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Abstract

Mediation analysis is often used in the behavioral sciences to investigate the role of interme-

diate variables that lie on the causal path between a randomized treatment and an outcome

variable. Typically, mediation is assessed using structural equation models (SEMs) with

model coefficients interpreted as causal effects. In this paper we present an extension of

SEMs to the functional data analysis (FDA) setting that allows the mediating variable to

be a continuous function rather than a single scalar measure, thus providing the opportu-

nity to study the functional effects of the mediator on the outcome. We provide sufficient

conditions for identifying the average causal effects of the functional mediators using the

extended SEM, as well as weaker conditions under which an instrumental variable estimand

may be interpreted as an effect. The method is applied to data from a functional magnetic

resonance imaging (fMRI) study of thermal pain that sought to determine whether acti-

vation in certain brain regions mediated the effect of applied temperature on self-reported

pain. Our approach provides valuable information about the timing of the mediating effect

that is not readily available when using the standard non-functional approach. To the best

of our knowledge this work provides the first application of causal inference to the FDA

framework.

Key words: mediation, structural equation models, functional data analysis, causal infer-

ence, fMRI, instrumental variable, brain connectivity



1 Introduction

To date, human brain mapping has been used to primarily construct maps indicating

regions of the brain that are activated by certain tasks. Recently, there has been an

increased interest in augmenting this type of analysis with connectivity studies that

describe how different brain regions interact and how these interactions depend on

experimental conditions and behavioral measures. Pathways are considered funda-

mental properties of brain organization and the ability to understand them is criti-

cally important for determining how psychological processes map onto brain function.

They provide a means for studying the mechanisms by which experimental manipula-

tions, brain activity, and psychological/physiological outcomes affect one another. In

this work we discuss a set of tools for modeling functional pathways using functional

magnetic resonance imaging (fMRI) time series data.

Functional MRI measures changes in blood flow and oxygenation in the brain in

response to neural stimuli, thereby providing a means to non-invasively study changes

in mental activity in response to a certain task (Lindquist, 2008). The technique offers

the potential to measure brain activity while experimentally manipulating treatments,

thereby providing information beyond the psychological/physiological outcomes of

the treatments typically obtained from psychological experiments. A recent example

involves the use of brain imaging to study the relationship between a painful thermal

stimulus and self-reported pain (Wager et al., 2008). In this experiment a noxious

heat stimuli was applied at one of two different levels (high and low) to each of 20

subjects. In response, subjects gave subjective pain ratings at a specific time point

following the offset of the stimulus. While the experiment was being performed brain
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Figure 1: The three-variable path diagram used to represent the standard mediation
framework. The variables corresponding to Z, Y and M are all scalar, as are the
path coefficients α, β and γ linking them.

activity was measured using fMRI. The goal of the study was to find brain regions

whose activity acted as potential mediators of the relationship between temperature

and pain rating.

When the effect of the treatment variable Z on the outcome variable Y is at

least partially directed through the intervening variable M , then M is said to be a

mediator. The three-variable path diagram shown in Fig. 1 is often used to represent

such relationships. The influence of the intermediate variable on the outcome is then

frequently ascertained using structural equation models, with the model coefficients

interpreted as effects. Though the idea of mediation was originally developed in

the psychometric and behavioral sciences literature (e.g., Baron and Kenny 1986;

MacKinnon 2008), the topic has also received attention in the statistics literature

(e.g., Holland, 1988; Robins and Greenland, 1992; Angrist et al., 1996; Ten Have et

al., 2007; Albert, 2008; Jo, 2008; Sobel, 2008; VanderWeele, 2009; Imai et al. 2010).

The brain imaging experiment can be placed into the three-variable path model by

letting the variable Z represent the applied pain level, the variable Y the reported
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pain and the variable M the brain response. Here both Z and Y are univariate, while

the brain response consists of time series data. In this setting, standard mediation

techniques are only applicable if the mediating time course is summarized as a single

univariate response, such as peak amplitude or area under the curve. However, the

brain response is not necessarily well described by a single summary measure and,

in addition, such a measure provides no temporal information about the relationship

between Z−Y . Therefore, an important extension of the mediation framework would

be to allow the variable M to use information across the entire response; something

currently not possible in standard mediation models.

In this work we consider the same simple three-variable path model described

above, with the novel feature that the intermediate variable M is treated as a contin-

uous function (see Fig. 2 for the analogous path diagram). This provides an extension

of current mediation analysis techniques to the functional data analysis (FDA) set-

ting (Ramsay and Silverman, 2005). Conceptually, functional data are thought of as

sample paths of a continuous time stochastic process. Although the observed trajec-

tories are often rough and fluctuating, in many applications of FDA there is scientific

reason to believe that the true underlying trajectory is a smooth function observed

with random error. Extending the mediation framework to the FDA setting allows

for the decomposition of the effects of the mediating variable across the support of

the function, providing an opportunity to study functional mediation.

To assess functional mediation we propose a linear functional structural equation

model (lfSEM), which can be used to both test whether an intermediate variable

mediates the relationship between treatment and outcome variables and to provide

information about the timing of these relationships. We applied the approach to data
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Figure 2: The three-variable path diagram used to represent the functional mediation
framework. The variables corresponding to Z and Y are scalars, while the variable
corresponding to M is a function. Both the αt and βt pathways are represented by
functions, while the γ pathway is a scalar.

from the thermal pain experiment and found that we could discriminate between brain

regions that mediate the relationship between temperature and pain at the time of

the offset of the stimulus and at the time immediately preceding the later pain report.

The identification of these separate mechanisms, not possible using standard SEMs, is

important as it promises to significantly increase our knowledge about the underlying

brain networks associated with different stages of pain processing.

In statistics, randomized experiments are considered the gold standard for estimat-

ing causal effects. A common criticism of structural equation models and mediation

analysis is that only the assignment to treatment group (i.e. Z) is randomized, while

the mediators are self-selected treatments. For this reason the effect of the mediator

(the coefficient for the mediator in the regression of the outcome on the mediator and

treatment assignment) does not typically warrant a causal interpretation (Holland,

1988). In this work, we adopt the potential outcomes framework for causal infer-

ence (Rubin, 1974) to show that under certain assumptions it is possible to obtain
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a valid estimate of the average causal effects of the mediator from the parameters

of the lfSEM. While a number of researchers have considered different strategies for

the identification of direct and indirect effects between treatment and outcome (e.g.,

Robins and Greenland, 1992; Pearl, 2001; Rubin, 2004; VanderWeele, 2009), we are

primarily concerned with determining sufficient conditions required to equate the pa-

rameters of lfSEMs with the effects of mediators. A literature has recently developed

that deals with identification of direct and indirect effects for situations when inter-

actions and nonlinearities are present (e.g., Peterson et al. 2006; VanderWeele 2009).

However, we leave these issues for later work and focus solely on the type of addi-

tive models commonly used in the social sciences. We further extend results from

Sobel (2008), who deals with the standard non-functional case described in Fig. 1,

and provide conditions under which the instrumental variable (IV) estimand may be

interpreted as an effect when the intermediate variable is a function.

This article is organized as follows. In Section 2 we use potential outcomes nota-

tion to construct a causal linear functional model (CLFM) that allows us to specify

the causal parameters of interest used in mediation analysis. These are causal ana-

logues of the parameters shown in the path diagram in Fig. 2. In general, because we

are not able to observe all potential outcomes, we cannot directly estimate the param-

eters of the CLFM. We therefore proceed by discussing a linear functional structural

equation model whose parameters can be estimated from the observable data. Un-

der certain assumptions, the parameters of the lfSEM are equivalent to those of the

CLFM, thus allowing for the identification of the causal parameters of interest. In

Section 3 we compare the IV estimand for the effect of the mediator on the outcome

with the equivalent effect in the CLFM. This provides alternative assumptions for
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allowing a causal interpretation of the effect of the mediator on the outcome. In

Section 4 we describe a technique for estimating the parameters of the lfSEM and

the IV-estimand, as well as, simple procedures for performing inference on the model

coefficients using resampling methods. Finally, in Sections 5 and 6 we illustrate the

utility of the method in a series of simulations and an application to the fMRI study

of thermal pain.

2 Identification of Mediated and Unmediated Ef-

fects

Consider the path diagram in Fig. 2 where the mediating variable Mt is assumed to

be a continuous function. Here the subscript t indicates that a variable/coefficient is a

function of t, and we write M = {Mt|t ∈ [0, 1]} to represent the value of the function

over its entire range. In the brain imaging setting, Z is the treatment assignment,

Y is reported pain, and Mt is a time series of brain data following each stimulation

(that will be treated as samples from a continuous underlying function). Further, the

path coefficients αt and βt are functions that describe the time-varying relationship

between the variables.

This section defines the causal parameters of interest for studying functional medi-

ation, as well as a linear functional SEM that can be used to identify these parameters

under conditions to be described. Our goal is to make explicit the assumptions re-

quired to equate the parameters of the lfSEM with the causal effects of interest, thus

allowing us to determine when the estimates of the former can be given a causal
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interpretation. In Section 2.1 we define mediated and unmediated effects at both the

subject and population level. A causal model is constructed using potential outcomes

for comparison with the lfSEM introduced in Section 2.2. Unlike the parameters of

the causal model, the parameters of the lfSEM are identifiable from the observed

data. In general, the causal and lfSEM parameters are not equal, implying that

the latter should not be interpreted as causal effects. However, we show in Section

2.3 that under certain conditions, the causal parameters of interest are equal to the

corresponding parameters of the lfSEM and thus identifiable.

2.1 Defining the Causal Parameters of Interest

In this section we construct a causal model, analogous to the path diagram shown in

Fig. 2, using potential outcomes. Consider a randomized experiment consisting of n

subjects receiving either the treatment or control condition, where Zi = 1 if subject

i is assigned to treatment and 0 otherwise. For each subject i in the population, let

Mit(0) denote the value of the mediator at time t in the absence of treatment and

Mit(1) the value at time t under treatment. Similarly, let Yi(0,Mi(0)) denote i’s value

on the outcome when assigned to the control group and Yi(1,Mi(1)) the value if as-

signed to the treatment group. Throughout, we make the stable unit treatment value

assumption (SUTVA; Rubin, 1980) that there is no interference between subjects.

This implies that potential outcomes for each subject are unrelated to the treatment

given to other subjects, which is reasonable in the brain imaging setting discussed in

this paper.

Under SUTVA, the unit-level causal effects of Z on M and Y , respectively, for
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subject i are given by the expressions

Mit(1)−Mit(0) ∀ t (1)

Yi(1,Mi(1))− Yi(0,Mi(0)). (2)

The latter term can be decomposed as follows:

Yi(1,Mi(1))− Yi(0,Mi(0)) = {Yi(1,Mi(0))− Yi(0,Mi(0))}+ {Yi(1,Mi(1))− Yi(1,Mi(0))}

= {Yi(1,Mi(1))− Yi(0,Mi(1))}+ {Yi(0,Mi(1))− Yi(0,Mi(0))}.

(3)

In both decompositions, the first term represents an unmediated (or direct) effect of

Z on Y , while the second represents a mediated (or indirect) effect. The direct effects

of Z on Y represent the difference in the outcome if one were to change the treatment

of subject i from Zi = 0 to Zi = 1, while holding the value of the mediator fixed

at Mi(0) (or Mi(1)). In contrast, the indirect effects represent the difference in the

outcomes if the value of the observed mediator were changed from Mi(0) to Mi(1)

while keeping the actual treatment fixed at 0 (or 1). If the treatment has no effect

on the mediator, then Mi(1) = Mi(0) and the indirect effects would be zero.

In practice, since only one of the potential outcomes is observable it is not possible

to identify unit-level effects. Instead, we average over subjects and seek to estimate

population-level effects such as the average causal effect of Z on Y :

τ (c) ≡ E(Y (1,M(1))− Y (0,M(0))). (4)

To define other causal effects of interest, we construct a causal linear functional model

(CLFM) in which the relationship between the outcome and the mediator follows a
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functional linear model (e.g., Ramsay and Silverman, 2005). Potential outcomes are

used to express the causal relationship between Z, M and Y using the system of

equations

Mit(z) = δ
(c)
1t + α

(c)
t z + εit(z) (5)

Yi(z,m) = δ
(c)
2 + γ(c)z +

∫ 1

0

β
(c)
t mtdt+ ηi(z,m), (6)

where E(εt(z)) = 0 ∀ t and z = 0, 1 and E(η(z,m)) = 0 for all values of the pair

(z,m). Here the superscript (c) is used to identify the parameters as being causal,

in contrast to the analogous parameters α
(s)
t , β

(s)
t and γ(s) in the linear functional

structural equation model presented below.

Using this model we can write the average direct effect of Z on Y , sometimes

referred to as the controlled direct effect (VanderWeele, 2009), as

E(Y (1,m)− Y (0,m)) = γ(c) (7)

for all values of m. This effect differs from the pure direct effect (Robins and Green-

land, 1992) which fixes the intermediate variable for each individual to the level it

would have received under the absence of treatment. For the CLFM these effects are

equivalent under the additional condition E(η(1,M(0))− η(0,M(0))) = 0.

Averaging (3) over all subjects, we obtain

τ (c) = γ(c) + E(Y (1,M(1))− Y (1,M(0)))

= γ(c) + E(Y (0,M(1))− Y (0,M(0))), (8)

which allows us to express the average total effect as the sum of the average direct and

indirect effect of Z on Y . Note that according to (7), the average of both formulations

of the direct effect stated in (3) can be expressed using γ(c).
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Finally, the average causal effect of Z on M, and M on Y at level m versus m∗,

can be written, respectively, as

E(Mt(1)−Mt(0)) = α
(c)
t ∀ t ∈ [0, 1] (9)

and

E(Y (z,m)− Y (z,m∗)) =

∫ 1

0

β
(c)
t (mt −m∗t )dt (10)

Both αt and βt depend on t and their value can vary across the range of [0, 1], thus

allowing the treatment to have a functional effect on the intermediate variable. In our

application, this provides a temporal decomposition of the effect that applied pain

has on the brain response. This is important as the response can potentially vary

with regards to its onset, width or amplitude for different treatments.

The fundamental problem of causal inference (Holland 1988) is that for any given

subject one cannot observe the potential outcomes under both the treatment and

control conditions at the same time. In addition, terms such as Yi(1,M(0)) can never

be observed regardless of treatment. Hence, randomization of the treatment alone

cannot help identify the terms γ(c) and β(c) and additional assumptions are required

to proceed.

2.2 Linear Functional Structural Equation Models

Due to the fundamental problem of causal inference, none of the causal effects defined

in the previous section can generally be estimated from the observed data. Therefore,

in this section we discuss a linear functional structural equation model, corresponding

to the path diagram in Fig. 2, whose parameters can be directly estimated from the

data.
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A great deal of research has focused on extending linear models to the functional

setting (e.g., Hastie and Tibshirani, 1993; Fan and Zhang, 1999; James, 2002; Cardot

et al., 2003; Müller and StadtMüller, 2005). Currently, techniques exist for performing

regression where both/either the response and explanatory variables are functional

rather than scalar. Using these techniques, under conditions described in Section 2.3

mediation can be assessed using a functional analogue to a linear structural equation

model of the form:

Mit(Zi) = δ
(s)
1t + α

(s)
t Zi + εit ∀t (11)

Yi(Zi,Mi(Zi)) = δ
(s)
2 + γ(s)Zi +

∫ 1

0

β
(s)
t Mit(Zi)dt+ ηi. (12)

where t ∈ [0, 1]. Here the superscript (s) denotes that the parameters are defined in an

SEM that is estimable using the observed data. The model parameters are identified

through the definitions E(εt|Z = z) = 0 ∀t and E(η|Z = z,M(Z) = m) = 0. While

not necessary for identification, for estimation purposes we also assume that εit and

ηi are independent. Using (11) and (12) we can write

α
(s)
t = E(Mt(1)|Z = 1)− E(Mt(0)|Z = 0) ∀t (13)

γ(s) = E(Y (Z,M(Z))|M(Z) = m, Z = 1) (14)

−E(Y (Z,M(Z))|M(Z) = m, Z = 0)∫
β
(s)
t (mt −m∗t )dt = E(Y (Z,M(Z))|M(Z) = m, Z = z) (15)

−E(Y (Z,M(Z))|M(Z) = m∗, Z = z)
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In this formulation, it is easy to show that the “total effect” of Z on Y 2

τ (s) ≡ E(Y (1,M(1)|Z = 1))− E(Y (0,M(0)|Z = 0)) (16)

can be expressed as

τ (s) = γ(s) +

∫ 1

0

α
(s)
t β

(s)
t dt. (17)

Here γ(s) represents the “direct effect” of Z on Y , while the term
∫
α
(s)
t β

(s)
t dt repre-

sents the “indirect effect”. Mediation can then be assessed under suitable conditions

by determining whether the integral is significantly different from zero. In addition,

the product α
(s)
t β

(s)
t provides a functional decomposition of the “indirect effect” allow-

ing the specific intervals driving the mediation to be determined. Hence, the proposed

framework provides the opportunity under suitable conditions to assess the effects of

functional mediation.

2.3 Comparison of Causal Parameters and lfSEM Parame-

ters

In general, the parameters of the lfSEM (τ (s), γ(s), α
(s)
t and β

(s)
t ) are not equal to

their counterparts in the CLFM (τ (c), γ(c), α
(c)
t and β

(c)
t ). To equate the parameters

we need to make a number of assumptions. We begin by assuming that treatment

assignment is ignorable (Rosenbaum and Rubin, 1983).

Assumption 1 The treatments are assigned independently of the potential outcomes,

2Quotation marks are used in this subsection to differentiate the effects in the lfSEM from their

counterparts in the CLFM.
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i.e.

Y (0,M(0)), Y (1,M(1)), {Mt(0),Mt(1)}t∈[0,1] ⊥⊥ Z (18)

Under this assumption, it is easy to show that τ (c) = τ (s) and α
(c)
t = α

(s)
t . However,

in general γ(c) 6= γ(s) and β(c) 6= β(s). Under Assumption 1 we can express (15) as∫
β
(s)
t (mt −m∗t ) dt = E(Y (z,m)|M(Z) = m)− E(Y (z,m∗)|M(Z) = m∗) (19)

which is not directly comparable to the expression in (10). The term β
(s)
t compares the

values of the outcome in two different subpopulations of units, while β
(c)
t considers

the same subjects under different conditions. For similar reasons, the term γ(s) is

not directly comparable to (7). A sufficient condition for equality of the remaining

parameters is to assume that the mediator is ignorable with respect to the potential

outcomes.

Assumption 2 The potential outcomes are independent of the mediator, i.e.

Y (z,m) ⊥⊥ {Mt(z)}t∈[0,1] (20)

for z = 0, 1 and all m.

Under Assumptions 1-2 it is easy to show the equality of the remaining parameters,

as they imply that

E(Y (Z,M(Z))|Z = z,M(Z) = m) = E(Y (z,m)|Z = z,M(z) = m)

= E(Y (z,m)|M(z) = m)

= E(Y (z,m)) (21)
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Hence, under Assumptions 1 and 2 γ(s) = γ(c) and β
(s)
t = β

(c)
t . Note that these are the

same assumptions required for equating the parameters of SEMs with the parameters

of an analogous causal model (Sobel, 2008).

In addition, it should also be noted that under Assumption 2 we can write the

indirect effect of Z on Y as follows:

E(Y (0,M(1))− Y (0,M(0))) = E(Y (1,M(1))− Y (1,M(0)))

=

∫ 1

0

α
(c)
t β

(c)
t dt. (22)

This, in turn, allows us to express both decompositions of the total effect in (8) as

τ (c) = γ(c) +

∫ 1

0

α
(c)
t β

(c)
t dt (23)

providing expressions for the direct and indirect effects in terms of the parameters of

the CLFM.

If Assumptions 1 and 2 are valid it is appropriate to make causal claims using the

results from the lfSEM. Assumption 1 states that treatment assignment is ignorable,

as would be the case in a randomized fMRI experiment. Assumption 2 states that the

potential outcomes Y (z,m) are ignorable with respect to the intermediate outcomes

Mt(z) given Z, as would be the case if subjects were randomly assigned to M at both

levels of Z. Obviously this is a strong assumption which is untestable in practice,

and it is easy to construct examples where it is violated (e.g., Lindquist and Sobel

(2011); Lindquist and Sobel (2012)). For example, unobserved variables may exist

that confound the relationship between the outcome and the mediator variable even

after conditioning on the treatment status, e.g., a latent variable such as pain resilience

that simultaneously causes decreased brain response and reported pain. In the next

section we look at ways of relaxing Assumption 2.
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3 Identification of Causal Effects using an Instru-

mental Variable

In this section we give conditions under which the instrumental variable (IV) estimand

(the effect of Z on Y divided by the effect of Z on M) can be used to identify the

causal effect β(c). The results follow from similar work by Holland (1988) and Sobel

(2008) on SEMs, and provide an alternative set of assumptions for identifying the

causal effect of M on Y . The IV estimand has also been considered in connection

with causal effects defined in potential outcomes in work by Angrist and colleagues

(Angrist and Imbens, 1995; Angrist et al., 1996).

Under (5) and (6) it is possible to write:

Yi(1,Mi(1))− Yi(0,Mi(0)) = γ(c) +

∫ 1

0

β
(c)
t (Mit(1)−Mit(0))dt

+ηi(1,Mi(1))− ηi(0,Mi(0)). (24)

To proceed we assume that the difference in potential errors is 0 on average.

Assumption 3 E(η(1,M(1))− η(0,M(0))) = 0.

Because τ (c) = τ (s) and α
(c)
t = α

(s)
t when Assumption 1 holds, using Assumption 3

and averaging over both sides of (24) gives

τ (s) = γ(c) +

∫ 1

0

α
(s)
t β

(c)
t dt, (25)

which yields one equation in the unknown scalar γ(c) and the unknown function β
(c)
t .

In some applications it may be reasonable to assume that the treatment effect is

transmitted solely through the mediator, leading to the assumption:
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Assumption 4 Yi(0,m) = Yi(1,m) ∀ i, m.

This assumption, which implies γ(c) = 0, and is often referred to as an exclusion

restriction, states that treatment assignment is unrelated to the potential outcomes

once the mediator has been taken into account. Under this assumption we have that

τ (s) =

∫ 1

0

α
(s)
t β

(c)
t dt (26)

which can be viewed as an ill-posed homogeneous integral equation of the first kind.

In this case the standard IV estimand τ (s)/α
(s)
t is a solution for β

(c)
t , albeit a non-

unique one. This particular solution becomes unique if one assumes that the indirect

effect is constant across the range of the mediating variable. As the assumption of a

constant mediation effect may not be reasonable in fMRI studies, we instead seek a

different solution, namely the least-squares solution of minimum norm. We begin by

expressing (26) in the form of an operator equation

Aβ(c) = τ (s) (27)

where A is a linear operator such that Aβ(c) =
∫
α
(s)
t β

(c)
t dt. This, in turn, can be

replaced by the approximating matrix problem

Aβ̃(c) = τ (s), (28)

whose solution is given by

β̃(c) = A+τ (s) (29)

where A+ is the Moore-Penrose pseudo-inverse of A and β̃(c) is the discretized version

of β
(c)
t . This solution has many attractive features, including that if A has real
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entries then so does its pseudo-inverse A+, and if A is invertible, then A+ and

A−1 coincide. The choice of the minimum norm solution constitutes an additional

assumption. However, we differentiate it from the other assumptions due to our belief

that they must be verified each time the methodology is applied to a new data set,

while the same is not true for the use of the minimum norm solution.

In sum, under Assumptions 1 and 2 we can equate the parameters of the CLFM

with the equivalent parameters of the lfSEM. In contrast, under Assumptions 1, 3

and 4 we can use the IV estimand to identify the causal effect of M on Y . It should

be noted that Assumption 2, which states that there is no selection on the mediators

with respect to the potential outcomes Y (z,m), is more restrictive than Assumption

3, which states that there is no selection on the difference between potential errors.

To see this note that Assumption 2 is equivalent to

η(z,m) ⊥⊥ {Mt(z)}t∈[0,1] (30)

for z = 0, 1 and all m. Hence,

E(η(z,M(z))) = E(E(η(z,M(z)))|M(z) = m)

= E(E(η(z,m))|M(z) = m)

= 0. (31)

which implies Assumption 3. However, Assumption 3 does not imply Assumption 2.

Assumption 4 (exclusion restriction) is not always plausible and the IV estimand

will be biased by a factor A+γ(c) when it does not hold. In this situation assumptions

on the sign and/or magnitude of γ(c) might be used to bound the causal effect β
(c)
t .
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4 Estimation and Inference

In this section we describe an approach for estimating the parameters of the linear

functional structural equation model defined in (11)-(12) and the IV estimand de-

fined in (29). We also discuss inferential procedures based on the use of resampling

techniques.

Estimation

We begin by describing techniques for estimating the lfSEM. The equation de-

scribed in (11) consists of a scalar predictor and functional response, while (12)

consists of a functional predictor and a scalar response. For both types of models

there are a variety of estimation techniques; see Ramsay and Silverman (2006) for a

comprehensive overview. In the following we will for simplicity suppress the intercept

terms when illustrating the estimation procedure and instead consider the models:

Mit = α
(s)
t Zi + εit (32)

Yi = γ(s)Zi +

∫
β
(s)
t Mitdt+ ηi (33)

We approach (32) by expressing α
(s)
t as a linear combination of K known basis func-

tions φkt, i.e.

α
(s)
t =

K∑
k=1

φktak = Φta (34)

where Φt = (φ1t, · · ·φKt) and a = (a1, · · · aK)T . The coefficients of the expansion, a,

are determined by minimizing the least squares criterion

LMSSE(α
(s)
t ) =

∑∫
[Mit − α(s)

t Zi]
2dt. (35)
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If we re-express Mit − α(s)
t Zi as Mit − ZiΦta and let Ψit = ZiΦt, then the solution is

given by

â =

[∑∫
ΨT
itΨitdt

]−1 [∑∫
ΨT
itMitdt

]
, (36)

which provides us with an estimate of α
(s)
t .

The space of functions β
(s)
t satisfying (33) is infinite-dimensional and simply min-

imizing the sum of squares will not provide a meaningful estimate. Instead, we

minimize the penalized square error

PENSSEλ(γ
(s), β

(s)
t ) =

∑[
Yi − γ(s)Zi −

∫
β
(s)
t Mitdt

]2
+ λ

∫
D2β

(s)
t dt, (37)

where the integral portion of the second term represents the integrated squared sec-

ond derivative and λ represents a constant smoothing parameter. We proceed by

expressing the regression function as

β
(s)
t =

K∑
k=1

φktbk = Φtb (38)

where b = (b1, · · · bK)T . Using this expression we can write (33) as

Yi = γ(s)Zi +

∫
β
(s)
t Mitdt+ ηi

= γ(s)Zi +

[∫
ΦtMitdt

]
b + ηi

= γ(s)Zi + Λib + ηi. (39)

where Λi =
∫

ΦtMitdt. Concatenating the results across all subjects we obtain

Y = Gξ + η (40)
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where

Y =


Y1

...

Yn

 , G =


Z1 Λ1

...
...

Zn Λn

 and ξ =

 γ(s)

b

 . (41)

The solution of (37) is given by

ξ̂ = (GTG+ λR)−1GTY, (42)

where R is a matrix with elements Rij equal to zero if j or k = 1 and
∫
D2φjsD

2φksds

otherwise.

To compute the IV-estimand, we first obtain the path coefficient α
(s)
t as outlined

above. The discretized version of the linear operator A, denoted A, can then be

obtained by evaluating Φtâ, t ∈ [0, 1], at N equidistant points. Next, the path

coefficient τ (s) is computed using the equation

Yi(Zi,Mi(Zi)) = δ
(s)
3 + τ (s)Zi + εi, (43)

which can be solved using standard linear regression methods. Finally, the IV esti-

mand is obtained by taking the pseudo inverse of A and computing A+τ (s).

Inference

Once the parameters of the linear functional SEM and/or the IV-estimand have

been estimated, we can perform inference on the indirect effect. In brain imaging,

hypothesis testing is considered to be of primary importance. In mediation analysis

we are particularly interested in determining whether the total effect is stronger than

the direct relationship controlling for M. Analogous to the fully univariate setting

(Sobel, 1982; Baron and Kenny, 1986), this can be done by testing the significance of
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the integral of the α
(s)
t β

(s)
t product. As the exact distribution of the function α

(s)
t β

(s)
t

is unknown, we use bootstrap methods to perform inference, providing a functional

equivalent to an approach often used in the univariate setting (Shrout and Bolger,

2002).

We propose using a wild bootstrap procedure as it is known to perform well for

regression models (Flachaire, 2003; Zhu et al., 2007). To produce a bootstrap sample

(Zi, Y
∗
i , M∗

i ), i = 1, . . . n, we use the following data generating process (DGP):

M∗
it(Zi) = δ̂

(s)
1t + α̂

(s)
t Zi + v∗i ε̂it ∀t (44)

Y ∗i (Zi,M
∗
i (Zi)) = δ̂

(s)
2 + γ̂(s)Zi +

∫ 1

0

β̂
(s)
t M∗

it(Zi)dt+ v∗i η̂i. (45)

where δ̂
(s)
1t , δ̂

(s)
2 , α̂

(s)
t , β̂

(s)
t and γ̂(s) are estimates of the parameters in (11) and (12),

ε̂it and η̂i are the ith residuals and v∗i are independent and identically distributed as

v∗i =

 1 with probability 0.5

−1 with probability 0.5

This particular DGP has been studied extensively in the context of IV regression

(Davidson and MacKinnon, 2008) and shown to outperform other comparable boot-

strap methods.

The bootstrap procedure is performed as follows:

1. Independently generate a bootstrap sample (Zi, Y
∗
i , M∗

i ), i = 1, . . . n, using

the wild bootstrap DGP described in (44) and (45).

2. Using the resampled data, refit (11) and (12) and record the estimate of α
(s)
t β

(s)
t

for t ∈ [0, 1]. When working with the IV-estimand, refit (29) rather than (12).

3. Repeat the procedure outlined in steps 1 and 2 B (e.g., 1, 000) times.
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The B replications are used to compute the bootstrap distribution of α
(s)
t β

(s)
t for all

values of t, which can be used to test whether α
(s)
t β

(s)
t differs significantly from 0.

Because the suggested DGP does not impose the null hypothesis on the resampled

data, it is necessary to instead test whether α
(s)
t β

(s)
t differs from α̂

(s)
t β̂

(s)
t to obtain

a valid test. It should be noted that the bootstrap distribution can also be used to

compute percentile confidence intervals (Efron and Tibshirani, 1998) for α
(s)
t β

(s)
t for

all t.

Because we are interested in testing for significance across the range of t, it is

necessary to correct for multiple comparisons. Throughout the manuscript we use

the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995) to control the

false detection rate (FDR). We use FDR contolling methods, rather than methods

that control the family-wise error rate (FWER), because choosing the appropriate

threshold to control the FWER is difficult due to dependencies in the data.

5 Simulation study

In this section we report the results of a series of simulation studies where data was

generated using different combinations of the assumptions described in Sections 2-3.

In the first five simulations (summarized in the schematic shown in Fig. 3) data

was generated according to the model described in (11) and (12). This is meant

to represent a situation under which sequential ignorability (Assumptions 1-2) holds.

The first three simulations were designed to determine the empirical false positive rate

of the method when no mediation effect is present, while the next two were designed

to study the power in the presence of a significant mediation effect. The sixth and
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final simulation, generated using the causal model (5) and (6), was designed to mimic

a situation where Assumption 2 is violated, but the assumptions for identifying β
(c)
t

using the IV-estimand hold (Assumptions 3-4).

In five of the simulations (1 − 4, 6), data was generated for 20 “subjects”, 10

randomly assigned to a treatment group (Z = 1) and 10 to a control group (Z = 0).

In the fifth simulation, data was generated for n “subjects”, with n allowed to vary

between 10 and 50, split equally between Z = 0 and Z = 1. The values of Mt and

Y differed between the six simulations as outlined below and were chosen to mimic

plausible brain imaging settings. Throughout, we restricted Mt to a uniform grid of

60 points in the interval [0, 1]. In five of the simulations the shape of Mt is based on a

common time-varying function denoted ht (see bottom-left hand side of Fig. 3) which

equals 0 in the ranges [0, 1/3) and (2/3, T ], and varies smoothly in the range [1/3, 2/3].

The function corresponds to the so-called canonical hemodynamic response function

(HRF; Lindquist, 2008) typically used to model changes in fMRI signal in response

to a stimulus. This function consists of an early rise in activation level, followed by a

decline and a subsequent post-activation undershoot below baseline level.

Each of the six simulations was repeated 500 times. For each repetition of Simu-

lations 1− 5 the models (11) and (12) were fit using the approach outlined in Section

4. When fitting the lfSEM model we restrict Mt to a uniform grid of 60 points in the

interval [0, 1]. The path coefficients α
(s)
t and β

(s)
t are modeled using a b-spline basis

set of order 6 with 30 knots. The path equations are computed using custom Matlab

software, incorporating functions from the Matlab toolbox for functional data analy-

sis3. The roughness penalty required to fit (12) is taken as the L2-norm of its second

3http://www.psych.mcgill.ca/misc/fda/index.html
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Figure 3: A schematic overview of the first five simulation studies along with expected
α
(s)
t β

(s)
t effects (last column). Simulations 1 − 3 were designed to determine the

empirical false positive rate of the method when no mediation effect is present, while
Simulations 4 − 5 were designed to study the power in the presence of a mediation
effect. In Simulations 1 − 4, data was generated for 20 “subjects”, where half are
assigned to a treatment group (Z = 1) and half to a control group (Z = 0). In
Simulation 5 the sample size was allowed to vary between 10 and 50 “subjects”.
The values of Mt and Y differed between the five simulations as summarized in the
schematic in order to mimic plausible brain imaging settings.

derivative, with the smoothing parameter selected by leave-one-out cross-validation;

no smoothing is used in the initial step of representing Mt in terms of the B-spline

basis. A bootstrap test was performed to determine time points where α
(s)
t β

(s)
t was

significantly different from 0. The results were controlled for multiple comparisons

using the Benjamini-Hochberg procedure (q = 0.05).

For each repetition of Simulation 6, α
(c)
t β

(c)
t is obtained by equating α

(c)
t = α

(s)
t

and computing the IV estimand β
(c)
t using (29). A bootstrap test was performed to

determine whether α
(c)
t β

(c)
t was significantly different from 0, controlling for multiple

comparisons using the Benjamini-Hochberg procedure (q = 0.05).
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Simulation 1: The data is generated assuming Mit = εit and Yi = Zi + ηi for all

i = 1, . . . 20, where both εit and ηi follow a standard normal distribution. In this

simulation there should be a significant relationship between Z and Y , but it should

not be mediated by Mt. This holds because there is no effect of Z on Mt and similarly

no effect of Mt on Y , i.e. α(s) = β(s) = 0. The first row of Fig. 4 shows estimates

of α
(s)
t , β

(s)
t and α

(s)
t β

(s)
t together with 95% bootstrap percentile confidence intervals.

None of the effects appear to deviate significantly from 0 across the time interval.

Fig. 5A shows the proportion of times α
(s)
t β

(s)
t was deemed significant as a function

of t in the 500 replications. Clearly, all time points fall well below 0.05.

Simulation 2: The data is generated in an analogous manner as in Simulation I,

except Mit = (Zi + ξi)ht + εit for all i = 1, . . . 20, where ht is defined as above, εit

follows a standard normal distribution and ξi is N(1, 0.1). Again there should be

a significant relationship between Z and Y , but it should not be mediated by Mt

as there is no effect of Mt on Y since β
(s)
t = 0 for all t. Note that in this case

α
(s)
t 6= 0, differentiating it from the setting of Simulation I. The second row of Fig.

4 shows estimates of α
(s)
t , β

(s)
t and α

(s)
t β

(s)
t together with 95% bootstrap percentile

confidence intervals. The estimates coincide with the simulated values, with only α
(s)
t

being significantly different from 0 in the time interval corresponding to where ht is

non-zero. Fig. 5B shows the proportion of times α
(s)
t β

(s)
t was deemed significant as a

function of t. Again, all time points fall below 0.05. However, the proportion of false

positives are increased and approaches 0.05 in the interval where ht is non-zero.

Simulation 3: The data is generated as Mit = ξiht+εit and Yi =
∫ 2/3

1/3
Mitdt+ηi for all

i = 1, . . . 20, where ht is defined as above and both εit and ηi follow standard normal
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distributions and ξi is N(1, 0.1). In this simulation there should be no relationship

between Z and Y or Z and M as τ (s) = 0 and α
(s)
t = 0 for all t. The third row of Fig.

4 shows estimates of α
(s)
t , β

(s)
t and α

(s)
t β

(s)
t together with 95% bootstrap percentile

confidence intervals. Again, the estimates seem to coincide with the simulated values,

with only β
(s)
t being significantly different from 0 in the time interval [1/3, 2/3]. Fig.

5C shows the proportion of times α
(s)
t β

(s)
t was deemed significant as a function of t in

the 500 repetitions. Again, all time points fall well below 0.05.

Simulation 4: The data is generated in an analogous manner as described in Simula-

tion III, except Mit = (Zi + ξi)ht + εit for all i = 1, . . . 20, where εi follows a standard

normal distribution and ξi is N(1, 0.1). In this simulation the relationship between

Z and Y is significant and should be mediated by Mt in the range [1/3, 2/3] as both

α
(s)
t and β

(s)
t are non-zero in that interval. The fourth row of Fig. 4 shows estimates

of α
(s)
t , β

(s)
t and α

(s)
t β

(s)
t together with 95% bootstrap percentile confidence intervals.

Again, all three estimates coincide with the simulated values, as they are significantly

different from 0 in the appropriate intervals of time. Fig. 6A shows the proportion of

times α
(s)
t β

(s)
t was deemed significant as a function of t. In the intervals [0, 1/3) and

(2/3, 1] all time points fall below 0.05. In addition, we see a significant relationship

in the range [1/3, 2/3] as expected. The proportion significant results peaks at 45%

around the point where ht takes its maximum.

Simulation 5: The data is generated in an analogous manner as described in Simula-

tion IV except the sample size was allowed to vary between 10 and 50 “subjects”. Here

the relationship between Z and Y should be mediated by Mt in the range [1/3, 2/3]

as before. Fig. 6B shows the proportion of times α
(s)
t β

(s)
t was deemed significant as
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Figure 4: Estimates of α
(s)
t , β

(s)
t and α

(s)
t β

(s)
t together with uncorrected 95% bootstrap

percentile confidence intervals for data generated according to the settings described
in the first four simulations studies.

A B C 

Figure 5: Results of the first three simulation studies are shown in (A)-(C). Each plot

shows the proportion of times α
(s)
t β

(s)
t was deemed significant as a function of time.

The results illustrate that the method provides adequate control of the false positive
rate in all three simulated scenarios.
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a function of t for a number of sample sizes ranging from 10 to 50. As expected the

higher the sample size, the better the sensitivity and specificity.

Simulation 6: The data is generated according to the causal model in (5) and (6)

with δ
(c)
2 = γ(c) = 0, δ

(c)
1t = 0 ∀t, α(c)

t = ht and β
(c)
t = 1 in the range [2/6, 3/6]

and 0 otherwise. We ensured that εit(0), εit(1) ⊥⊥ Zi (Assumption 1) by generating

both potential outcomes from a standard normal model and randomly assigning the

observed outcome to each subject. Further we set ηi(z,m) =
∫ 3/6

2/6
εit(z)dt+ η∗i (z,m)

where η∗i (z,m) is standard normal. This ensures that Assumption 2 is violated since

ηi(z,m) is not independent of εi(z) for z = 0, 1. However, since Assumptions 3-4

hold we can estimate β
(c)
t using the IV estimand. In this simulation the relationship

between Z and Y is significant and should be mediated by Mt in the range [2/6, 3/6]

as both α
(c)
t and β

(c)
t are non-zero in that interval. Fig. 6C shows the proportion

of times α
(c)
t β

(c)
t was deemed significant as a function of t. In the intervals [0, 2/6)

and (3/6, 1] almost all time points fall below 0.05. In addition, we see a significant

relationship in the range [2/6, 3/6] as expected. The proportion significant results

almost reaches 100% around the point where ht takes its maximum.

6 Experimental Data

In this section we study data from the fMRI study of thermal pain (n = 20) described

in the Introduction. Functional MRI data was extracted from 21 different classic

pain-responsive brain regions. Each time course consisted of 23 equidistant temporal

measurements made every 2 s, providing a total of 46 s of brain activation ranging

from the time of the application of the heat stimuli to the pain report. The stimuli
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A B C 

Figure 6: Results of the last three simulation studies. (A) The plot shows the results

of the fourth simulation. It shows the proportion of times α
(s)
t β

(s)
t was deemed signif-

icant as a function of time and illustrates the power of the method in detecting true
positives in the interval [1/3, 2/3] while appropriately controlling for false positives
in the intervals [0, 1/3] and [2/3, 1]. (B) The plot illustrates the power to detect true
positives as a function of sample size, with values ranging from 10 to 50. As expected
the higher the sample size, the better the sensitivity and specificity. (C) The plot
shows the results of the sixth simulation and illustrates the power of the IV estimand
to detect true positives.

consisted of thermal stimulations delivered to the left volar forearm that participants

judged to be non-painful vs. near the limit of pain tolerance. The temperature of

these painful (i.e., hot) and non-painful (i.e., warm) stimulations was determined via

a pain calibration task that took place prior to the experiment on the day of scanning.

Following an 18 s interval of thermal stimulation, a fixation cross was presented for

a 14 s interval until the words ”How painful?” appeared on the screen. After a few

seconds of contemplation the participants rated the overall pain intensity on a 10-

point numerically anchored visual analog scale (VAS), similar to those commonly used

in clinical practice. Participants respond by indicating a position along a continuous

line between two end-points. The continuous aspect of the scale differentiates it from

similar discrete scales (e.g. the Likert scale), and allows us to use the suggested model

instead of a variant specifically designed for ordinal responses.

Each time course was placed into the three-variable path model shown in Fig. 2;
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where the variable Z represents the applied pain level, the variable Y the reported

pain and the variable M the brain response. We began by estimating the parameters

using the lfSEM framework. We restrict Mt to a uniform grid of 23 points in the

range [0, 46]. The path coefficients α
(s)
t and β

(s)
t were modeled using a b-spline basis

set of order 6 with 10 equidistantly spaced knots. Inference was performed using a

bootstrap test to determine whether α
(s)
t β

(s)
t was significantly different from 0 in any

time interval between pain application and pain report. The Benjamini-Hochberg

procedure was used to control the false detection rate (q = 0.05). Next, we estimate

the IV estimand using the technique outlined in Section 4.

6.1 Results of functional Mediation Analysis

Fig. 7 shows results from the right anterior insula which has been shown to be

related to negative emotional experience. This region is believed to mediate the

relationship between temperature and pain rating. Estimates of the α
(s)
t and β

(s)
t

pathway functions are shown on either side of the path model. These functions

suggest a sustained period for which activity is modulated by temperature, and a

more phasic response predicting perceived pain, controlling for temperature. A 95%

bootstrap percentile confidence interval shows that the α
(s)
t β

(s)
t -effect is significantly

non-zero in the range between 20− 24 seconds after the start of the trial, indicating

the key time interval driving the mediation. This corresponds to the first 4 seconds

following the end of the application of heat. This somewhat delayed effect is due

to the sluggish nature of brain hemodynamics, which peaks roughly 6 seconds after

peak neuronal activation, and is consistent with timings of other fMRI experiments
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Figure 7: Results show that activation in the right anterior insula (see brain map for
the anatomical location of the region) mediates the relationship between temperature

and pain rating. Estimates of the α
(s)
t and β

(s)
t pathway functions are shown on either

side of the path model. These functions suggest a sustained period for which activity
is modulated by temperature, and a more phasic response predicting perceived pain,
controlling for temperature. An uncorrected 95% bootstrap percentile confidence
interval shows that the α

(s)
t β

(s)
t -effect is significantly non-zero in an interval between

20 − 24 seconds following the start of the trial (shown in red in bottom plot). This
indicates the key time interval driving the mediation.

(Lindquist, 2008).

Fig. 8 shows time points with significant non-zero α
(s)
t β

(s)
t -effects for each of 21

brain regions obtained using a bootstrap test. The results show that data in many

classic “pain-responsive regions” such as the anterior insula (AINS) show significant

mediation of the temperature-report relationship particularly around the end of the

treatment, i.e. heat application (20 − 24 sec). The subjective pain grows during

the stimulation period, and is often maximal around the end of stimulation, which

typically drives pain ratings made after the trial. Notably, some other regions show

significant mediation effects around the time immediately preceding pain reporting
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(38 − 44 s), perhaps signaling a contribution of activity during “pain recall”. In

particular, regions in the insular cortex appear to be active during pain judgment,

which is reasonable due to their link to decision-making (Moulton et al. 2005; Grin-

band et al. 2006). In addition to responding to physical pain, the anterior insula

has been shown to be activated by viewing others in pain, receiving an unfair offer in

an economic game, or viewing aversive pictures (Wager et al., 2008; Amodio et al.,

2006).

The ability to identify these disjoint time intervals as being involved in mediating

the effect between temperature and reported pain is a unique property of the func-

tional mediation framework and is not possible using standard mediation techniques.

Hence, we believe that the application of lfSEM provides invaluable information about

different components of pain processing in the human brain. This, in turn, furthers

our understanding of the components involved in the processing and reporting of

applied pain.

Fig. 9 shows the IV estimands for each of the 21 brain regions. The results

show that for most regions there are three distinct time intervals of significant effects.

The first, roughly 4− 16 s following the start of the trial, corresponds to a negative

value of the IV estimand. Hence, high brain activation in the early portion of the

trial has a negative effect on reported pain. This time period is typically thought of

as a baseline period before task related activation has had time to appear and any

activation may be related to anticipation. In contrast the time periods 20− 28 s and

38− 44 s corresponds to a positive value of the IV estimand. In these intervals high

activity has a positive effect on reported pain, and they are related to the timing of

task-related activation and pain recall, respectively, as discussed above.
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Figure 8: Time points with significant non-zero α
(s)
t β

(s)
t -effects for each of 21 brain

regions (FDR corrected p-value < 0.05). The colorbar shows the size of the p-value.
The results show that classic “pain-responsive regions” show significant mediation
of the temperature-report relationship particularly around the end of the treatment
(20 − 24 s). Some other pain regions show significant mediation effects around the
time of pain reporting, perhaps signaling a contribution of activity during pain recall.

Figure 9: Time points with significant β
(c)
t -effects for each of 21 brain regions

(FDR corrected p-value < 0.05). The color bar shows the amplitude of the estimate,
with results obtained using the IV estimand.
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6.2 Assessment of assumptions

The validity of the causal model defined in Section 2.1 depends upon the appropriate-

ness of SUTVA and models (1) and (2). In our application neither the brain response

nor the reported pain of an individual subject should be affected by the treatment

given to any other subject in the study, thus validating SUTVA. In addition, linear

additive models are commonly used in the analysis of neuroimaging data and their

usage in this particular application appears reasonable. To partially verify linearity

and additivity we studied a number of independent data sets that used the same

paradigm and matched values of the mediator to compute Yi(1,m) − Yi(0,m) for

different values of m. The results indicate only minor deviations from linearity or

additivity.

To apply a causal interpretation to the parameters of the linear functional struc-

tural equation model and the IV estimand we require certain combinations of As-

sumptions 1-4 to hold. The requirements for equating the parameters of the lfSEM

with the effects of the mediators are given by Assumptions 1-2. As treatments are

randomly assigned to subjects it is reasonable to assume that the treatment is ignor-

able. Assumption 2 would be valid if the mediators were randomly assigned to the

subjects. However, this is not the case here and instead we must assume that they

behave as if they were. This assumption is unverifiable in practice and ultimately

depends on context. In the neuroimaging setting its validity may differ across brain

regions, making causal claims more difficult to access. For example, assume subjects

in the study are either resilient or not to pain. Suppose that resilient subjects tend

to have a lower brain response than non-resilient subjects when a painful stimulus
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is applied. Further suppose that resilient subjects always report lower pain ratings

than their non-resilient counterparts at any value of the mediating variable. In this

situation, Y (1,m) will not be independent of M(1) and Assumption 2 will be vi-

olated. In practice, this assumption could potentially be weakened by allowing for

conditioning on potential confounders. However, no such covariates were available in

this particular study.

For a valid causal interpretation of the IV estimand, we require Assumptions

1, 3 and 4. The assumption of no average difference in potential errors appears

plausible, in particular in comparison with Assumption 2. Revisiting the example

with resilient/non-resilient subjects, here it suffices that the resilient (non-resilient)

subjects on average fall above (below) the mean pain rating by the same amount

under both conditions. Finally, Assumption 4 is untestable in practice but amounts

to attributing the effect of Z on Y to the change in the brain response rather than

the change in the treatment. One caveat is that since a single mediator model is

assumed and multiple mediators have been targeted in the study, this assumption may

potentially be violated as the effects of omitted mediators may become confounded

with the direct effect. Ideally, we would wish to use a model that simultaneously

considers the effects of multiple mediators on the outcome to circumvent this issue.

We leave this for future research and simply note that any violation of Assumption

4 gives rise to bias. As a final note on assumptions, the application considers Mit

(and the corresponding coefficients) as functions of time. Hence, it is conceivable

that values of the mediator at earlier times could affect values at later times. The

implicit assumption of our model is that there is no causal connection among the

multiple measurements of the mediator, i.e. that they behave as if they were measured
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contemporaneously.

7 Discussion

This article introduces linear functional structural equation modeling as a means of

studying time-varying mediation effects. It also examines conditions under which the

lfSEM model and instrumental variable methods can be used to identify causal effects

of a mediating functional variable on an outcome. To the best of our knowledge this

work provides the first application of causal inference to the FDA framework.

The causal interpretation for the parameters of the lfSEM rests on a strong

untestable assumption, namely sequential ignorability (Assumptions 1-2). Recent

advances in imaging may allow us to avoid Assumption 2 as neuroimaging data has

been combined with transcranial magnetic stimulation (TMS) to integrate the abil-

ity of neuroimaging to observe brain activity with the ability of TMS to manipulate

brain function (Bohning et al., 1997). Using this technique one can simulate tempo-

rary “brain lesions” while the subject performs certain tasks. One can then attempt

to infer causal relationships by studying differences in a brain network when a region

is functioning and when it is not. Using this technique will allow us to experimentally

manipulate the mediating variable, as well as the treatment, allowing us to circumvent

the sequential ignorability assumption.

The proposed lfSEM framework assumes that the treatment and outcome variables

are both univariate, while the intermediate variable is continuous. The method can

be extended to allow the variables Z, M and Y to all be functional. There are several

ways to formulate an analogous system of equations to (11) and (12) for this case. One
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example which uses the time-varying, or concurrent, model for functional regression

(Hastie and Tibshirani, 1993; Ramsey, Hooker and Graves, 2009) can be expressed

as follows:

Mit(Zit) = δ1t + αtZit + εit (46)

Yit(Zit,Mit(Zit)) = δ2t + γtZit + βtMit(Zit) + ηit. (47)

for t ∈ [0, 1]. In this formulation, the total effect of Z on Y can be expressed as

τt = γt + αtβt (48)

for all t ∈ [0, 1]. Note that here the total effect is allowed to vary across the entire

range of t.

Finally, an interesting aspect of our approach which we have not previously dis-

cussed is its ability to handle missing, or non-uniformly sampled, data in the mediator

variable. One of the main benefits of functional data analysis is its ability to handle

such data. Though our example did not contain such data, it would be an interesting

application for future work, as fMRI scans are sometimes dropped due to artifacts in

the data collection at certain time points.
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