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What this talk is about

I Spectral approaches to speed up computations and their application in
subsampling algorithms.

I Co-authors (alphabetical order):
I Robert Kohn (University of New South Wales).

I Robert Salomone (Queensland University of Technology).

I Minh-Ngoc Tran (University of Sydney).

I Mattias Villani (Stockholm University).

I Applied to our previous work on subsampling MCMC.
I Main paper: (Quiroz et al., 2019, JASA).

I Textbook like review of our work (prior to the spectral approaches): (Quiroz
et al., 2018b, Sankhya A).

I The main points of this talk:

1. Spectral approaches for univariate time series and their implied independence
that facilitate subsampling.

2. Extend the approaches to multivariate time series.

I Slides on www.matiasquiroz.com/news.
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Motivation for subsampling MCMC

I Markov chain Monte Carlo (MCMC) - Bayesian workhorse for 3 decades.

I This talk focuses on subsampling for Metropolis-Hastings (MH). See Dang
et al. (2019) for Hamiltonian Monte Carlo, Gunawan et al. (2020) for
sequential Monte Carlo and Quiroz et al. (2018a) for delayed acceptance
MCMC.

I Metropolis-Hastings is often slow
I Need to evaluate the likelihood function in each iteration.

I Many iterations (sampling algorithm).

I In time series models, the likelihood evaluation may be computationally
expensive for large time series data.

I Subsampling MCMC: estimate the likelihood from a subsample in each
MCMC iteration. Faster!
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The Metropolis-Hastings algorithm

I Bayesians carry out inference based on p(θ|y ) ∝ p(y |θ)p(θ).

I A general approach to generate posterior samples is to construct a Markov
chain {θ(j)}Nj=1 that has p(θ|y ) invariant distribution as N → ∞.

I The Metropolis-Hastings algorithm achieves this as follows.

1. Start at θc = θ(0) and set j = 1.

Repeat step 2. to 3. N times.

2. Propose θp from a proposal (based on θc). Accept θ(j) = θp with probability

α = min

1,
p (y |θp) p(θp)

p
(
y |θ(j−1)

)
p(θ(j−1))

 (symmetric proposal), else set θ(j) = θc .

3. Set j = j + 1.

I Some challenges:
I Likelihood p(y |θ) = ∏n

k=1 p(yk |θ) is expensive for large dim(y ) = n.

I For time series, p(y |θ) is expensive even for moderately large n.
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Key idea: The Pseudo-Marginal MH (PMMH) algorithm

I Can we speed up likelihood evaluations? (i.) Data subsampling. (ii.) The
Whittle likelihood (time series).

I Data subsampling: Estimate p(y |θ) with p̂(y |θ, u).

I u are auxiliary variables, serve the purpose of estimating p(y |θ).

I Metropolis-Hastings with an estimated likelihood? Pseudo marginal!

I Samples from π(θ, u|y ) ∝ p̂(y |θ, u)p(θ)p(u) [p(θ|y ) ∝ p(y |θ)p(θ)].

I Proposes θ, u and accepts/rejects them jointly. Like previous slide but with

α = min

1,
p̂ (y |θp, up) p(θp)

p̂
(
y |θ(j−1), u(j−1)

)
p(θ(j−1))

 .

I Targets π(θ, u|y ) with marginal p(θ|y ) if
∫
p̂(y |θ, u)p(u)du = p(y |θ)

(Beaumont, 2003; Andrieu and Roberts, 2009).

I True for any positive unbiased estimator, but large variance is inefficient.
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PMMH with dependent subsamples

I V (log p̂(y |θ, u)) ≈ 1 is optimal (Pitt et al., 2012; Doucet et al., 2015).

I What really matters for PMMH is the variance of

log
p̂ (y |θp, up)

p̂
(
y |θ(i−1), u(i−1)

) =
[
log p̂prop − log p̂curr

]
.

I Correlated pseudo marginal (Deligiannidis et al., 2018):
Correlate the us over Metropolis-Hastings iterations using an autoregressive
proposal u(i) = φu(i−1) + ε.

I Block pseudo marginal (Tran et al., 2016): Partition u into λ blocks and
update only K of them jointly with θ in each iteration.

I Can show that (under certain assumptions)

Corr
(
log p̂prop, log p̂curr

)
≈ 1−K/λ.

I Consequence: tolerates much larger variance (faster!) of log p̂(y |θ, u).

Matias Quiroz (Stockholm University) Seminar @ Linköping University 6 / 31



Bias-corrected log-likelihood based estimator (Quiroz
et al., 2019)

I Data subsampling estimator of the log-likelihood for independent data

̂̀(y |θ, u) =
n

m ∑
i∈u

`(yi |θ), Eu

(̂̀(y |θ, u)
)
= `(θ) =

n

∑
k=1

`(yk |θ),

u = (u1, . . . , um), Pr(uj = k) = 1/n, j = 1, . . . .m, and k = 1, . . . , n.

I Difference estimator with control variates qk (θ) ≈ `(yk |θ)

̂̀(y |θ, u) =
n

∑
k=1

qk (θ) +
n

m ∑
i∈u

di (θ), di (θ) = `(yi |θ)− qi (θ).

I Estimate L(θ) = exp (`(y |θ)) by bias-correcting exp
(̂̀(y |θ, u)

)
.

I Bias-correction term estimated... p̂(y |θ, u) not unbiased anymore...

I ... still targets a perturbed posterior with TV-norm error of O(n−1m−2).

I For example, if m = O(n1/2) then the error is O(n−2).
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Beyond independent data via spectral methods

I Quiroz et al. (2019) use the quite restrictive assumption:

`(θ) =
n

∑
k=1

`(yk |θ),
[

which comes from p(y |θ) =
n

∏
k=1

p(yk |θ)
]

.

I Violated for many interesting models, including:
I General time series problems.

I Spatially dependent data.

I Hyper-parameter estimation in Gaussian processes.

I This talk is on univariate and multivariate stationary time series models.

I We know that the data y = (Y1, . . . ,Yn) in the time domain are
dependent.

I Transform the time domain data to the frequency domain using the discrete
Fourier transform (DFT).

I Large sample properties of the DFT ensures (asymptotically) independent
observations.
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The discrete Fourier transform

I Transform the data from the time domain to the frequency domain.

I The discrete Fourier transform (DFT) of the time series Yt ∈ R,

J(ωk ) =
1√
2π

n

∑
t=1

Yt exp(−iωk t),

at Fourier frequencies

ωk ∈ Ω = {2πk/n for k = −dn/2e+ 1, . . . , bn/2c} .

I Can be computed in O(n log n) with the fast Fourier transform (FFT).

I The periodogram

I(ωk ) = n−1 |J(ωk )|2

will be kth “data observation” in the frequency domain.
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The Whittle log-likelihood

I The periodogram data in the frequency domain,

(I(ω1), I(ω2), . . . , I(ωn)), where I(ωk ) = n−1|J(ωk )|2.

I Asymptotically, as n→ ∞,

I(ωk )
ind∼ Exp (fθ(ωk )) ,

where fθ is the spectral density,

fθ(ω) =
1

2π

∞

∑
τ=−∞

γ(τ; θ) exp(−iωτ),

with covariance function γ(τ; θ) = E[YtYt−τ ] of a covariance stationary
zero-mean time series {Yt}nt=1.

I Sketch of proof steps:
I DFT is asymptotically complex Gaussian (by the CLT).
I |J(ωk )|2 is a sum of two squared independent Gaussians.

I χ2
2 = Exp(1/2).
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Subsampling MCMC for univariate stationary time series

I Whittle’s asymptotic approximation of the log-likelihood (Whittle, 1953)

`W (θ) = − ∑
ωk∈Ω

(
log fθ(ωk ) +

I(ωk )

fθ(ωk )

)
.

I May be biased for small n, but we consider large n (when subsampling is
relevant).

I Unlike the time domain log-likelihood, the Whittle log-likelihood is a sum.

I Spectral subsampling for stationary univariate time series (Salomone
et al., 2020)
I Compute periodogram before MCMC at cost O(n log n).

I Estimate `W (θ) unbiasedly by subsampling of frequencies.

I Use within a pseudo-marginal MH algorithm (Quiroz et al., 2019).
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The (univariate) ARTFIMA model

I ARIMA(p, d , q), integer differences d = 0, 1, 2, ... (LdYt = Yt−d )

φp(L)(1− L)dYt = θq(L)εt .

I ARTFIMA(p, d , λ, q) (Sabzikar et al., 2019)

φp(L)(1− e−λL)dYt = θq(L)εt .

I Role of fractional differencing d . Can model longer memory since

(1− e−λL)dYt =
∞

∑
j=0

(−1)j
Γ(1 + d)

Γ(1 + d − j)j !
e−λjYt−j .

I The ARTFIMA model nests:

I ARIMA (λ = 0 and d integer).

I ARFIMA (Granger and Joyeux, 1980). λ = 0, d ∈ Q. Stationary if |d | < 0.5.
ARFIMA has so-called long memory: ∑∞

τ=−∞ |γ(τ; θ)| = ∞.
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The ARTFIMA model, cont.

I Recall ARTFIMA(p, d , λ, q)

φp(L)(1− e−λL)dxt = θq(L)εt .

I Role of the tempering parameter λ ≥ 0.
I long range dependence γ(τ; θ) for small τ.

I Exponential decay for larger τ: ∑∞
τ=−∞ |γ(τ; θ)| < ∞.

I Stationary if λ > 0 for all d 6∈ Z (if AR and MA fulfill the usual conditions).

I The spectral density for ARTFIMA(p, d , λ, q)

fθ(ω) =
σ2

ε

2π

∣∣θ(e−iω)∣∣2
|φ(e−iω)|2

∣∣∣1− e−(λ+iω)
∣∣∣−2d .

I Compare to the spectral density for ARMA(p, q)

fθ(ω) =
σ2

ε

2π

∣∣θ(e−iω)∣∣2
|φ(e−iω)|2

.
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Going multivariate (Villani et al., 2022)

I Autocovariance matrix function for time series Y t ∈ Rr

γY (τ) = Cov(Y t , Y t−τ), for τ ∈ Z.

I Spectral density matrix

fY (ω) =
1

2π

∞

∑
τ=−∞

γY (τ) exp(−iωτ).

where off-diagonal elements are the cross-spectral densities

fjk (ω) =
∞

∑
τ=−∞

γjk (τ) exp(−iωτ), for ω ∈ (−π, π].

I Multivariate discrete Fourier transform (DFT)

J(ωk ) =
1√
2π

n−1
∑
t=0

Y t exp(−iωk t).
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Multivariate Fourier analysis, cont.

I DFT are asymptotically independent complex normal (Brillinger, 2001)

n−1/2J(ωk )
ind∼ CN(0, fY (ωk )) as n→ ∞.

I Multivariate periodogram is complex singular Wishart (r > 1)

IT (ωk ) = n−1J(ωk )J(ωk )
H ∼ CW(1, fY (ωk )),

where AH = A> is the conjugate transpose and A is the matrix of complex
conjugates of the elements of A.

I Multivariate Whittle log-likelihood

`W (θ) = − ∑
ωk∈Ω

(
log |fY (ωk )|+ tr

[
fY (ωk )

−1IT (ωk )
])

.

I It is a sum (still) — subsampling MCMC.
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The multivariate ARTFIMA (VARTFIMA) model

I We propose a multivariate extension of the ARTFIMA (Sabzikar et al.,
2019) process.

I The vector ARTFIMA (VARTFIMA)

Φp(L)∆d ,λY t = Θq(L)εt εt
iid∼ N (0, Σε)

where ∆d ,λ is the tempered fractional differencing operator defined as

∆d,λY t =
(
(1− e−λ1L)d1Y1,t , . . . , (1− e−λr L)drYr ,t

)>
.

I ARTFIMA nested ARMA, VARTFIMA nests VARMA (vector ARMA).

I Spectral density matrix (see (Villani et al., 2022, Theorem 1))

fY (ω) =
1

2π
BΦ−1p (e−iω)Θq(e

−iω)ΣεΘH
q (e

−iω)Φ−Hp (e−iω)BH ,

where B = Diag
(
(1− e−(λ1+iω))−d1 , . . . , (1− e−(λr+iω))−dr

)
.
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Questions of interest

I Question 1 (Q1): Is the proposed VARTFIMA better than VARMA?

I Question 2 (Q2): Is subsampling MCMC for the multivariate Whittle
likelihood accurate? Compare vs MCMC on the multivariate Whittle
likelihood using all data.

I Question 3 (Q3): How accurate is the multivariate Whittle
approximation to the true posterior (obtained via the time domain
likelihood)?

I Note: The time domain likelihood (and thus the posterior) is intractable for
VARTFIMA with large datasets. Can only test the above (Q3) for VARMA.

I Question 4 (Q4): How much “faster” is subsampling compared to using
the multivariate Whittle likelihood on the full dataset?
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Applications: Hydrology, meteorology, environment

I Application 1: Measurements of mean water velocity in two locations in
Detroit river, located on opposite sides of Lake St Clair. 130,000
observations.

I Application 2: Measurements of temperature in three airport locations in
Sweden (Arlanda, Bromma and Landvetter). 124,000 observations.

I Application 3: Measurements of two pollution types (nitrogen dioxide
(NO2) and particulate matter (PM10)) at two streets in central Stockholm.
50,000 observations.
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Raw data water velocity

Figure 1: Water velocity data.
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Raw data temperature

Figure 2: Swedish temperature data after interpolation, but before deseasoning.
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Raw data pollution

Figure 3: Stockholm air pollution data after interpolation and logarithmic transform, but
before deseasoning.

Matias Quiroz (Stockholm University) Seminar @ Linköping University 21 / 31



Models and priors

I We estimate VARMA() and VARTFIMA() models for each dataset.

I Model selection using the BIC approximation of the log marginal likelihood

log pBIC(Y ) = log p(Y |θ̂)− k log n

2
,

where k is the number of estimated parameters, n is the length of the time
series and θ̂ is the maximum likelihood estimate.

I Minnesota-style prior for the AR and MA coefficients. Normal with diagonal
covariance matrix:

vij,l =

{
(λ0/l)2, if i = j

(λ0θ0σi/lσj )2 if i 6= j .

We set λ0 = 1 and θ0 = 0.2. Normal priors for the rest (transformed
scale).

I Ansley and Kohn (1986) parameterisation of AR and MA parts. Ensures
stationarity — facilitates MCMC proposal (unconstrained space).
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Q1: BIC — Tempered fractional differencing is good

I Question 1: Is the proposed VARTFIMA better than VARMA?

Water Velocity Temperature Pollution
AR MA No TFI TFI No TFI TFI No TFI TFI
1 0 737079 759123 327097 334122 363760 366022
0 1 588297 759457 61320 332888 306068 365658
2 0 749650 761200 335201 335757 365522 366266
0 2 621765 761786 93256 333948 325717 366142
1 1 758838 761305 333582 335647 365762 366267

Table 1: BIC approximation of the log marginal likelihood for different models for each of
the three datasets. A higher value indicates a better model fit. The highest value for
each dataset is marked in bold font red.

I Answer: Yes, the tempered fractional differencing is better than no tempered
fractional differencing.
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Q2: Best model for temperature data (k = 24)

Figure 4: Kernel density estimates of a subset of the marginal posterior densities for the
VARTFIMA(2,0) model fitted to the Swedish temperature data.
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Q2: Best model for Water velocity data (k = 11)

Figure 5: Kernel density estimates of a subset of the marginal posterior densities for the
VARTFIMA(0,2) model fitted to the Water velocity data.
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Q2: Best model for pollution data (k = 47)

I Subsampling MCMC does not work for this model for the given n and m.

I Chain gets stuck because σ̂2̂̀ = V
(̂̀(y |θ, u)

)
is too large.

I σ̂2̂̀ = O(m−1n−1) for the control variate we use (Quiroz et al., 2019).

I Example with n = 62,000 (instead of n = 124,000) for the Swedish
temperature data on the next slide shows how the chain gets stuck.
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Subsampling MCMC with smaller n fails for the Swedish
temperature dataset

Figure 6: Subsampling MCMC fails for the smaller dataset.
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Q3: VARMA(1, 1) - Water velocity (k = 11)
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Q3: VARMA(1, 1) - Temperatures (k = 24)
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Q4: What about the speed-up of subsampling MCMC?

I Relative computational time (RCT):

RCT =
CT MCMC full sample

CT spectral subsampling MCMC
.

Dataset Model Min Mean Max
Water velocity VARTFIMA(0,2) 87 98 125
Temperature VARTFIMA(2,0) 68 89 114

Table 2: Relative computational time (RCT) for comparing MCMC using the full dataset
to spectral subsampling MCMC. The value 1 indicates that spectral subsampling MCMC
and MCMC are equally efficient, and values larger than 1 indicate that spectral
subsampling MCMC is the better algorithm.

I Recall that subsampling MCMC does not work for the pollution example
when n = 50,000.
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Conclusion and future work

I Presented a simple idea that extends subsampling MCMC beyond the
conditionally independent observations setting.

I Useful for any subsampling approach (not just MCMC).

I Considered an application of subsampling MCMC for multivariate time
series models.

I Presented the novel vector time series model VARTFIMA.

I Villani et al. (2022) show that VARTFIMA predicts each time series better
than univariate ARTFIMA for the temperature data, especially for longer
prediction horizons.

I Subsampling MCMC can break down if the control variates are inaccurate.
I More efficient control variate constructions.

I Other estimation algorithms that are less sensitive to the variance, e.g.
variational Bayes.

I We are currently working on extending our approach to spatial problems.
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Thank you!

Thank you for listening!

Questions?
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