant.

One possible solution to the problem with vibrations is to only use two frames
and estimate the displacement between these. Then the background is assumed to
move according to a parametric model, which allows us to estimate and compensate
for the ego-motion, including vibrations. This chapter introduces a novel two-
frame displacement estimation algorithm, based on polynomial expansion, and
develops the necessary machinery to detect moving objects in image sequences of
the type shown in figure 7.1. The final detection results for that sequence can be
found in section 7.10.

7.2 Displacement of a Quadratic Polynomial

Since the result of polynomial expansion is that each neighborhood is approxi-
mated by a polynomial, it is interesting to analyze what happens if a polynomial
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(a) (b)

(c) (d)

(e) (f)

Figure 7.1: Six consecutive frames from a test flight at Revinge. Subsampled a
factor two from the original video sequence.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.2: Estimated displacement fields between pairs of frames in figure 7.1.
The maximum displacements are about 4.5 pixels.
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undergoes an ideal translation.
Consider the exact quadratic polynomial

f1(x) = xTA1x + bT1 x + c1 (7.1)

and construct a new signal f2 by a global displacement by d,

f2(x) = f1(x− d)

= (x− d)TA1(x− d) + bT1 (x− d) + c1

= xTA1x− 2dTA1x + dTA1d + bT1 x− bT1 d + c1

= xTA1x + (b1 − 2A1d)Tx + dTA1d− bT1 d + c1

= xTA2x + bT2 x + c2.

(7.2)

Equating the coefficients in the quadratic polynomials yields

A2 = A1, (7.3)
b2 = b1 − 2A1d, (7.4)

c2 = dTA1d− bT1 d + c1. (7.5)

The key observation is that by equation (7.4) we can solve for the translation d,
at least if A1 is non-singular,

2A1d = −(b2 − b1), (7.6)

d = −1
2
A−1

1 (b2 − b1). (7.7)

We note that this observation holds for any signal dimensionality.

7.2.1 Intuitive Explanation

The stationary points of

f(x) = xTAx + bTx + c (7.8)

can be found by differentiating f and setting the result to 0,

∇f(x) = 2Ax + b = 0, (7.9)

x = −1
2
A−1b. (7.10)

If we assume that A is non-singular and rewrite (7.7) as

d = (−1
2
A−1

2 b2)− (−1
2
A−1

1 b1), (7.11)

we obtain the displacement as the observed movement of the stationary point.
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7.2.2 Practical Considerations

Obviously the assumptions about an entire signal being a single polynomial and
a global translation relating the two signals are quite unrealistic. Still the basic
relation (7.6) can be used for real signals, although errors are introduced when the
assumptions are relaxed. The question is whether these errors can be kept small
enough to give useful algorithms.

To begin with we replace the global polynomial in equation (7.1) with local
polynomial approximations. Thus we start by doing a polynomial expansion of
both images, giving us expansion coefficients A1(x), b1(x), and c1(x) for the first
image and A2(x), b2(x), and c2(x) for the second image. Ideally this should give
A1 = A2 according to equation (7.3) but in practice we have to settle for the
approximation

A(x) =
A1(x) + A2(x)

2
. (7.12)

We also introduce
∆b(x) = −1

2
(b2(x)− b1(x)) (7.13)

to obtain the primary constraint

A(x)d(x) = ∆b(x), (7.14)

where d(x) indicates that we have also replaced the global displacement in equation
(7.2) with a spatially varying displacement field.

The first application of these observations is an extremely simple but functional
and fast disparity estimation algorithm.

7.3 A Simple Disparity Estimation Algorithm

The assumption is that we have a stereo pair of two images, called left and right,
which are related by a spatially varying displacement field, where all displace-
ments, the disparities, are along the x-axis. For the standard stereo geometry
(see appendix H) with two parallel pinhole cameras, the disparities are inversely
proportional to the depths in the scene. To illustrate the algorithm we use a stereo
pair from the well-known SRI Trees sequence, shown in figure 7.3.

Using indices r and l for the right and left images instead of 1 and 2, equations
(7.12) and (7.13) turn into

A(x, y) =
Ar(x, y) + Al(x, y)

2
, (7.15)

∆b(x, y) = −1
2
(bl(x, y)− br(x, y)). (7.16)

In principle we should now be able to obtain a disparity estimate at (x, y) by
solving equation (7.14) pointwise, i.e.

d(x, y) = A(x, y)−1∆b(x, y). (7.17)
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Figure 7.3: Stereo pair.

Notice that this gives a 2D displacement d, which may have a non-zero y compo-
nent. Since the disparities are assumed to be limited to the x direction, we can
use the relative size of the y component as a confidence measure.

Unfortunately, and not very surprising, these estimates turn out to be too noisy
and uncertain to be really useful. There is also the problem that A(x, y) may be
singular or close to singular. The result of applying this operation to the stereo
pair in figure 7.3 is shown in figure 7.4.

If we make the assumption that the disparity field is only slowly varying, we
can improve the estimates through an averaging operation. The drawback is that
step discontinutities in the disparity field will be smoothed out.

Figure 7.4: Disparity estimates from equation (7.17). Values outside the interval
[0, 6] have been truncated. Disparity 0 is shown as black and 6 as white.
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Figure 7.5: Local averages of the disparities shown in figure 7.4.

The naive way to implement the averaging would be to simply compute a local
average of the pointwise disparity estimates obtained through equation (7.17), e.g.
by filtering them with some lowpass filter. As we can see in figure 7.5, this gives
a very unsatisfactory result. The main reason is that we have occasional disparity
estimates which are way off, possibly several thousand pixels large or more.

A better solution would be to apply the averaging implicitly to the constraints
(7.14). Such an approach is used in section 7.4 for general displacement estimation.
Here we opt for simplicity and instead explore what can be done with normalized
averaging (see section 3.9.1).

We have three sources of certainty information. As has already been remarked,
equation (7.17) yields a 2D displacement field, although we know a priori that the
y component should be zero. Thus we introduce

c1(x, y) =
dx(x, y)2

dx(x, y)2 + dy(x, y)2
(7.18)

as a measure of the relative sizes of the two components.
The second certainty source is based on the observation in appendix H that

knowledge of the minimum and maximum depth in the scene allows establishing
a priori bounds on the disparity. We set certainty to zero for all outliers,

c2(x, y) =

{
1, dmin ≤ dx(x, y) ≤ dmax,

0, otherwise.
(7.19)

Although we do not know the actual camera parameters or depth bounds for the
stereo pair in figure 7.3, we can by observation estimate dmin = 0 and dmax = 6.

The last source of certainty is related to the computation of the polynomial
expansion. If this is done with the fastest algorithm, separable correlation (SC),
we get unreliable expansion coefficients close to the edges. Assuming that the
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Figure 7.6: Certainty fields c1 and c. Black corresponds to certainty 0 and white
to certainty 1.

applicability used for polynomial expansion was of size N ×N , we set

c3(x, y) =

{
0, (x, y) within N−1

2 pixels from the edge,
1, otherwise.

(7.20)

If the polynomial expansion is done by either of the normalized convolution (NC)
or separable normalized convolution (SNC) methods, there is still reason to lower
the certainty at the very edges but not as drastically as here.

The total certainty is computed as the product of these three,

c(x, y) = c1(x, y)c2(x, y)c3(x, y). (7.21)

The first certainty component c1 and the total certainty c are shown in figure 7.6.
The signal used in the normalized averaging is of course the disparity estimates,

i.e. the x component of the displacements computed by equation (7.17), and we use
a Gaussian applicability. The result can be seen in figure 7.7. It is certainly not
perfect, but adequate considering that the primary design goal of the algorithm
was simplicity.

The final algorithm is summarized below:

1. Compute polynomial expansions Al, bl, cl and Ar, br, cr for the left and
right images respectively.

2. Compute A and ∆b according to equations (7.15) and (7.16).

3. Compute displacement vectors d by solving 2×2 equation systems according
to equation (7.17).

4. Compute certainty values according to equations (7.18)–(7.21).
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Figure 7.7: Disparity estimates after normalized averaging.

5. Apply normalized averaging to the x component of the displacement com-
puted in step 3, using a Gaussian applicability and c as certainty. This gives
the final disparity estimates.

7.4 Displacement Estimation

In this section we go back to the problem of estimating a general displacement
field, which is not constrained to the x-axis. As we saw in the previous section,
pointwise solution of (7.14) does not give good results. To improve this we make,
as before, the assumption that the displacement field is only slowly varying. This
time we try to find d(x) satisfying (7.14) as well as possible over a neighborhood
I of x, or more formally minimizing∑

∆x∈I
w(∆x)‖A(x + ∆x)d(x)−∆b(x + ∆x)‖2, (7.22)

where we let w(∆x) be a weight function (applicability). The minimum is obtained
for

d(x) =
(∑

wATA
)−1∑

wAT∆b, (7.23)

where we have dropped some indexing to make the expression more readable. The
minimum value is given by

e(x) =
(∑

w∆bT∆b
)
− d(x)T

∑
wAT∆b. (7.24)

In practical terms this means that we compute ATA, AT∆b, and ∆bT∆b point-
wise and average these with w before we solve for the displacement. The minimum
value e(x) can be used as a reversed confidence value, with small numbers indicat-
ing high confidence. The solution given by (7.23) exists and is unique unless the
whole neighborhood is exposed to the aperture problem.
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Sometimes it is useful to add a certainty weight c(x + ∆x) to (7.22). This is
most easily handled by scaling A and ∆b accordingly.

7.5 Estimating a Parameterized Displacement Field

Like in section 6.3 we can improve robustness if the displacement field can be
parameterized according to some motion model. The approach is very similar and
we derive it for the eight parameter model in 2D, given by equation (6.6),

dx(x, y) = a1 + a2x + a3y + a7x
2 + a8xy,

dy(x, y) = a4 + a5x + a6y + a7xy + a8y
2.

(7.25)

We can rewrite this in matrix form similar to (6.28) and (6.29), except that we do
not have an extra temporal dimension,

d = Sp, (7.26)

S =
(

1 x y 0 0 0 x2 xy
0 0 0 1 x y xy y2

)
, (7.27)

p =
(
a1 a2 a3 a4 a5 a6 a7 a8

)T
. (7.28)

Inserting into (7.22) we obtain the weighted least squares problem∑
i

wi‖AiSip−∆bi‖2, (7.29)

where we use i to index the coordinates in a neighborhood. The solution is

p =

(∑
i

wiSTi AT
i AiSi

)−1∑
i

wiSTi AT
i ∆bi. (7.30)

We can notice that just as in section 6.3, any motion model which is linear in
its parameters can be used. We also notice that like in the previous section we
can compute STATAS and STAT∆b pointwise and then average these with w.
In fact (7.30) reduces to (7.23) for the constant motion model.

A minor variation of the idea is to approximate the entire signal with one
parametric displacement field, allowing us to compute the parameters by

p =

(∑
i

STi AT
i AiSi

)−1∑
i

STi AT
i ∆bi, (7.31)

where the summation is over the whole signal.

7.6 Incorporating A Priori Knowledge

A principal problem with the method so far is that we assume that the local
polynomials at the same coordinates in the two signals are identical except for a
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displacement. Since the polynomial expansions are local models these will vary
spatially, introducing errors in the constraints (7.14). For small displacements
this is not too serious, but with larger displacements the problem increases. For-
tunately we are not restricted to comparing two polynomials at the same coordi-
nate. If we have a priori knowledge about the displacement field, we can compare
the polynomial at x in the first signal to the polynomial at x + d̃(x) in the sec-
ond signal, where d̃(x) is the initial displacement field rounded to integer values.
Then we effectively only need to estimate the relative displacement between the
real value and the rounded a priori estimate, which hopefully is smaller.

This observation is included in the algorithm by replacing equations (7.12) and
(7.13) by

A(x) =
A1(x) + A2(x̃)

2
, (7.32)

∆b(x) = −1
2
(b2(x̃)− b1(x)) + A(x)d̃(x), (7.33)

where
x̃ = x + d̃(x). (7.34)

The first two terms in ∆b are involved in computing the remaining displacement
while the last terms adds back the rounded a priori displacement. We can see
that for d̃ identically zero, these equations revert to (7.12) and (7.13), as would
be expected.

The displacement estimation algorithm derived in the last three sections is il-
lustrated with a block diagram in figure 7.8. Input are the quadratic polynomial
expansion coefficients for the two signals, A1,b1,A2,b2, and an a priori displace-
ment field din. Output is the estimated displacement field dout.

7.7 Iterative and Multi-scale Displacement Esti-
mation

A consequence of the inclusion of an a priori displacement field in the algorithm is
that we can close the loop and iterate. A better a priori estimate means a smaller
relative displacement, which in turn improves the chances for a good displacement
estimate. We consider two different approaches, iterative displacement estimation
and multi-scale displacement estimation.

7.7.1 Iterative Displacement Estimation

The simplest solution is shown in figure 7.9, where the displacement estimation
is iterated three times. The output displacement of one step is used as a priori
displacement in the next step. The a priori displacement field din at the first step
would usually be set to zero, unless actual knowledge about the displacement field
is available. The same polynomial expansion coefficients are used in all steps and
need only be computed once. It is of course possible to use any fixed number of
iterations or to iterate until the displacement estimates have converged.
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Figure 7.8: Block diagram of the displacement estimation algorithm.
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DE = Displacement Estimation block from figure 7.8

Figure 7.9: Block diagram of the iterative displacement estimation algorithm.
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The weak spot of this approach is in the first iteration. If the displacements
(relative the a priori displacements) are too large, the output displacements cannot
be expected to be improvements and iterating will be meaningless.

7.7.2 Multi-scale Displacement Estimation

The problem of too large displacements can be reduced by doing the analysis at
a coarser scale. This means that we use a larger applicability for the polynomial
expansion and/or lowpass filter the signal first, as discussed in section 4.5. The
effect is that the estimation algorithm can handle larger displacements but at the
same time the accuracy decreases.

This observation points to a multi-scale approach. Start at a coarse scale to
get a rough but reasonable displacement estimate and propagate this through finer
scales to obtain increasingly more accurate estimates. Figure 7.10 shows a diagram
for a three-scale displacement estimation algorithm. To reduce computations the
signals f1 and f2 are both lowpass filtered and subsampled between scales but
the algorithm would work with any multi-scale polynomial expansion scheme. If
the signal is subsampled it is necessary to do an upsampling of the estimated
displacement fields between the scales, including rescaling the values appropriately.
As before we set the a priori displacement din at the coarsest scale to zero, unless
actual knowledge about the displacement field is available.

Compared to the iterative displacement estimation algorithm, this approach
requires new polynomial expansion coefficients to be computed for each scale.
As we can see in the next section, however, this has only minor effects on the
computational complexity, if we do subsample. It is also conceivable to combine
both approaches and iterate multiple times at each scale but that is probably not
an efficient solution, except possibly at the coarsest scale.

7.8 Computational Complexity

The computational complexity of the displacement estimation algorithms is dom-
inated by two steps; the polynomial expansion and the spatial averaging of the G
and h matrices in figure 7.8.

The cost of polynomial expansion is discussed in section 4.4. For displacement
estimation we need two polynomial expansions, one for each signal. If we are using
the multi-scale algorithm we also need to recompute the polynomial expansions
for each scale. However, if subsampling is employed the number of pixels at each
scale typically decreases by a factor of two per dimension, meaning that the cost
for all remaining scales is only a fraction of the cost for the first scale.

The averaging operation can be assumed to be implemented by separable fil-
tering. Letting n be the length of the separable filters and d the dimensionality,
we have dn operations per pixel and component in G and h. The number of
components obviously depends on the number of parameters in the motion model.
Letting this be m we have an upper limit of m(m+1)

2 independent components in G
since this is a symmetric m×m matrix and we have m components in the vector
h. In practice there are often a few more duplicate components in G, however. In
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Figure 7.10: Block diagram of the multi-scale displacement estimation algorithm.
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2D we have a total of 5 components in G and h for the constant motion model1, 24
for the affine motion model, and 39 for the eight-parameter motion model. For the
iterative algorithm we also need to multiply with the number of iterations and for
the multi-scale algorithm with the number of scales, unless subsampling is used,
which makes the additional cost small. To summarize, if we let k be the effective
number of iterations, the cost for this step is in the order of dnm

2k
2 operations per

pixel.

7.9 Evaluation

To verify that the algorithms are basically sound and to explore some of their
characteristics we have made a very simple experiment, involving global transla-
tions only. We have also tested the algorithms on the Yosemite and the diverging
tree sequences, as well as on some real image sequences.

7.9.1 Global Translation Experiment

The setup for the first experiment is that the first image is the 512×512 Lena image,
also used in section 3.9. The second image is obtained by translating the first image
some distance, using cubic interpolation. To avoid any complications related to
borders or missing data, the global displacement is estimated by summing over
the central 256× 256 pixels in equation (7.31), using the constant motion model.

The algorithms have been tested with translations ranging from 0.2 pixels and
upwards in steps of 0.2 pixels and in 16 different directions. Figure 7.11(a) shows
a truncated plot of the translation vectors.

All polynomial expansions have been computed with Gaussian applicability
with σ = 0.15(N −1), where N is the spatial size of the filters. The initial a priori
displacements have been set to zero in all cases.

We refer to the different displacement estimation algorithms as “basic” for
figure 7.8, “iterative” for figure 7.9, and “multi-scale” for figure 7.10. In the
latter case, however, we use no subsampling or lowpass filtering in the polynomial
expansion structure. This makes the results more directly comparable.

Figure 7.11(b) shows a plot of the estimated displacements when using the
basic algorithm and filter size N = 17. The ideal result would have looked exactly
like figure 7.11(a) and what we can see is that the estimates are reasonable up to
a distance of about 6 pixels, after which the algorithm can no longer follow the
displacements. What happens is that more and more of the constraints (7.14) be-
come essentially random and together tend to favor a small displacement estimate.
Figure 7.11(c) shows a close-up of the results from one of the directions together
with the correct results and we can see that the angular errors are relatively small
but that the distances become increasingly overestimated. This holds up to the
point where the algorithm can no longer follow the displacements. However, due
to the previous overestimation, the absolute errors happen to improve for a while
when the estimates start to become smaller.

16 if we also want to compute the confidence measure (7.24).
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Figure 7.11: Correct and estimated displacement vectors. Basic algorithm with
N = 17.
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Figure 7.12: Average absolute displacement errors, plotted against distance. Basic
algorithm.

Figure 7.12(a) shows the absolute errors, averaged over the 16 directions and
plotted against the distance. The five curves are for the filter sizes 5, 9, 17, 33,
and 65 respectively. As expected we can recover larger displacements at coarser
scales. Figure 7.12(b) shows a close-up of the curves in a logarithmic plot and
we can see that for small displacements we can achieve errors in the order of 0.01
pixels, except for N = 5 where the filters simply are too small.

Similar plots for the iterative algorithm can be found in figure 7.13(a),(b) for
N = 9 and N = 17. The six curves in each plot show the results for the first to
the sixth iteration. As can be seen in the logarithmic curves in figure 7.13(c),(d)
we can achieve very small errors all the way up to a distance of about 4.5 and 10
pixels respectively but beyond that there is essentially no benefit in iterating.

Figure 7.14 shows the corresponding results for the multi-scale algorithm, using
filter sizes 65, 33, 17, 9, and 5 in sequence.

It should be mentioned that this experiment is extremely favorable for the
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Figure 7.13: Average absolute displacement errors, plotted against distance. Iter-
ative algorithm, N = 9 (a),(c) and N = 17 (b),(d).
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Figure 7.14: Average absolute displacement errors, plotted against distance.
Multi-scale algorithm.
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Technique Average Standard Density
error deviation

Constant, 1 iteration 3.94◦ 4.24◦ 100%
3.17◦ 2.58◦ 70%
2.10◦ 1.51◦ 30%

Constant, 3 iterations 2.64◦ 2.60◦ 100%
2.18◦ 1.84◦ 70%
1.64◦ 1.30◦ 30%

Affine, 1 iteration 4.20◦ 6.79◦ 100%
Affine, 3 iterations 2.36◦ 3.69◦ 100%

Table 7.1: Results for the Yosemite sequence using constant and affine motion
models.

algorithms in that only one of the assumptions discussed in section 7.2.2 is broken2

and we know that we can collect information over a large region. We can in
particular see that we obtain high accuracy also for the coarsest scales, which
cannot be expected when the translation stops being global. As a consequence
the multi-scale algorithm does not come to its right because the errors would
have become smaller by iterating within the N = 33 or N = 17 scale instead of
continuing to finer scales3.

7.9.2 Results for Yosemite and Diverging Tree

The Yosemite and diverging tree sequences were presented in section 6.6. We have
estimated the displacement from the center frame and the following frame. This is
done for the basic and the iterative algorithms using a 39×39 Gaussian weighting
function (w in equation (7.29)) with standard deviation 6. The polynomial expan-
sion is done with an 11 × 11 Gaussian applicability with standard deviation 1.5
for the Yosemite sequence and a 9 × 9 Gaussian with standard deviation 1.2 for
the diverging tree sequence. In order to avoid large errors near the borders, the
polynomial expansions have been computed with the separable normalized convo-
lution method. Additionally pixels close to the borders have been given a reduced
certainty (see section 7.4) because the expansion coefficients still can be assumed
to be less reliable there.

The results are shown in table 7.1 for the Yosemite sequence and in table 7.2
for the diverging tree sequence. Comparison with other methods can be found in
section 6.6. The results for partial coverage have been computed from the most
reliable estimates according to the confidence measure (7.24).

We can see that these algoritms do not at all perform as well as the tensor-
based algorithms in chapter 6. This is not very surprising since these algorithms
only use two frames while the tensor-based methods take advantage of the spatio-
temporal consistency over several frames. Still the Yosemite results are relatively

2The polynomials are local but the displacement is still a global translation.
3The N = 5 scale is probably always too fine, however.
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Technique Average Standard Density
error deviation

Constant, 1 iteration 3.59◦ 2.60◦ 100%
3.57◦ 2.42◦ 70%
4.02◦ 2.19◦ 30%

Constant, 3 iterations 3.68◦ 3.27◦ 100%
3.46◦ 2.31◦ 70%
3.93◦ 2.23◦ 30%

Affine, 1 iteration 3.61◦ 5.33◦ 100%
Affine, 3 iterations 3.13◦ 5.59◦ 100%

Table 7.2: Results for the diverging tree sequence using constant and affine motion
models.

good.
It is worth noticing that the confidence measure works reasonably well for the

Yosemite sequence but not at all for the diverging tree sequence, which was also
the case for the tensor based methods, see section 6.6.3. We can also see that the
results are not always improved by iterating.

7.9.3 Results for Real Image Sequences

As in section 6.6.4 we have tested the displacement estimation algorithms on three
real image sequences and the results can be found in figures 7.15–7.17. Each figure
contains five displacement fields. Common for all of them is that w is a 39 × 39
Gaussian with standard deviation 6 and that the polynomial expansion is done
with an N × N Gaussian applicability with standard deviation 0.15(N − 1). As
before the pixels close to the borders have been given a reduced certainty. The
differences are:

(b) Basic algorithm, N = 9, constant motion model.
(c) Basic algorithm, N = 33, constant motion model.
(d) Iterative algorithm, N = 9, 3 iterations, constant motion model.
(e) Multi-scale algorithm, N = 33, 17, 9, constant motion model.
(f) Multi-scale algorithm, N = 33, 17, 9, affine motion model.

7.10 Moving Object Detection

Returning to the image sequence in figure 7.1, we are interested in detecting moving
objects. In this case we have two cars which are moving slowly through the
crossing. Unfortunately this is difficult to see from the displacement fields in figure
7.2, estimated by the multi-scale algorithm over three scales and with the constant
motion model, since they are completely dominated by camera ego-motion, mostly
due to vibrations.
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(a) sample frame (b) basic, 9

(c) basic, 33 (d) iterative, 9

(e) multi-scale, constant motion (f) multi-scale, affine motion

Figure 7.15: SRI Trees sequence. Sample frame and estimated displacement fields
(subsampled).
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(a) sample frame (b) basic, 9

(c) basic, 33 (d) iterative, 9

(e) multi-scale, constant motion (f) multi-scale, affine motion

Figure 7.16: Rubik Cube sequence. Sample frame and estimated displacement
fields (subsampled).
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(a) sample frame (b) basic, 9

(c) basic, 33 (d) iterative, 9

(e) multi-scale, constant motion (f) multi-scale, affine motion

Figure 7.17: Hamburg Taxi sequence. Sample frame and estimated displacement
fields (subsampled).
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(a) background displacement (b) residual displacement

Figure 7.18: Background and residual displacement fields corresponding to figure
7.2(a). The residual field is magnified by a factor 10.

7.10.1 The Plane+Parallax Decomposition

To solve the problem we use the plane+parallax approach [48, 67, 68, 76, 78].
The idea is that the background can be approximated by a reference plane, the
displacement field of which can be fit to the eight-parameter motion model (7.25).
After subtracting this we obtain a residual parallax displacement field where mov-
ing objects turn up and can be detected. Unfortunately also structures not lying in
the reference plane cause a residual displacement, so further processing is required
to distinguish these. In principle it is possible to use the fact that the parallax
induced by stationary objects constitutes an epipolar field [47] but it is probably
more robust and efficient to sort out potential moving objects by using other cues
such as size or temporal coherence.

7.10.2 Estimating Background Displacement

One straightforward way to compute the background displacement would be to
fit the estimated displacement field globally to the eight-parameter motion model
(7.25). This would be unnecessarily indirect, however, since equation (7.31) al-
ready tells us how to compute a global parametric field directly from the primary
constraints. It is worth noting that this is much less expensive than estimating
parametric fields locally, since only a single summation over the whole image is
involved.

Figure 7.18 shows the estimated background displacement field corresponding
to figure 7.2(a) and the residual displacement field. We can now easily detect the
moving cars, although the field still is somewhat noisy.

It is implicitly assumed that the moving objects cover a sufficiently small area
compared to the background, so that their contribution to the sum in (7.31) does
not significantly affect the estimated parameters.
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7.10.3 Reducing Noise

A closer investigation of the residual displacement field shows that most of the noise
originates from areas without significant structures or with very low contrast. A
special case are areas where the aperture problem is apparent and there is noise
in the parallel displacement component.

A solution to this problem is to “force” the background field onto uncertain
estimates. We do this by adding a regularization term to equation (7.22), i.e.
minimize

µ‖d(x)− d0(x)‖2 +
∑

∆x∈I
w(∆x)‖A(x + ∆x)d(x)−∆b(x + ∆x)‖2, (7.35)

where d0 is the previously estimated background displacement field and µ is a
constant. The idea is that the regularization term will have little effect when the
displacement is well constrained by the sum in the expression but be significant
when it is not. This works well with the aperture problem, where the normal
component is well constrained but not the parallel component. The solution to
(7.35) is given by

d(x) =
(
µI +

∑
wATA

)−1 (
µd0(x) +

∑
wAT∆b

)
, (7.36)

where we again have dropped some indexing to improve the readability.
Figure 7.19 shows a block diagram for the revised basic displacement estimation

algorithm. As before this can be combined with figure 7.9 or figure 7.10 to obtain
iterative or multi-scale versions of the algorithm.

How to choose µ is an open question. The alternative we have tested is to set
µ to the average of half the trace of Gavg (using the notation from figure 7.19),
computed over the whole image. This reduces the noise significantly but as a
drawback it also tends to reduce the size of the real residuals. For the purpose
of detecting motion this is probably a reasonable trade-off.4 Figure 7.20 shows
the total and the residual displacement fields from figure 7.2(a) and figure 7.18(b)
recomputed by this revised algorithm.

7.11 Discussion

Although the derivation of the primary constraint (7.14) may look odd and in-
volves a number of more or less likely-to-hold assumptions, it turns out that, in
an important special case, the constraint itself is not strange at all. To see this we
need to restrict ourselves to Gaussian applicabilities for the polynomial expansion,
in which case section 4.8.1 tells us that b and A contain Gaussian derivatives of
the first and second order.

Now consider the second order brightness change constraint equation,(
Ixx Iyx
Ixy Iyy

)(
dx
dy

)
= −

(
Itx
Ity

)
. (7.37)

4Once the moving objects have been detected, their displacements can be recomputed without
regularization, if a more correct displacement estimate is needed.
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Figure 7.19: Block diagram of the revised basic displacement estimation algorithm.
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(a) total displacement (b) residual displacement

Figure 7.20: Total and residual displacement fields computed by the revised algo-
rithm. The residual field is magnified by a factor 10.

If we assume that the left hand matrix is computed with a temporal smoothing
over two frames, this is the same as A1+A2. The right hand side equals −(b2−b1)
if we let the temporal differentiation be approximated by a subtraction. All this
assumes, of course, that the remaining derivatives all are of the Gaussian variety.

Hence the two constraints coincide in this special case, for good and for bad.
Good because it adds to the credibility of the method. Bad because it makes it
less novel than we first thought. Still we believe that the alternative derivation
is a valuable insight by itself and that it makes the important observation about
inclusion of a priori displacement estimates in section 7.6 more natural and easier
to find. Besides there is a difference if the applicability is not Gaussian or if we
do not have full certainty.

A potential improvement, unique to the polynomial approach, would be to
also make use of the constraint (7.5), in addition to (7.4). So far attempts at this
have not been successful, however. It is also conceivable to take the dissimilarity
between A1 and A2 into account to modify the weight of the constraint.

An interesting generalization is to consider not only a translation of a polyno-
mial, as in section 7.2, but also include e.g. rotation. With R a rotation matrix,
the corresponding derivation becomes

f1(x) = xTA1x + bT1 x + c1,

f2(x) = f1(Rx− d)

= (Rx− d)TA1(Rx− d) + bT1 (Rx− d) + c1

= xTRTA1Rx− 2dTA1Rx + dTA1d + (RTb1)Tx− bT1 d + c1

= xT (RTA1R)x + (RTb1 − 2RTA1d)Tx + dTA1d− bT1 d + c1

= xTA2x + bT2 x + c2

(7.38)
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and by equating coefficients we obtain

A2 = RTA1R, (7.39)

b2 = RT (b1 − 2A1d). (7.40)

This approach has not been explored further but may be useful if the motion is
expected to involve substantial rotations. Instead of rotation we can of course
consider e.g. scaling or a full affine transformation.

Finally there may be some potential for improvements by investigating the sys-
tematic overestimation of the displacement noticed in figure 7.11(c) and if possible
compensate for it.
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Chapter 8

Analysis of Interlaced
Signals

8.1 Introduction

Almost all implementations of image analysis algorithms require data discretized
on a rectangular grid. This is natural since that format is both convenient for
theoretical analysis and well adapted to commonly available hardware. If the data
for some reason comes in another, less regular, format, the first processing step is
usually to resample it to a rectangular grid. While this undeniably is an effective
solution, it does have a computational cost and may cause a loss of information.
These problems can be avoided if we can design at least the first level of processing
to work directly on the less regular data.

In this chapter we only look at one special but important case, namely inter-
laced video signals. Interlacing was introduced into the standard television formats
to reduce the bandwidth compared to progressive sampling, at an equivalent level
of flicker perception [18]. For computer vision applications progressive sampling
would be more convenient but video cameras, at least at the consumer-level, do
produce interlaced video sequences, so we need methods to handle them.

The fact that all algorithms in this thesis are based (directly or indirectly) on
normalized convolution makes it very straightforward to adapt them to interlaced
signals. In particular, once we have established how to compute polynomial ex-
pansion, the orientation and motion estimation algorithms in chapters 5–7 can be
used right away.

8.2 The Geometry of Interlaced Signals

The basic idea behind interlacing is to trade a halving of vertical resolution for
a doubling of temporal resolution, in such a way that the full vertical detail is
obtained over two time samples. Letting x be the horizontal direction and y the
vertical direction, figure 8.1 shows the sampling pattern in the ty-plane. This
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Figure 8.1: Sampling pattern for interlaced video signals, ty-plane.

pattern is repeated along the x-axis.
When the video stream is digitized the sampling pattern is collapsed so that two

time instants, called fields, are merged into one frame, as shown in figure 8.2. Thus
the odd lines belong to time instant t while the even lines belong to time instant
t + 1

2 .1 An example frame is shown in figure 8.3 together with a magnified area
that shows the kind of artefacts produced if the interlaced geometry is ignored2.

To conclude, an interlaced video sequence, as it appears to the vision algo-
rithms, is a sequence of frames sampled according to figure 8.2 but where the
actual geometry is given by figure 8.1.

8.3 Normalized Convolution

Normalized convolution has an extremely straightforward adaptation to interlaced
signals. Just repack the signal according to figure 8.4, which is the sampling pat-
tern in figure 8.1 padded with zeros to a regular grid, and set up a corresponding
certainty which is one at the sample points and zero otherwise3. Then normalized

1Or the other way round, depending on where you start counting.
2This is the same image as in figure 7.1(a). In chapter 7 the interlacing was crudely eliminated

by subsampling.
3If we already have certainty values for the interlaced samples we just pad those with zeros.

Since the signal values at points with certainty zero do not matter, we can construct the repacked
signal volume simply by doubling each frame, if this is more convenient, or leave the unused
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Figure 8.2: Two fields merged into one frame, xy-plane.

(a) (b)

Figure 8.3: Sample interlaced frame and zoom-in.
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Figure 8.4: Sampling pattern in figure 8.1 padded with zeros to a regular grid.

convolution can be used without further modifications. In the case of 2D normal-
ized convolution in the xy-plane, i.e for a single field, there is not even a need
to repack the signal. It suffices to use a certainty which is zero for every second
row, depending on which field should be used. Another plausible way to avoid the
repacking is to create a dedicated normalized convolution implementation which
addresses the samples in the original sequence properly.

Assuming that we have a binary certainty, only caused by the interlaced sam-
pling pattern, and that we are far from the borders or ignore them, then the
certainty values for a neighborhood only appear in two different ways. Either the
neighborhood is centered at a sample point or it is centered at a non-sample point.
This means that we can use equation (3.23),

B̃∗ = (B∗WaWcB)−1B∗WaWc (8.1)

to compute two sets of equivalent correlation kernels4. The construction guaran-
tees, as would be expected, that only real samples are accessed by the correlation
kernels. If desired these can also be remapped to work directly on the original
interlaced signal.

entries uninitialized.
4One for use at the sample points and one for use at the non-sample points.
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8.4 Adaptation of Convolution Kernels

Assume that we have a set of convolution kernels designed for use on regularly
sampled signals, which we need to adapt for use on interlaced signals. As in section
3.8 we convert these into corresponding correlation kernels and collect them into
a matrix H. Equation (3.33),

B = W−1
a H(H∗W−1

a H)−1, (8.2)

shows how to compute corresponding basis functions. These can be entered into
(8.1) to obtain correlation kernels adapted for interlaced signals. After simplifica-
tion this becomes

B̃ = WcH(H∗W−1
a WcH)−1H∗W−1

a H. (8.3)

As before we have to consider two different Wc and thus obtain two sets of adapted
filters. The practical considerations in section 3.8.2 still apply and there are reasons
to be extra careful in this case, particularly with short or sparse filters. The first
factor Wc in (8.3) effectively masks out the coefficients in the original filter kernels
corresponding to the missing samples, which may under unfortunate circumstances
completely destroy the desired properties of the filters.

8.5 Polynomial Expansion

Polynomial expansion is a special case of normalized convolution, so it is clear from
section 8.3 that we can compute it for interlaced signals. The interesting ques-
tion is to what extent the performance optimizations in section 4.3 for quadratic
polynomial expansion can still be used.

To begin with we need to take the two possible certainty masks discussed in
section 8.3 into account. For a 5 × 5 neighborhood in the ty-plane we have the
certainty mask

con =


1 0 1 0 1
0 1 0 1 0
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1

 (8.4)

centered at a sample point and

coff =


0 1 0 1 0
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1
0 1 0 1 0

 (8.5)

centered at a non-sample point. These generalize in the obvious way to neighbor-
hoods of different sizes and by duplication into the x direction.
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If we redo the derivation of equation (4.9) with a certainty which is fixed but
not identically one, we obtain

r(x) = G−1

 ((a · c · b1) ? f)(x)
...

((a · c · bm) ? f)(x)

 , (8.6)

where

G =

 (a · c · b1,b1) . . . (a · c · b1,bm)
...

. . .
...

(a · c · bm,b1) . . . (a · c · bm,bm)

 (8.7)

and c is either con or coff . Now we would want {a·c·bk} to be Cartesian separable.
As before the basis functions are trivially separable and we can limit ourselves to
separable applicabilities. The problem comes with the certainty. The x direction
is trivially separable from t and y but the latter two are not Cartesian separable.
However, they can be decomposed as a sum of two separable products. More
precisely we have, reusing the example from (8.4) and (8.5),

con =


1 0 1 0 1
0 1 0 1 0
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1

 =


1 0 1 0 1
0 0 0 0 0
1 0 1 0 1
0 0 0 0 0
1 0 1 0 1

+


0 0 0 0 0
0 1 0 1 0
0 0 0 0 0
0 1 0 1 0
0 0 0 0 0



=


1
0
1
0
1

(1 0 1 0 1
)

+


0
1
0
1
0

(0 1 0 1 0
)

(8.8)

and similarly

coff =


0 1 0 1 0
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1
0 1 0 1 0

 =


1
0
1
0
1

(0 1 0 1 0
)

+


0
1
0
1
0

(1 0 1 0 1
)
.

(8.9)
Introducing

c1 =


1
0
1
0
1

 , c2 =


0
1
0
1
0

 (8.10)

we can rewrite (8.8) and (8.9) more compactly as

con = c1c
T
1 + c2c

T
2 , (8.11)

coff = c1c
T
2 + c2c

T
1 . (8.12)
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Notice that the same factors appear in both expressions. This fact can be exploited
in the construction of a hierarchical correlator structure similar to the one in
figure 4.4. The structure becomes considerably more complex this time, however.
Appendix I shows how the resulting structure looks when limited to the ty-plane.
A much simpler case occurs when we do polynomial expansion only in the xy-plane,
which is further discussed in the next section.

It remains to study the structure of G. As in section 4.3.2 we restrict ourselves
to applicabilities which are even along all axes. Both con and coff are sufficiently
symmetric for elements of G which were zero in (4.10) to remain zero. Thus we
have the same sparsity as before but we get a larger diversity in the non-zero
values. It is obvious from the structure that G−1 cannot become less sparse than
G. Experiments indicate that it in fact becomes almost, but not quite5, as sparse
as in (4.11). This fact is not critical, however, so we do not prove it.

8.6 One Frame Motion Estimation

Because an interlaced video frame consists of two fields taken from two different
time instances, we can estimate motion from a single frame. This is not only a
curiousity, but does have some potential real value. Consider a real-time computer
vision system where certain kinds of loads forces it to drop occasional frames.
This can make it difficult for a displacement estimation module which requires,
or at least works best with, two consecutive frames6. The advantage of a one-
frame algorithm would be that we can be almost certain that it would always get
consistent data, i.e. two consecutive fields.

To estimate motion from a single interlaced frame we naturally want to use the
displacement estimation algorithm presented in the previous chapter. As input to
the algorithm we need the 2D quadratic polynomial expansion in the xy-plane for
each field of the frame. In this case the two certainty masks become

con =


1 1 1 1 1
0 0 0 0 0
1 1 1 1 1
0 0 0 0 0
1 1 1 1 1

 , coff =


0 0 0 0 0
1 1 1 1 1
0 0 0 0 0
1 1 1 1 1
0 0 0 0 0

 . (8.13)

In contrast to (8.4) and (8.5) these are clearly Cartesian separable. As a conse-
quence the products {a·c·bk} used in (8.6) all become separable7 and can efficiently
be computed through 1D correlations by the hierarchical correlator structure in
figure 8.5. Since it does not matter what signal values we have at points with
certainty zero, we can use the original frame without repacking it. Computing
polynomial expansion coefficients corresponding to con at the full vertical reso-
lution gives us every second line for the first field and the complementary lines

5One more off-diagonal element appears, which in many cases is very small.
6In a well-designed system this would be a non-issue. Real systems tend to have various flaws,

however.
7Assuming a separable applicability, naturally.
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Figure 8.5: Correlator structure for polynomial expansion in the xy-plane for
interlaced signals. There is understood to be an applicability factor in each box
as well.

for the second field. The expansion coefficients corresponding to coff fill in the
remaining lines. As a result we obtain the polynomial expansion for both fields at
the full vertical resolution.

With this we are ready to use the displacement estimation algorithms from
chapter 7. Applying the motion detection algorithm from section 7.10.3 to the
frame in figure 8.3 gives the result shown in figure 8.6. This is very similar to
figure 7.20 but looks slightly more noisy.

We have also tested the displacement estimation algorithm on an interlaced
version of the Yosemite sequence. This was produced by Andersson [3, 4] from the
progressive Yosemite sequence through lowpass filtering and vertical downsampling
according to the interlaced sampling geometry. We estimated the displacements
from the interlaced frame where the bottom field corresponds to the original center
frame and the top field to the frame before. Using the same weighting function
as in section 7.9.2 and the multi-scale method in two scales8 we obtain average
angular errors of 4.17◦±10.45◦ for the affine motion model and 4.72◦±9.43◦ for the
constant motion model. These can be reduced to 2.38◦ ± 4.08◦ and 2.71◦ ± 2.76◦

respectively by computing the polynomial expansion with normalized convolution,
correctly setting the certainty to zero outside the borders, instead of the fast
algorithm described above. The latter results are only marginally worse than the
corresponding ones for the original Yosemite sequence, listed in table 7.1. The
smallest error reported by Andersson was about 6◦.

8Interlaced polynomial expansion using Gaussian applicability of sizes 19 × 19 and 9 × 9.
Standard deviations 2.7 and 1.2 respectively.
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(a) (b)

Figure 8.6: Displacement estimated from the single interlaced frame in figure 8.3
and residual displacement field analogous to figure 7.20.
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Chapter 9

The Spatial Domain Toolbox

9.1 Introduction

In order to make the theory and algorithms developed in this thesis more accessible
to other researchers, Matlab implementations of many of the algorithms have been
collected in a package called the Spatial Domain Toolbox. This can be freely
downloaded in source form from http://www.isy.liu.se/~gf/software.

1

The package is distributed under the terms of the GNU General Public License.
Essentially this allows you to read, use, and modify the code freely. However, if
you want to redistribute it, with or without modifications, you must do that under
the same license. Contact the author if you wish to negotiate other licensing terms.

9.2 Functions in the Toolbox

Below is a list of the most generally interesting functions in version 2.0 of the
toolbox.

• normconv
Normalized convolution with arbitrary number of basis functions and arbi-
trary dimensionality. Computed according to equation (3.9), using the point
by point strategy. Limited to real signals and basis functions.

• polyexp
Polynomial expansion in one to three dimensions. Arbitrary applicability,
constant or varying certainty, and arbitrary selection of monomials in the
basis. All methods listed in section 4.4 are implemented. Limited to real
signals.

• make Abc fast
More optimized implementation of polynomial expansion. Limited to Gaus-

1If that address should stop working in the future, there are some chances that
http://www.lysator.liu.se/~gunnar may still provide a link. Otherwise you have to rely on
the search engines.
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sian applicability, constant certainty, quadratic polynomials, real signals, and
one to four dimensions. Implemented through separable correlation.

• poly to tensor
Computation of orientation tensors from quadratic polynomial expansion
coefficients according to equation (5.19).

• make tensors fast
More optimized computation of orientation tensors. Essentially make Abc fast
and poly to tensor in one box.

• velocity from tensors
Estimation of velocity from a tensor field, using the fast algorithm described
in section 6.5. Choose between the constant, affine, and eight-parameter
motion models. Limited to two spatial dimensions and one temporal.

• velocity segment
Estimation of velocity from a tensor field, using the segmentation algorithm
described in section 6.4. Limited to two spatial dimensions and one temporal.

• estimate disparity
Estimation of disparity from two images, as described in section 7.3.

• estimate displacement
Estimation of displacement from two images, as described in chapter 7.

• one frame motion
Estimation of displacement from one interlaced image, as described in section
8.6.



Chapter 10

Conclusions and Future
Research Directions

10.1 Conclusions

There seems to be a widespread belief that efficient solution of a least squares
problem requires a change to an orthogonal basis. It is not uncommon to see a
considerable effort spent in constructing such a basis, in particular in discretized
multidimensional spaces. The end result is often effective but very inflexible with
respect to changes in the geometry and does not easily allow a modified weighting
in the least squares problem. One of the main1 messages of this thesis is that the
use of dual vector sets, presented in chapter 2, often allows a solution which is no
less efficient but much more flexible, as further demonstrated in chapters 3 and 4.

In general the theory presented in chapter 2 is well worth mastering, with the
possible exception of section 2.5, for anyone who encounters least squares problems
in finite dimensional spaces. Parts of it are common knowledge of course.

Normalized convolution is a powerful tool for signal processing. Unfortunately
it is not yet widely known. It is our hope that the presentation in chapter 3 will
help popularize it.

Building on the theory from the two previous chapters, polynomial expansion
is developed in chapter 4. This transform is very central to this thesis and is used
extensively and with good results in the applications in the following chapters.
With efficient computational schemes and the flexibility provided by the applica-
bility and certainty mechanisms, we are of the opinion that polynomial expansion
is a strong candidate to become one of the standard transforms in the future.

The applications of polynomial expansion start with estimation of orientation
tensors in chapter 5. This is not the only way to compute orientation tensors
and the evaluation in section 5.7 is far from sufficient to prove that it is a supe-
rior method. It does show excellent results though, in particular when used in
the velocity estimation algorithms in chapter 6, and is computationally efficient.

1Although possibly somewhat hidden.
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Compared to estimation through quadrature filters (see section 5.2.2) an attrac-
tion of our method is that the scale can be changed effortlessly without requiring
optimization of new filters. An advantage for the quadrature filter method is that
it gives a phase-invariant result, which may be important for certain applications.
The concept of orientation functionals is theoretically interesting and may help the
understanding of how the different orientation tensor estimation methods relate to
each other, as well as show the way to new orientation estimation methods. Some
preliminary results can be found in [55].

The velocity estimation algorithms in section 6 make direct use of the orien-
tation tensors from the previous chapter. As the evaluation shows they are very
successful and form state of the art for velocity estimation on the Yosemite se-
quence. While that sequence is commonly used and generally considered as a
difficult test case for velocity estimation algorithms, one should remember that it
does not tell everything. In particular one can assume that the algorithms make
good use of the temporal coherence and the relatively large areas with reasonably
consistent parametric motion. If your application has motion of that kind our
algorithms will probably perform very well. More difficult situations include large
motions, requiring very large applicability for the spatiotemporal filters to perceive
the motion at all, and very small objects, where there is not enough data for a
robust estimation of the motion model parameters. Moreover the fast algorithm
can obviously be expected to have some difficulties with motion discontinuities.
On the other hand most algorithms have similar weaknesses, so we recommend
that you try our algorithms anyway.

The displacement estimation algorithm in chapter 7 is based directly on poly-
nomial expansion. Using only two frames it can handle other types of motion than
the velocity estimation algorithms. In particular it can handle motion which is not
temporally coherent at all, as in the example in section 7.1, where spatiotemporal
filtering is mostly pointless. Using the multi-scale approach it can also handle
large motions well. The main disadvantage is that it requires fairly large spatial
averaging to produce robust estimates, which is a problem with discontinuities and
small objects.

The main point of the analysis of interlaced video signals in chapter 8 is to
demonstrate the power of the certainty mechanism. With only a small effort we
could adapt our algorithms for use with interlaced signals.

10.2 Future Research Directions

Many possibilities for extensions of the theory and improvements of the algorithms
have been discussed throughout the thesis. In addition to those there are some
more ideas we want to mention.

The theory for polynomial expansion seems reasonably mature but there are
some open questions regarding multi-scale polynomial expansion, especially for
non-constant certainty. There is probably more to be found out about approx-
imative methods as well. To be consistent with the signal/certainty principle
polynomial expansion should produce an output certainty. Although this can be
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derived from normalized convolution, there are probably optimizations available
for a polynomial basis.

The concept of phase functionals discussed in section 5.9 seems promising but
is so far lacking a good application where it can be tested.

The velocity estimation algorithms may have some potential for improvements
by combining the parameter estimation method described in section 6.3.3 with
some other techniques to handle discontinuities. Also the segmentation algorithm
might be improved by trying to detect object edges from more cues than motion.

The displacement estimation algorithm definitely has potential for improve-
ment by combining it with some technique to handle discontinuities. One obvious
possibility is to adapt the segmentation algorithm described in section 6.4 for use
with the displacement algorithm. This is fairly straighforward but requires some
implementation work.

More generally it would of course be interesting to find more areas where
polynomial expansion can be applied. Appendix J describes a possible approach
to adaptive filtering.

Finally one should not forget the initial motivation for doing all algorithm
development in the spatial domain, namely being able to adapt the algorithms to
irregularly sampled signals, see section 1.1. This research direction would still be
interesting to pursue.
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Appendices

A A Matrix Inversion Lemma

To prove that the matrix G in equation (4.10), section 4.3.2, has an inverse given
by equation (4.11), we need the following lemma:

Lemma A.1. Provided that a 6= 0, c 6= d, and ad = b2, the (n + 1) × (n + 1)
matrix

M =


a b b . . . b
b c d . . . d
b d c . . . d
...

...
...

. . .
...

b d d . . . c

 (A.1)

has an inverse of the form

M−1 =


a e e . . . e

e c 0 . . . 0
e 0 c . . . 0
...

...
...

. . .
...

e 0 0 . . . c

 . (A.2)

Proof. Inserting (A.1) and (A.2) into the definition of the inverse, MM−1 = I, we
get the five distinct equations

aa + nbe = 1, (A.3)
ae + bc = 0, (A.4)

ba + ce + (n− 1)de = 0, (A.5)
be + cc = 1, (A.6)
be + dc = 0, (A.7)
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which can easily be verified to have the explicit solution

a =
1
a

(
1 +

nd

c− d

)
,

c =
1

c− d
,

e = − b

a(c− d)
= − d

b(c− d)
.

(A.8)

Since G can be partitioned into one diagonal block and one block with the
structure given by M in lemma A.1, the stated structure of G−1 follows im-
mediately if we can show that the conditions of the lemma are satisfied. The
components of M are given by

a = (a · b1,b1), (A.9)
b = (a · b1,bx2

i
), (A.10)

c = (a · bx2
i
,bx2

i
), (A.11)

d = (a · bx2
i
,bx2

j
), (A.12)

so it is clear that a > 0. That c 6= d follows by necessity from the assumption that
the basis functions are linearly independent, section 4.2. The final requirement
that ad = b2 relies on the condition set for the applicability1

a(x) = a1(x1)a1(x2) . . . a1(xN ). (A.13)

Now we have

a =
∑

x1,...,xN

a(x) =
N∏
k=1

(∑
xk

a1(xk)

)
=

(∑
x1

a1(x1)

)N
, (A.14)

b =
∑

x1,...,xN

a(x)x2
i =

(∑
xi

a1(xi)x2
i

)∏
k 6=i

(∑
a1(xk)

)

=

(∑
x1

a1(x1)x2
1

)(∑
x1

a1(x1)

)N−1

,

(A.15)

d =
∑

x1,...,xN

a(x)x2
ix

2
j =

(∑
xi

a1(xi)x2
i

)∑
xj

a1(xj)x2
j

 ∏
k 6=i,j

(∑
a1(xk)

)

=

(∑
x1

a1(x1)x2
1

)2(∑
x1

a1(x1)

)N−2

(A.16)

and it is clear that ad = b2.
1We apologize that the symbol a happens to be used in double contexts here and trust that

the reader manages to keep them apart.
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B Cartesian Separable and Isotropic Functions

As we saw in section 4.3.2, a desirable property of the applicability is to simulta-
neously be Cartesian separable and isotropic. In this appendix we show that the
only interesting class of functions having this property is the Gaussians.

Lemma B.1. Assume that f : RN −→ R, N ≥ 2, is Cartesian separable,

f(x) = f1(x1)f2(x2) . . . fN (xN ), some {fk : R −→ R}Nk=1, (B.1)

isotropic,
f(x) = g(xTx), some g : R+ ∪ {0} −→ R, (B.2)

and partially differentiable. Then f must be of the form

f(x) = AeCxTx, (B.3)

for some real constants A and C.

Proof. We first assume that f is zero for some x. Then at least one factor in (B.1)
is zero and by varying the remaining coordinates it follows that

g(t) = 0, all t ≥ α2, (B.4)

where α is the value of the coordinate in the zero factor. By taking

x =
α√
N

(
1 1 . . . 1

)T (B.5)

we can repeat the argument to get

g(t) = 0, all t ≥ α2

N
. (B.6)

and continuing like this we find that g(t) = 0, all t > 0, and since f is partially
differentiable there cannot be a point discontinuity at the origin, so f must be
identically zero. This is clearly a valid solution.

If instead f is nowhere zero we can compute the partial derivatives as

∂
∂xk

f(x)

f(x)
=

f ′k(xk)
fk(xk)

= 2xk
g′(xTx)
g(xTx)

, k = 1, 2, . . . , N. (B.7)

Restricting ourselves to one of the hyper quadrants, so that all xk 6= 0, we get

g′(xTx)
g(xTx)

=
f ′1(x1)

2x1f1(x1)
=

f ′2(x2)
2x2f2(x2)

= · · · = f ′N (xN )
2xNfN (xN )

, (B.8)

which is possible only if they all have a common constant value C. Hence we get
g from the differential equation

g′(t) = Cg(t) (B.9)
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with the solution
g(t) = AeCt. (B.10)

It follows that f in each hyper quadrant must have the form

f(x) = AeCxTx (B.11)

and in order to get isotropy, the constants must be the same for all hyper quad-
rants. The case A = 0 corresponds to the identically zero solution.

A weakness of this result is the condition that f be partially differentiable,
which is not a natural requirement of an applicability function. If we remove this
condition it is easy to find one new solution, which is zero everywhere except at
the origin. What is not so easy to see however, and quite contra-intuitive, is that
there also exist solutions which are discontinuous and everywhere positive. To
construct these we need another lemma.

Lemma B.2. There do exist discontinuous functions L : R −→ R which are
additive, i.e.

L(x + y) = L(x) + L(y), x, y ∈ R. (B.12)

Proof. See [83] or [32].

With L from the lemma we get a Cartesian separable and isotropic function
by the construction

f(x) = eL(xTx). (B.13)

This function is very bizarre, however, because it has to be discontinuous at every
point and unbounded in every neighborhood of every point. It is also completely
useless as an applicability since it is unmeasurable, i.e. it cannot be integrated.

To eliminate this kind of strange solutions it is sufficient to introduce some very
weak regularity constraints2 on f . Unfortunately the proofs become very technical
if we want to have a bare minimum of regularity. Instead we explore what can be
accomplished with a regularization approach.

Let the functions φσ and Φσ be normalized Gaussians with standard deviation
σ in one and N dimensions respectively,

φσ(x) =
1√
2πσ

e−
x2

2σ2 (B.14)

Φσ(x) =
1

(2π)
N
2 σN

e−
xT x
2σ2 =

N∏
k=1

φσ(xk). (B.15)

We now make the reasonable assumption that f is regular enough to be convolved
with Gaussians,3

fσ(x) = (f ∗ Φσ)(x) =
∫
RN

f(x− y)Φσ(y) dy, σ > 0. (B.16)

2See e.g. [32] and exercise 9.18 in [75].
3This mainly requires f to be locally integrable. The point is, however, that it would be

useless as an applicability if it could not be convolved with Gaussians.
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The convolved functions retain the properties of f to be Cartesian separable and
isotropic. The first property can be verified by

fσ(x) =
∫
RN

f1(x1 − y1) . . . fN (xN − yN )φσ(y1) . . . φσ(yN ) dy

=
N∏
k=1

∫
R

fk(xk − yk)φσ(yk) dyk.

(B.17)

To show the second property we notice that isotropy is equivalent to rotation
invariance, i.e. for an arbitrary rotation matrix R we have f(Rx) = f(x). Since
the Gaussians are rotation invariant too, we have

fσ(Rx) =
∫
RN

f(Rx− y)Φσ(y) dy

=
∫
RN

f(Rx−Ru)Φσ(Ru) du

=
∫
RN

f(x− u)Φσ(u) du = fσ(x).

(B.18)

Another property that the convolved functions obtain is a high degree of regularity.
Without making additional assumptions on the regularity of f , fσ is guaranteed to
be infinitely differentiable because Φσ has that property. This means that lemma
B.1 applies to fσ, which therefore has to be a Gaussian.

To connect the convolved functions to f itself we notice that the Gaussians
Φσ approach the Dirac distribution as σ approaches zero; they become more and
more concentrated to the origin. As a consequence the convolved functions fσ
approach f and in the limit we find that f has to be a Gaussian, at least almost
everywhere.4

Another way to reach this conclusion is to assume that f can be Fourier trans-
formed. Then equation (B.16) turns into f̂σ(u) = f̂(u)Φ̂σ(u), so that f̂(u) = f̂σ(u)

Φ̂σ(u)

is a quotient of two Gaussians and hence itself a Gaussian. Inverse Fourier trans-
formation gives the desired result.

4Almost everywhere is quite sufficient because the applicability is only used in integrals.
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C Correlator Structure for Separable Normalized
Convolution
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Figure C.1: Correlator structure for computation of quadratic polynomial expan-
sion in 2D, using the separable normalized convolution method described in section
4.4. There is understood to be an applicability factor in each box as well.
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D Gaussian Correlation Formulas

This appendix adds details for some of the calculations in section 4.5. As in that
section we let

g1(x) =
1√

2πσ1

e
− x2

2σ2
1 , (D.1)

g2(x) =
1√

2πσ2

e
− x2

2σ2
2 , (D.2)

g3(x) =
1√

2πσ3

e
− x2

2σ2
3 , (D.3)

σ2
3 = σ2

1 + σ2
2 . (D.4)

As a preparation we state the well known integrals

∫
e−at

2
dt =

√
π

a
, (D.5)∫

te−at
2
dt = 0, (D.6)∫

t2e−at
2
dt =

1
2a

√
π

a
, (D.7)∫

t3e−at
2
dt = 0, (D.8)∫

t4e−at
2
dt =

3
4a2

√
π

a
, (D.9)

where a > 0 and all integration, as in the rest of this appendix, is from −∞ to ∞.
Next we study integrals of the form

Ik(s) =
∫

(s− u)ke−a(s−u)2
e−bu

2
du, a, b > 0. (D.10)

To simplify this we make the change of variables u = t + as
a+b , giving

Ik(s) =
∫

(s− a

a + b
s− t)ke−a(s− a

a+b s−t)
2−b(t+ a

a+b s)
2
dt

=
∫

(
b

a + b
s− t)ke−(a+b)t2− ab

a+b s
2
dt

= e−
ab
a+b s

2
∫

(
b

a + b
s− t)ke−(a+b)t2 dt.

(D.11)
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For k = 0, 1, 2 we obtain, with the help of (D.5)–(D.7),

I0(s) =
√

π

a + b
e−

ab
a+b s

2
, (D.12)

I1(s) =
bs

a + b

√
π

a + b
e−

ab
a+b s

2
, (D.13)

I2(s) =
(

b2s2

(a + b)2
+

1
2(a + b)

)√
π

a + b
e−

ab
a+b s

2
. (D.14)

Now we are ready to take on the expressions in equation (4.17),

Jk(x) = (xkg2 ? (g1 ? f))(x)

=
∫

tkg2(t)
∫

g1(u)f(u + t + x) du dt

=
∫ ∫

tkg2(t)g1(u)f(u + t + x) du dt

=
∫ ∫

(s− u)kg2(s− u)g1(u)f(s + x) du ds

=
1

2πσ1σ2

∫ ∫
(s− u)ke

− (s−u)2

2σ2
2 e
− u2

2σ2
1 duf(s + x) ds.

(D.15)

Using equations (D.12)–(D.14) we obtain

J0(x) =
1

2πσ1σ2

∫ √
2πσ2

1σ2
2

σ2
1 + σ2

2

e
− s2

2(σ2
1+σ2

2) f(s + x) ds

=
∫

g3(s)f(s + x) ds = (g3 ? f)(x), (D.16)

J1(x) =
1

2πσ1σ2

∫
sσ2

2

σ2
1 + σ2

2

√
2πσ2

1σ2
2

σ2
1 + σ2

2

e
− s2

2(σ2
1+σ2

2) f(s + x) ds

=
∫ (

σ2

σ3

)2

sg3(s)f(s + x) ds =
(

σ2

σ3

)2

(xg3 ? f)(x), (D.17)

J2(x) =
1

2πσ1σ2

∫ (
s2σ4

2

(σ2
1 + σ2

2)2
+

σ2
1σ2

2

σ2
1 + σ2

2

)√
2πσ2

1σ2
2

σ2
1 + σ2

2

e
− s2

2(σ2
1+σ2

2) f(s + x) ds

=
∫ ((

σ2

σ3

)4

s2 +
σ2

1σ2
2

σ2
3

)
g3(s)f(s + x) ds

=
(

σ2

σ3

)4

(x2g3 ? f)(x) +
(

σ1σ2

σ3

)2

(g3 ? f)(x). (D.18)
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In conclusion we have

g2 ? (g1 ? f) = g3 ? f, (D.19)

xg2 ? (g1 ? f) =
(

σ2

σ3

)2

(xg3 ? f), (D.20)

x2g2 ? (g1 ? f) =
(

σ2

σ3

)4

(x2g3 ? f) + σ2
1

(
σ2

σ3

)2

(g3 ? f). (D.21)

Furthermore (D.5)–(D.9) directly yield the inner products

(g2, 1) = 1, (D.22)
(g2, x) = 0, (D.23)

(g2, x
2) = σ2

2 , (D.24)

(g2, x
3) = 0, (D.25)

(g2, x
4) = 3σ4

2 . (D.26)
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E Binomial Identities

This appendix proves the binomial identities (4.24)–(4.26) in section 4.6.2. We
can restate these directly in terms of binomial coefficients as(

2n

n + k

)
=
(

2n− 2
n + k − 2

)
+ 2
(

2n− 2
n + k − 1

)
+
(

2n− 2
n + k

)
, (E.1)

k

(
2n

n + k

)
= n

(
2n− 2

n + k − 2

)
− n

(
2n− 2
n + k

)
, (E.2)

k2

(
2n

n + k

)
= n2

(
2n− 2

n + k − 2

)
− 2n(n− 1)

(
2n− 2

n + k − 1

)
+ n2

(
2n− 2
n + k

)
, (E.3)

which we want to show for n > 0.
Using standard binomial identities from [36], we transform the right hand side

binomial coefficients,(
2n− 2

n + k − 2

)
=

n + k − 1
2n− 1

(
2n− 1

n + k − 1

)
=

(n + k − 1)(n + k)
2n(2n− 1)

(
2n

n + k

)
, (E.4)(

2n− 2
n + k − 1

)
=

n + k

2n− 1

(
2n− 1
n + k

)
=

n + k

2n− 1

(
2n− 1

n− k − 1

)
(E.5)

=
(n + k)(n− k)

2n(2n− 1)

(
2n

n− k

)
=

(n + k)(n− k)
2n(2n− 1)

(
2n

n + k

)
,(

2n− 2
n + k

)
=
(

2n− 2
n− k − 2

)
=

n− k − 1
2n− 1

(
2n− 1

n− k − 1

)
(E.6)

=
(n− k − 1)(n− k)

2n(2n− 1)

(
2n

n− k

)
=

(n− k − 1)(n− k)
2n(2n− 1)

(
2n

n + k

)
.

After inserting (E.4)–(E.6) into (E.1)–(E.3) and eliminating the factor
(

2n
n+k

)
, it

suffices to show that

1 =
(n + k − 1)(n + k) + 2(n + k)(n− k) + (n− k − 1)(n− k)

2n(2n− 1)
, (E.7)

k =
n(n + k − 1)(n + k)− n(n− k − 1)(n− k)

2n(2n− 1)
, (E.8)

k2 =
n2(n + k − 1)(n + k)− 2n(n− 1)(n + k)(n− k) + n2(n− k − 1)(n− k)

2n(2n− 1)
,

(E.9)

which is easily verified5.

5Please excuse the ugliness of this proof. It can be done in a more constructive way which
naturally extends to higher exponents kp, but then it does not fit on this page.
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F Angular RMS Error

In this appendix we verify the equivalence between the expressions (5.31) and
(5.32) for the angular RMS error in section 5.7.

Starting with

∆φ = arcsin


√√√√ 1

2L

L∑
l=1

‖x̂x̂T − ê1ê
T
1 ‖2

 , (F.1)

we expand the squared Frobenius norm, using the relation ‖T‖2 = tr (TTT), to
get

‖x̂x̂T − ê1ê
T
1 ‖2 = tr

(
(x̂x̂T − ê1ê

T
1 )T (x̂x̂T − ê1ê

T
1 )
)

= tr
(
x̂x̂T − (x̂T ê1)x̂êT1 − (êT1 x̂)ê1x̂

T + ê1ê
T
1

)
.

(F.2)

To simplify this expression we use the fact that the trace operator is linear and
that tr(abT ) = tr(bTa). Thus we have

‖x̂x̂T − ê1ê
T
1 ‖2 = 1− (x̂T ê1)

2 − (êT1 x̂)2 + 1 = 2(1− (x̂T ê1)
2) (F.3)

and continuing with the original expression,

∆φ = arcsin


√√√√ 1

2L

L∑
l=1

2(1− (x̂T ê1)2)


= arcsin


√√√√1− 1

L

L∑
l=1

(x̂T ê1)2


= arccos


√√√√ 1

L

L∑
l=1

(x̂T ê1)2

 .

(F.4)
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G Removing the Isotropic Part of a 3D Tensor

To remove the isotropic part of a 3D tensor we need to compute the smallest
eigenvalue of a symmetric and positive semidefinite 3 × 3 matrix T. There are a
number of ways to do this, including inverse iterations and standard methods for
eigenvalue factorization. Given the small size of the matrix in this case, however,
we additionally have the option of computing the eigenvalues algebraically, since
these can be expressed as the roots of the third degree characteristic polynomial,
p(λ) = det(T− λI).

To find the solutions to z3 + az2 + bz + c = 0 we first remove the quadratic
term with the translation z = x− a

3 , yielding

x3 + px + q = 0. (G.1)

It is well known that the solutions to this equation can be given by Cardano’s
formula [88],

D =
(p

3

)3

+
(q

2

)2

, (G.2)

u = 3

√
−q

2
+
√

D, (G.3)

v = 3

√
−q

2
−
√

D, (G.4)

x1 = u + v, (G.5)

x2 = −u + v

2
+

u− v

2
i
√

3, (G.6)

x3 = −u + v

2
− u− v

2
i
√

3. (G.7)

Unfortunately this formula leads to some complications in the choice of the
complex cubic roots if D < 0, which happens exactly when we have three distinct
real roots. Since we have a symmetric and positive semidefinite matrix we know
a priori that all eigenvalues are real and non-negative.6

A better approach in this case, still following [88], is to make the scaling x =√
− 4p

3 y, leading to

4y3 − 3y =
3q

p
√
− 4p

3

. (G.8)

Taking advantage of the identity cos 3α = 4 cos3 α − 3 cos α, we make the substi-
tution y = cos α to get the equation

cos 3α =
3q

p
√
− 4p

3

, (G.9)

6For the following discussion it is sufficient that we have a symmetric matrix and thus real
eigenvalues.
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where the right hand side is guaranteed to have an absolute value less than or
equal to one if all the roots are indeed real. Hence it is clear that we obtain the
three real solutions to (G.1) from

β =

√
−4p

3
, (G.10)

α =
1
3

arccos
3q

pβ
, (G.11)

x1 = β cos α, (G.12)

x2 = β cos
(

α− 2π

3

)
, (G.13)

x3 = β cos
(

α +
2π

3

)
. (G.14)

Furthermore, since we have 0 ≤ α ≤ π
3 , it follows that x1 ≥ x2 ≥ x3.

In terms of the tensor T, the above discussion leads to the following algorithm
for removal of the isotropic part:

1. Remove the trace of T by computing

T′ = T− trT
3

I =

a d e
d b f
e f c

 . (G.15)

This is equivalent to removing the quadratic term from the characteristic
polynomial.

2. The eigenvalues of T′ are now given as the solutions to x3 + px + q = 0,
where

p = ab + ac + bc− d2 − e2 − f2, (G.16)

q = af2 + be2 + cd2 − 2def − abc. (G.17)

3. Let

β =

√
−4p

3
, (G.18)

α =
1
3

arccos
3q

pβ
, (G.19)

so that the eigenvalues of T′ are given by (G.12)–(G.14).

4. Let

x3 = β cos
(

α +
2π

3

)
(G.20)

and compute the isotropy compensated tensor T′′ as

T′′ = T′ − x3I. (G.21)
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It should be noted that this method may numerically be somewhat less accurate
than standard methods for eigenvalue factorization. For the current application,
however, this is not an issue at all.7

A slightly different formula for the eigenvalues of a real, symmetric 3× 3 ma-
trix can be found in [79] and a closed form formula for eigenvectors as well as
eigenvalues in [14].

7Except making sure that the magnitude of the argument to the arccosine is not very slightly
larger than one.
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H Elementary Stereo Geometry

We consider the elementary stereo geometry obtained by setting up two identical
pinhole cameras in the canonical configuration shown in figure H.18. This configu-
ration is characterized by the baseline, the line connecting the two optical centers,
being aligned with the x-axes of the cameras and both optical axes being parallel.
The world coordinate system is placed with its origin between the two cameras, so
that we have the origin of the left camera at world coordinates (−h, 0, f) and the
origin of the right camera at (h, 0, f), where 2h is the distance between the optical
centers of the two cameras and f is the focal distance. Using similar triangles we
obtain the two relations9

h + X

Z
=

xl
f

, (H.1)

h−X

Z
=
−xr
f

. (H.2)

Summing these gives us
2h

Z
=

xl − xr
f

. (H.3)

The quantity d = xl − xr is commonly called disparity so we have the following
two relations between depth and disparity,

Z =
2hf

d
, (H.4)

d =
2hf

Z
. (H.5)

We also notice that from (H.5) it follows that if we know a priori the minimum
and maximum distances to objects in the scene, we can also a priori compute
upper and lower bounds for the disparity,

dmin =
2hf

Zmax
, (H.6)

dmax =
2hf

Zmin
. (H.7)

Even if we do not know Zmax, we still have the relation d ≥ 0.

8Having the image planes in front of the optical centers is physically incorrect but more
convenient to work with.

9Notice that the geometry guarantees that the y coordinates in the left and right images are
identical.
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I Correlator Structure for Interlaced Signals
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Figure I.1: Correlator structure for computation of polynomial expansion in the
ty-plane for interlaced video signals, described in section 8.5. There is understood
to be an applicability factor in each box as well.
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J An Adaptive Filtering Approach

The idea of adaptive filtering, as described in [40], is to apply a space-variant
filter to a signal, where the filter shape at each point is determined by the local
orientation. In order for this operation to be practically feasible, it is required that
the different filter shapes can be constructed as linear combinations of a small set of
space-invariant filters. Without going into the depth of the presentation in [40], we
show in this section how quadratic polynomial expansion can be used for adaptive
highpass filtering with applications to directed noise and image degradation.

The key observation can be made from figure 4.3, where we can see that the
dual basis functions used to compute the expansion coefficients for the x2 and y2

basis functions in fact are directed highpass filters along the two axes.10 Together
with the dual basis function corresponding to xy we can construct rotations of this
highpass filter to any direction (α β)T , α2 + β2 = 1, by noting that (αx + βy)2 =
α2x2 + 2αβxy + β2y2. Hence the response of a directed highpass filter in any
direction can be computed as a linear combination of the expansion coefficients
for the second degree basis functions.

Directed noise is obtained by applying adaptive filtering to white noise. The
result is noise with a tendency to be oriented in the same way as the orientation
field used to control the adaptive filtering. To increase the effect we can iterate this
procedure a number of times. In figure J.1 we adapt white noise to an orientation
field defined so that the orientation at each point is the radius vector rotated
by 10 degrees, with the geometric interpretation of a spiral pattern. We can see
that this pattern becomes more distinct with each iteration, although there is
also a significant element of very low frequency noise. The latter can be almost
completely eliminated by a local amplitude equalization, giving the final result
in figure J.1(f). The scale of the pattern is directly controlled by the standard
deviation of the Gaussian applicability.

An amusing application of directed noise is to control the filters with the esti-
mated orientation field of an actual image; a severe form of image degradation. In
figure J.2 the orientation field of the well-known Lena image has been computed,
lowpass filtered and then used to control the directed noise process, with 20 itera-
tions and amplitude equalization.11 Figure J.3 shows the result of a more intricate
variation of the same theme, involving multiple scales and separate processing of
each color component. The full color image can be found on the cover of [23].

10Notice, however, that we had better negate these filters to avoid an unnecessary 180◦ phase
shift.

11Only the largest eigenvector of each tensor has been used to determine the orientation. Cf.
figure 3.3 for somewhat less degraded versions of the image.
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(a) original white noise (b) 1 iteration (c) 2 iterations

(d) 5 iterations (e) 10 iterations (f) equalized

Figure J.1: Iterated adaptive filtering of white noise.

Figure J.2: Directed noise shaped to the orientation field of a real image.
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(a) original image (b) degraded image

Figure J.3: A more complex example of image degradation. The degraded image
is available in color on the cover of [23].
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Linköping University, Sweden, 1988. Dissertation No 179, ISBN 91-7870-
334-4.



174 Bibliography

[10] J. Bigün and G. H. Granlund. Optimal Orientation Detection of Linear
Symmetry. In Proceedings of the IEEE First International Conference on
Computer Vision, pages 433–438, London, Great Britain, June 1987.
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thesis, Linköping University, Sweden, SE-581 83 Linköping, Sweden, 1995.
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