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i 

Abstract 

Regular measurements of the state of the environment constitute a cornerstone 

of environmental management. Without the support of long time series of 

reliable data, we would know much less about changes that occur in the 

environment and their causes. The present research aimed to explore how 

improved techniques for data analysis can help reveal flawed data and extract 

more information from environmental monitoring programmes. Based on our 

results, we propose that the organization of such monitoring should be 

transformed from a system for measuring and collecting data to an information 

system where resources have been reallocated to data analysis. More 

specifically, this thesis reports improved methods for joint analysis of trends in 

multiple time series and detection of artificial level shifts in the presence of 

smooth trends. Furthermore, special consideration is given to methods that 

automatically detect and adapt to the interdependence of the collected data. The 

current work resulted in a road map describing the process of proceeding from a 

set of observed concentrations to arrive at conclusions about the quality of the 

data and existence of trends therein. Improvements in existing software 

accompanied the development of new statistical procedures.  
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1 Introduction 

1.1 Motivation and scientific context  

Regular measurements of the state of the environment make up the foundation of 

evidence-based environmental management. Without the existence of long time 

series of reliable data collected in local, regional, or national monitoring 

programmes, we would know much less about the changes that occur in the 

environment and their causes. Also, it would be considerably more difficult to 

assess the efficacy of measures taken to combat the deterioration of ecosystems. 

However, the fact that monitoring is an indispensable part of environmental 

management does not necessarily imply that it is coordinated in an optimal 

manner. In almost all organizations, there is a substantial risk that views and 

methodologies are not being updated to meet new demands and take advantage 

of novel technologies. 

At the time many of the existing monitoring programmes were devised, it 

was not unusual to address important questions by performing simple surveys 

and very basic data analyses. Hot spots and particularly vulnerable environments 

were successfully delineated, and the impact of removing major point emissions 

was often readily documented in a convincing fashion. The environmental issues 

that are now receiving the most attention are more complex and involve 

evaluation of much larger datasets. Regional or global change is usually in 

focus, and understanding long-term alterations in the state of the environment 

represents a priority. In addition, the human impact that a monitoring system is 

intended to detect is often relatively small compared to both the natural 

interannual variation at the monitored sites and the random measurement errors 

that influence the individual observations. The objective of the research 

underlying this thesis was to explore how improved techniques for data analysis 
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can help reveal flawed data and how more information can be extracted from 

environmental monitoring programmes. The examples discussed here originate 

from water quality monitoring, but the major conclusions are valid for a much 

larger class of monitoring programmes.  

On a more general level, the current results raise questions about the need for 

new paradigms in environmental monitoring. Over the past decade, it has 

gradually become more apparent that science and professional work increasingly 

entail collection, organization, transformation, and presentation of information. 

Together, powerful computers with almost unlimited storage capacity and the 

Internet and its efficient search engines constitute much more than a 

technological revolution. Dramatic changes are also occurring in the 

organization and performance of science and professional work. In a recently 

published issue of the journal Nature, it was stressed that “important discoveries 

are made by scientists and teams who combine different skill sets—not just 

biologists, physicists and chemists, but also computer scientists, statisticians and 

data-visualization experts” (Szalay & Gray, 2006, p. 413). Moreover, another 

author in that issue claimed that “It will be a very different way of thinking, 

sifting through the data to find patterns” (Butler, 2006, p. 403). It was even 

stated that “applied computer science is now playing the role which mathematics 

did from the seventeenth through the twentieth centuries: providing an orderly, 

formal framework and exploratory apparatus for other sciences” (Foster, 2006, 

p. 19). The discussion here deals with how the mentioned development can and 

should influence the extraction of information from environmental monitoring 

programmes. In particular, the focus is on the role of statistical methods that are 

sufficiently simple so as to be easy to comprehend, yet sufficiently advanced to 

capture the key features of the collected data. 

From a statistical point of view, our work has its roots in a visionary article 

by Tukey (1962). Long before the width of the present revolution of computer 

science and technology could be anticipated, Tukey asserted the following: 
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• Data analysis is a larger and more varied field than statistical inference in 

a given probability model. 

• There is a need for free use of ad hoc and informal procedures in seeking 

indications—“listening to the data.” 

• Model building is an iterative procedure. 

Tukey also emphasized that the simple graph has brought more information to 

the mind of the data analyst than has any other computational device. 

Nowadays, iterative methods for data analysis are widely used, because they 

enable data-driven procedures that automatically adapt to the structure of the 

collected data. We believe that assessment of data quality should also be treated 

as an iterative process. It is not unusual that data that are considered to be correct 

at the time of the sampling are deemed erratic after more data have been 

collected and new analytical procedures have been implemented. 

1.2 Study objectives and methods 

As indicated in the above-mentioned motivation for the present research, the 

work had two major objectives: 

(i) to facilitate the detection of trends and assessment of data quality in 

environmental monitoring; 

(ii) to demonstrate the need for reallocating resources from data collection to 

data analysis. 

Detection of trends in the state of the environment requires adequate methods to 

handle outliers, artificial level shifts, temporal and spatial correlation in the 

collected data, missing values, and observations below the limit of detection or 

quantification. We investigated how multiple time series of data can be analysed 

in the presence of such peculiarities. Special attention was paid to non- and 

semiparametric approaches for joint evaluation of multiple time series. Joint 

evaluation of data representing many locations and time points is crucial when 
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examining regional and large-scale trends. Non- and semiparametric models are 

well suited for data-driven and interactive approaches that help the user “listen 

to the data.”  

At the onset of our studies, we focused on extraction of smooth trends that 

could be interpreted as human impact on the environment. However, as our work 

progressed, we observed that artificial level shifts not related to actual changes 

in the environment were a major source of long-term temporal variation in the 

analysed data. This triggered development of statistical methods and software 

for joint assessment of smooth trends and artificial level shifts in vector time 

series. 

In any discussion of environmental monitoring, it is also necessary to address 

the balance between process-based modelling and the collection and analysis of 

observational data. Hence, this thesis provides a brief account of how the two 

activities can support each other and how statistical analysis of model inputs and 

outputs can provide valuable information for environmental management. 

To be more precise, the description covers the development and application 

of three main methods:  

(i) Extended Mann-Kendall tests for monotonic trends 

Mann-Kendall tests for monotonic trends have long been among the major 

instruments used to detect temporal trends in environmental data (Hirsch & 

Slack, 1984). We examine how such tests can be extended to simultaneously 

handle serial correlation, covariates, and censored data. In addition, to 

support such analyses, we modify existing software. 

(ii) Semiparametric regression for the detection of smooth trends and 

artificial level shifts in vector time series 

In this work, we generalize models that had previously been used to assess 

smooth trends in multiple time series of data (Hussian et al., 2004; Stålnacke 

& Grimvall, 2001). In particular, we examine how artificial level shifts can 

be estimated in the presence of smooth trends and how an existing 
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resampling technique for uncertainty assessments can be modified to 

accommodate data that are correlated in time or across coordinates in the 

analysed vector time series. 

(iii) Ensemble runs for extracting the essence of complex process-based 

models 

Management objectives are typically expressed as long-term spatial averages, 

whereas process-based models operate on spatial and temporal scales that 

facilitate mechanistic interpretation of equations and model parameters. The 

text here briefly describes how multiple runs of a process-based model of 

nitrogen flows in catchments can be used to extract important features of 

temporally aggregated model outputs and how such model runs can support 

assessment of trends in observational data. 

An important aim of this thesis is to integrate the first two methods into a 

roadmap for trend detection and assessment of data quality. In addition, we 

develop two software packages (Multitest and Multitrend) to support this 

roadmap. Multitest aims to achieve a preliminary check of trends in the observed 

time series, whereas Multitrend is devoted to revealing synchronous increases 

and decreases and to separating smooth trends from abrupt level shifts. 

1.3 Outline of the thesis 

This summary is based on five papers (designated I–V), which are appended at 

the end of the dissertation. 

Paper I is dedicated to semiparametric smoothing and the major ideas behind 

Multitrend. In the next study (Paper II, published in Environmental Science & 

Policy 11, pp. 115–124), Multitrend is used to investigate water quality trends in 

Swedish water courses and to scrutinize the quality of collected data. Thereafter 

(Paper III), Multitest and Multitrend are used to investigate Swedish 

groundwater data and to demonstrate how trends can be extracted from large 
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datasets involving temporally and spatially correlated observations. During the 

work underlying Papers II and III, serious data quality problems were revealed. 

In particular, we found that artificial level shifts had a marked impact on long-

term trends. Therefore, we conducted an additional study (Paper IV) in which 

Multitrend was extended to enable detection and estimation of abrupt changes in 

vector time series. Paper V (published in the Proceedings of the International 

Environmental Modelling and Software Society Conference, Osnabrück, 

Germany, 14–17 June, 2004) provides an example of the need for better 

integration of process-based modelling and statistical data analysis. 

The final chapter of this thesis summarizes the conclusions drawn from our 

research and addresses the need for a paradigm shift in environmental 

monitoring. 
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2 Testing for trends in multiple time series 

Assessment of temporal trends in data representing a network of stations 

requires statistical methods that can accommodate multiple, statistically 

dependent time series. In addition, it is highly desirable that the selected 

methods are easy to comprehend, are robust to outliers, and can accommodate 

missing values. This makes the Mann-Kendall (MK) tests advocated by Hirsch 

and Slack (1984) an attractive choice. Such nonparametric techniques also have 

the advantage of being less demanding for the user compared to parametric 

methods that require detailed modelling of probability distributions and 

dependencies. 

The aim of statistical trend testing is to distinguish between deterministic and 

stochastic changes over time, and thus the character of the stochastic 

components is always a key issue. In particular, it is necessary to take into 

account the presence of serial correlation. Hirsch and Slack (1984) showed how 

dependence across seasons can be handled. However, there is no ideal method to 

adjust for serial dependence over time intervals longer than a year, and existing 

methods are also restricted to univariate time series (Hamed & Rao, 1998; Yue 

& Wang, 2004). Here, we examined a simple procedure based on reorganization 

of the given data into a larger number of time series with longer time steps. In 

addition, we clarified that censored data can easily be handled in all kinds of 

MK tests, including partial MK tests involving covariates (Libiseller & 

Grimvall, 2002). 

Inasmuch as the collected data usually represent things like several seasons, 

stations, regions, or sampling methods, it is often of interest to test for trends in 

several subgroups of data. This calls for software in which multiple tests are 

automatically undertaken. The software Multitest, which we modified in the 

present work, provides such features for both ordinary and partial MK tests.  
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2.1 The ordinary univariate MK-test 

The classical MK method is a nonparametric test for monotone trend in a single 

time series y1, …, yn. It is based on pairwise comparisons of observations, and 

the test statistic can be written 

∑ −=
< ji

ij yyT )sgn(  

where 









<−
=
>

=
0if,1

0if0,

0if,1

)sgn(

x  

x  

x  

x  

Under the assumption that there is no trend in the data (i.e., that all permutations 

of the observed values are equally likely), the distribution of T can be 

approximated by a normal distribution with mean zero and variance 

( )( ) 18/521 +− nnn . When missing values or ties occur, the variance is smaller, 

and the formulae presented by Hirsch and Slack (1984) automatically adjust for 

such events. 

2.2 Partial MK-tests 

The ordinary MK test can be generalized to enable testing for a trend while 

simultaneously adjusting for a trend in a covariate. Let T and S denote the test 

statistics for trend in the response and covariate, respectively. Then, the test 

statistic of the partial MK test can be written 

)ˆ1)((ˆ
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,

,
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ST
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U
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−
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where )(ˆ TV  denotes the estimated variance of T, and ST ,ρ̂  represents the 

estimated correlation of T and S (El-Shaarawi & Niculescu, 1992; Libiseller & 

Grimvall, 2002). Under the null hypothesis that there is no trend that can be 
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attributed to factors other than a trend in the covariate, the test statistic is 

approximately normal with mean zero and variance one. 

2.3 Multivariate MK-tests 

When investigating a geographical region, different sampling sites often exhibit 

similar, albeit not identical, trends. This calls for tests in which the evidence of 

trends is pooled according to user-defined grouping criteria. Hirsch and Slack 

(1984) considered test statistics of the form 

mTTT ++= ...1  

where T1, …, Tm denote the ordinary MK statistics for the individual time series. 

If the collected data are organized in a matrix so that each row represents a 

sampling occasion, and each column signifies a sampling site, a season, or some 

other group of observations, the null hypothesis implies that all row 

permutations are equally likely. The columns are usually statistically dependent, 

and Hirsch and Slack (1984) showed how the variance of T under the null 

hypothesis can be estimated in the presence of such dependencies. 

If the collected data can be grouped according to p factors (e.g., sampling 

sites, seasons, or regions), there are a total of 2p-1 sum tests in which univariate 

test statistics are summed over all levels of a subset of factors. However, many 

of these tests can be redundant. For instance, summation over regions for a given 

station will create redundant tests, because each station belongs to a single 

region. In our Multitest software, tests are automatically performed for all non-

redundant sum tests. 

2.4 Multivariate partial MK tests 

Multivariate partial MK tests have been developed for assessing the presence of 

joint trends in several groups of data. Letting T and S denote test statistics from 

sum tests for trends in the response and covariate, respectively, the analytical 
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expression of the test statistic is identical to that of the univariate test. Further 

details about partial MK tests have been reported by Libiseller and Grimvall 

(2002). 

2.5 MK-tests and censored data 

Observations below the limit of detection or quantification carry information 

that can and should be exploited in trend tests (Helsel, 2005). In the present 

studies, we simply regarded all observations as intervals. If the measured 

response could be quantified, both the lower and the upper end of the interval 

were set to this observed response. If the response was below the limit of 

quantification, the interval ranged from zero to that limit. Furthermore, we 

introduced a generalized sign function 









<−
<

=
otherwise,0

if,1

if,1

),,,sgn( ij
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jjii ab
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where [ai, bi] and [aj, bj] denote the intervals assigned to a pair of observations. 

Using this generalized sign function, the test statistics in ordinary and partial 

MK tests could be computed as usual. Analogously, we defined the Theil slope 

of the trend as the median of all ratios 
ij

ab ij

−
−

 and 
ij

ba ij

−
−

 for i < j. 

2.6 Adjustment for serial correlation 

The methods currently used to accommodate serial correlation in MK tests are 

based on estimation of autocorrelations and adjustment of the variance of the test 

statistics (Hamed & Rao, 1998; Yue & Wang, 2004). Such techniques perform 

satisfactorily when tested on artificial data generated by an autoregressive 

model, but they also have substantial weaknesses. In particular, it should be 

noted that the estimates of autocorrelations and correction factors are strongly 
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influenced by outliers and trends in the measured data, and removal of outliers 

and trends prior to the estimation of autocorrelations is a difficult task. 

We created a method that is a simple extension of the procedure proposed by 

Hirsch and Slack (1984) to handle correlations across seasons. First we 

considered a dataset comprising observations y1, …, y2n made on 2n consecutive 

years. Then we regarded it as observations from n two-year periods, and 

reorganized the data in the following matrix: 

 

nn yyn

yy

yy

responseSecondresponseFirstperiodyearTwo

212

43

21

...

...

2

1

−

−

 

 

Finally, we substituted the ordinary MK test for a sum test based on the two new 

columns that were formed. Analogously, one can reorganize m columns of 

responses into 2m columns of responses with doubled time steps. For example, 

monthly data given in twelve columns with time step one year can be 

reorganized into 24 columns with time step two years. Of course, it is also 

possible to reorganize data into periods of three years or more. 

Figures 2.1 and 2.2 show how our procedure performed when the original 

data were observations of a first order autoregressive (AR) model with normally 

distributed error terms. As expected, there was a considerable loss of power 

when the new matrices contained a small number of rows (less than ten). 

However, the two diagrams also show that our procedure can increase the 

robustness to serial dependence without any serious loss of power. In addition, it 

is easy to comprehend, and it can be applied to all types of MK and partial MK 

tests, which makes it an attractive technique for trend assessments. 
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Figure 2.1  Power functions of MK tests when the original 20-year data series was split into k 

series with a time step of n/k. Raw data comprised independent normal random variables 

with variance one and linear slope from 0 to 0.2. The nominal significance level was 5% 

(one-sided). 
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Figure 2.2  Actual significance levels of MK tests based on original and reorganized data 

when the original series were generated according to AR(1) processes with ρ = 0, 0.1, 0.2, 

0.3, and 0.4. The parameter k refers to the time step in the reorganized data series, and the 

nominal significance level was 5% (one-sided). 
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3 Trend assessment using response surface 

methodologies 

Significance tests for trends provide information about the presence or absence 

of systematic changes over time. A more detailed trend assessment also requires 

information about both the shape of the observed trend curves and whether the 

trends in different groups of data are synchronous. Here, we show how such 

information can be obtained by fitting response surfaces to vector time series in 

which the coordinates are ordered according to some user-defined criterion. 

Figure 3.1 illustrates a trend surface fitted to phosphorus concentrations 

observed at the mouths of a set of rivers that were ordered with respect to their 

average phosphorus level.  
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Figure 3.1  Trend surface fitted to normalized annual summaries of total phosphorus (Tot-P) 

concentrations in fifteen Swedish rivers flowing into the Bothnian Bay and Bothnian Sea. The 

normalization was based on water discharge and the amount of particulate matter, measured 

as the difference in absorbance between unfiltered and filtered samples. All investigated 

rivers along with sampling sites are listed in Paper II. 
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3.1 A basic semiparametric regression model 

The origin of our trend surface methodology was a semiparametric regression 

model developed by Stålnacke and Grimvall (2001) and Hussian and co-workers 

(2004). This model assumes that all observations can be sorted into a matrix, 

where the columns correspond to sampling years, and the rows represent 

sampling sites, seasons, or other groupings of the data. Furthermore, it is 

assumed that the observed response can be decomposed into the following three 

components: 

(i) a deterministic response surface indicating the human impact on the 

environment; 

(ii) a regression expression describing the impact of covariates representing 

meteorological variability or other measured natural fluctuations; 

(iii) random fluctuations caused by unobservable factors. 

Let us first assume that we have exactly one observation for each combination of 

year and group. Then the observed state of the environment at n equidistant time 

points will define an m-dimensional vector time series 

ntyy Tm

ttt ,...,1,)...,,( )()1( ==y  

and the observations of p covariates representing natural fluctuations of the 

investigated system can be summarized in a matrix 

nt
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Furthermore, our response surface model can be expressed as an equation 

system 
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where the sequence of vectors ntTm

ttt ...,,1,)...,,( )()1( == ααα  represents a 

deterministic temporal trend, 
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is a matrix of time-independent regression coefficients, and the error terms )( j

tε , 

j = 1, …, m, t = 1, …, n are identically distributed with mean zero. 

The model parameters were estimated by using a penalized least squares 

technique. For given smoothing factors λ1 and λ2, and measures of roughness 

L1(αααα) and L2(αααα) of the intercepts, the parameters were estimated by minimizing 
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represents the residual sum of squares. Normally we used the expression 

( ) ∑∑ 






 +−=
−

= =

+−
1

2 1

2)(
1

)(
1)(

1 2

n

t

m

j

j

t

j

tj

tL
αααα  

to impose smoothing over time whereas L2(αααα) had different forms for different 

types of data. When the coordinates of the vector time series were ordered along 

some gradient, we computed 
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and 
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was used for circular smoothing. Data representing different seasons were 

smoothed sequentially by setting 
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where  
)( j

ts αα =  

and 

jmts +−= )1(  

defines the sequential order of the observations. 

 The gradient, circular and sequential smoothing are special cases of more 

general smoothing patterns introduced in Paper I. Finally, it can be noted that a 

small change of the notation in ),,( λβαS  is sufficient to handle the more 

general case when the number of observations varies with sampling year or 

coordinate of the analysed vector time series (Hussian et al., 2004). 

The methods described above were implemented in our software Multitrend 

(LiU, 2008). An advantage of our methods over other smoothing methods 

(mainly Gaussian smoothers and thin plate splines, see Hastie et al., 2001; 

Härdle, 1997) is that the smoothing pattern can be tailored to take into account 

almost any relationship between the vector components. The numerical 

algorithms in Multitrend were based on a back-fitting technique suggested by 

Stålnacke and Grimvall (2001). 

3.2 A new resampling technique 

Resampling techniques are widely used to estimate the precision of sample 

statistics. The basic idea behind such techniques is that the distribution of 
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estimators or predictors can be explored by performing simulations or theoretical 

calculations in which an unknown cumulative distribution function (c.d.f.) is 

substituted for its empirical c.d.f. The term bootstrap is frequently used when 

new datasets are created by drawing with replacement from a given set of 

statistically independent observations or model components.  

We undertook residual resampling (Mammen, 2000) to assess the precision 

of parameter estimates in semiparametric regression models. To be more precise, 

we first computed model residuals 

mjntyyxxye j
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and then assigned new response values to the given predictors by setting 
*)()()(*)( j

t

j

t

j

t

j

t eeyy +−=  

where mjnte j

t ...,,1,...,,1,*)( ==  denotes resampled residuals. 

In ordinary residual resampling, new residuals are drawn randomly from the 

original model residuals, and, consequently, this procedure generates statistically 

independent error terms. Block resampling has been proposed as a means of 

preserving short-term correlations in time series data (Lahiri, 1999). 

Furthermore, it has been shown how block resampling procedures can be refined 

by concatenating with higher likelihood those blocks that match at their ends 

(Carlstein et al., 1998; Srinivas & Srinivasan, 2005). However, it is unclear how 

two-dimensional blocks should be selected and matched to achieve optimal 

results. Therefore, we developed a new form of constrained resampling, in 

which an ordinary bootstrap sample of the original residuals was modified to 

restore important dependencies over time and across series. 

Constrained residual resampling implied that the resampling favoured those 

combinations of the original residuals that had desirable auto- and cross-

correlations. In the case of gradient smoothing, we first computed all the model 

residuals and their total variation 
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Thereafter, we determined 
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where the first sum was used as a measure of the short-term temporal variation 

of the residuals, and the second one was introduced to capture variation across 

series. Finally, we formed the ratios 

)(

)(
)( 1

1 e
e

e
totR

R
T =  

and 

)(

)(
)( 2

2 e
e

e
totR

R
T =  

that were subsequently used as targets for a step-by-step modification of 

ordinary bootstrap residuals. Targets for other smoothing patterns are formed 

analogously (Paper I). 

The modification of bootstrap residuals e*  was based on an iterative 

proposal-rejection algorithm in which pairs of residuals were swapped to restore 

desirable statistical dependencies. At each iteration, a pair of residuals was 

randomly selected, and the ratios 

*)(
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were computed before and after swapping the selected pair. If the swap 

decreased the Euclidean distance 

2

22

2

11 ))(*)(())(*)(( eeee TTTT −+−  

to the target it was accepted, otherwise it was rejected. The swapping was 

stopped after a predefined number of proposed swaps or consecutive rejections. 

Figures 3.2 and 3.3 illustrate how the swapping can modify the statistical 

features of the bootstrap residuals. The upper graph in the first figure shows 

residuals with a strong correlation across series. The ordinary bootstrap 

subsequently destroyed that correlation, but it was restored by the swapping. The 

upper graph in the second figure demonstrates statistically independent 

residuals. Ordinary bootstrap then produced a new set of statistically 

independent residuals, and that configuration was left almost unchanged during 

the swapping. 
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Figure 3.2  Constrained resampling of residuals that are strongly correlated across stations. 

The three graphs show the original data (a), an ordinary bootstrap sample of that dataset (b), 

and the same bootstrap sample after 100,000 proposed swaps (c). 
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Figure 3.3  Constrained resampling of statistically independent residuals. The three graphs 

show the original data (a), an ordinary bootstrap sample of that dataset (b), and the same 

bootstrap sample after 100,000 proposed swaps (c). 

 

The resampling procedure just presented was designed for the case of one 

observation per cell. For the general case with a varying number of observations 

per cell, we introduced the random effect model 

),(...,,1,...,,1,...,,1,)(

,
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, jtnkmjnte j

kt
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t

j

kt ===+= ηδ  

where )(

,

j

kte  denotes the kth residual of the jth series at time t. First, the cell-

specific random effects )( j

tδ  were predicted using expressions of the form 
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δ

+
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and )(ˆ δV  and )(ˆ ηV  denote the estimated variances of the two types of random 

effects (Hall & Maiti, 2006). Thereafter the )(

,

j

ktη  were predicted by subtracting 

the predicted cell-specific components from the original residuals. Finally, 
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constrained resampling was used to sample the )(ˆ j

tδ , whereas the ordinary 

bootstrap was applied to the )(

,
ˆ j

ktη  representing variation within cells. 

In Multitrend, we normally repeated the resampling 200 times and computed 

the empirical standard deviation of the estimators under consideration. 

Furthermore, we examined the sample standard deviation of the resampled 

residuals and compared it with the sample standard deviation of the residuals 

obtained when our model was fitted to resampled data. The ratio of the two 

sample standard deviations was used to adjust the empirical standard deviations 

for the degrees of freedom of the semiparametric regression model. 

3.3 Determination of smoothing factors using block cross-

validation 

Cross-validation is a widely used technique to estimate the predictive power of a 

model and to select models of suitable complexity by splitting the entire dataset 

into training sets and test sets. In its simplest form, cross-validation comprises 

three steps (Shao, 1993): (i) the model is fitted to a training set; (ii) the fitted 

model is used to predict the observed responses in a test set containing all 

remaining data; (iii) the prediction error sum of squares (press) is computed for 

the selected test set. Block cross-validation refers to methods in which the 

original dataset is split into non-overlapping blocks, and the three steps listed 

above are repeated for all test sets consisting of data from a single block. Leave-

one-out cross validation refers to block size one.  

In this thesis, we used block cross-validation to select suitable smoothing 

factors λ1 and λ2 in the semiparametric regression model. The cross-validation 

was repeated for different levels of these smoothing factors, and a simple search 

algorithm was employed to determine the levels that maximized the predictive 

power of the model. Blocks were formed by joining all observations made the 

same year. A simulation study has indicated that such blocks represent a 
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reasonable compromise between statistical efficiency and robustness to 

correlation among the observed responses (Libiseller & Grimvall, 2003). 

3.4 Normalization with respect to covariates 

Environmental data often exhibit substantial natural variability caused by the 

weather conditions at or prior to the sampling occasion. Our semiparametric 

regression model enables normalization (or adjustment) of observed responses 

for the levels of a set of user-defined covariates. For example, the observed 

concentrations of substances in river water samples can be normalized to an 

average runoff. If successful, such operations can remove or reduce irrelevant 

variation in the collected data and thereby also clarify the impact of human 

interventions on the environment. Meteorological normalization and other 

statistical adjustments are often used for trend assessment of environmental 

quality, in particular when considering data on air and water (e.g., Clark et al., 

2000; Hussian et al., 2004; Libiseller & Grimvall, 2003; Thompson et al., 2001). 

The normalization formula in our semiparametric model can be written 
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and further details can be found in previous publications from our group 

(Hussian et al., 2004; Libiseller & Grimvall, 2003; Stålnacke & Grimvall, 2001). 

Figure 3.4 illustrates how the influence of variability in runoff and amount of 

particulate matter was removed from observed flow-weighted mean 

concentrations of total phosphorus in the Ångermanälven River, which 

discharges into the Bothnian Sea. 
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Figure 3.4  Flow-weighted annual mean concentrations of total phosphorus (Tot-P) in the 

Ångermanälven River before or after normalization with respect to runoff and amount of 

particulate matter. 
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4 Change-point detection 

In climate research, a time series of observational data is said to be 

homogeneous if its temporal variation is caused solely by variations in weather 

and climate. However, many such series are contaminated with artificial level 

shifts, which can, for example, be due to modifications in measurement devices, 

relocation of sampling sites, or changes in the immediate vicinity of the 

measurement station. To enable correct interpretation of observed trends, it is 

obviously necessary to develop efficient techniques to detect change points in 

and homogenization of the collected data series. Climatologists have played a 

leading role in that context (Peterson et al., 1998). 
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Figure 4.1  Smooth trend surface augmented with a discontinuity between 1995 and 1996 

fitted to total phosphorus (Tot-P) levels in surface water at Dagskärsgrund in Lake Vänern. 

Samples were collected at depths of 0.5, 10, and 20 m. 

 

This chapter begins by reviewing some existing methods for detecting 

change points and then goes on to show how the response surface model 

described in Chapter 3 can be augmented with a component representing abrupt 
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level shifts. Figure 4.1 illustrates how such a model can highlight a discontinuity 

in observed water quality data. 

4.1 Review of some existing methods 

As already mentioned, climate research has been an important driving force in 

the development of methods for detection of change points and homogenization 

of long time series. In general, a climate series shows substantial short-term 

variability but only a weak or very weak long-term trend. If two time series 

represent the same region, and the difference between the two series is 

computed, it might even be assumed that the climate signal will be practically 

eliminated. Accordingly, change-point detection is often based on models in 

which the mean is constant if there are no artificial level shifts. 

The presence of a shift in the mean of a normal distribution at some unknown 

instant can be tested with a likelihood ratio test (Hawkins, 1977; Worsley, 

1979), and a multivariate extension of that test is also available (Sristava & 

Worsley, 1986). Scientists have embedded the cited tests in procedures in which 

the climate signal of a candidate series is removed by subtracting a reference 

series. Furthermore, they have addressed the problem of detecting an unknown 

number of change points in multiple time series. Some of the major 

achievements are described in the following sections. 

4.1.1 The standard normal homogeneity test for a single change point 

The standard normal homogeneity test (SNHT) is a likelihood ratio test 

proposed by Alexandersson (1986). It is applied to time series data {z1, …, zn}, 

which are obtained by first subtracting a homogenous reference series from the 

time series to be scrutinized and then standardizing the series of differences to 

mean zero and variance one. The null hypothesis in the SNHT implies that the 
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mean is zero for all time points, and the alternative hypothesis involves a single 

shift in the mean. The test statistic is the maximum of  

( ) ( )( )2

2

2

1 zvnzvTv −+=  

where 1z  is the mean of z1 to zv, 2z  is the mean of zv+1 to zn, and 1 ≤ ν ≤ n. 

4.1.2 A fixed-effect model for simultaneous detection of multiple change 

points 

Caussinus and Mestre (2004) have developed a procedure to determine an 

unknown number of change points in a vector time series. For a given set of 

change points the measured values are given by a linear model with fixed 

effects. One group of these effects defines the mean response and the artificial 

level shifts in the measured data. Another group represents annual weather 

effects common to all stations in the investigated region. A stopping rule 

determines the number of change points. 

To enable a more precise definition of the outlined procedure, let the vector 
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1=Y  

denote observations made at m stations during a period of n years, and let 
T

nuuu )...,,( 1=  be a vector of annual weather effects. Further, let K1, …, Km 

indicate the number of segments defined by the change points in each of the m 

data series, and let the vector. 
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represent segment-specific effects. Then, the vector of observed responses can 

be written on the form  
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is a vector of noise components, and S and T are incidence matrices in which 

each row consists of zeros and a single one. The role of S is to assign a segment 

to each observation, and T is used to indicate the year of each observation. More 

specifically, the two matrices can be written 
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where )( j
tS  is a vector of length Kj with Kj-1 zeros and a single one indicating the 

segment of the jth series to which )( j
tY  belongs. The constraint 

0
)...( 1 =++=

n

uu
u n  

is introduced to make the parameters identifiable. 

For a given number of change points K = K1 + …+ Km, the model parameters 

are estimated using a least squares algorithm in which the optimal combination 

of time points and sizes of the level shifts is determined. The number of change 

points can be estimated using a penalized likelihood approach. Letting 

))((ˆ )( KYE j

t  denote the least square estimate of ))(( )( KYE j

t  in the optimal model 
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with a total of K change points and )0(ˆ )( j

tE  the least square estimate of )0()( j

tE  in 

a model without change points 
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is computed for all K, and K* = { })(minarg YCKK  is the estimated number of 

change points. 

4.1.3 A mixed linear model for sequential detection of change points 

Another method used to detect multiple change points is designated MASH 

(multiple analysis of series for homogenization; Szentimrey, 2000). The 

underlying probability model is a mixed linear model, which implies that, in 

contrast to Caussinus and Mestre’s model, MASH can take into account the 

covariance structure of data representing different stations. On the other hand, it 

does not include any procedure to simultaneously estimate all change points. 

In matrix form, the model behind MASH can be written 

εTUSµY ++=  

where T

nUUU )...,,( 1=  and T

nm)...,,( 1 εεε = denote zero mean Gaussian random 

vectors, µµµµ is a vector of segment-specific fixed effects, and S and T play the 

same role as mentioned in section 4.1.2. In general, the coordinates of the εεεε-

vector are assumed to be independent, whereas U can have an arbitrary 

covariance matrix. 

The parameter estimation is based on a procedure in which an optimal 

reference is constructed for each candidate series. More specifically, each 

reference series is a weighted sum of all series other than the candidate series, 

and the weights are selected so that the variance in the candidate-reference 

differences is minimized. Significance tests are utilized to determine the number 

of change points. 
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4.1.4 A general procedure for simultaneous detection of multiple change 

points 

Picard and co-workers (2007) have developed a general segmentation method 

for a sequence of Gaussian vectors with an unknown number of level shifts. The 

number of segments and their length can differ from coordinate to coordinate, 

but the mean is always constant in each segment. In addition, it is worth noting 

that the cited method seems to combine important advantages of MASH and the 

procedure suggested by Caussinus and Mestre. Like MASH, Picard’s technique 

is based on a linear model 

εTUSµY ++=  

with both fixed and random effects, and, as in Caussinus and Mestre’s method, 

all change points are estimated simultaneously. The latter is achieved by using 

an expectation-maximization (EM) algorithm (Hastie et al., 2001) to estimate all 

model parameters, including the covariance matrix of Y. 

4.2 Detection of change points in the presence of smooth trends 

When the trends in the different coordinates of a vector time series are 

significantly different, the above-mentioned methods with piecewise constant 

means are not appropriate. In particular, there is a need for techniques that are 

easy to comprehend, yet capable of detecting change points in the presence of 

smooth trends that may differ from coordinate to coordinate. In the current work, 

we developed such methods by extending the response surface models presented 

in Chapter 3. More specifically, we introduced models of the form 
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where ( )Tm

ttt

)()1( ...,, γγ=γ , t = 1, …, n defines contemporaneous abrupt level 

shifts in all the investigated series. 
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The detection and estimation of artificial level shifts was based on several 

different adjustment functions tγ , t = 1, …, n. In the case of a single level shift 

that occurred simultaneously at all stations, we used adjustment functions of the 

form 
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where θ(j) denotes the level shift in the jth coordinate between times t1 and t1+1. 

Furthermore, we introduced simple parameterizations, such as 

mjj ...,,1,)( 0 == θθ  

or 

mjjj ...,,1,)( 10 =+= θθθ  

Because the parameter µ is not identifiable in the presence of αααα, it was normally 

selected so that the average adjustment was zero. 

Adjustment functions involving two change points were defined analogously. 

In particular, we used the parameterization 
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when we searched for a period when the measured values were biased. 

Moreover, when a change point occurred in the middle of a year and, hence, 

influenced two consecutive response vectors, we estimated functions of the form  
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where 10 << δ . 
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In our software Multitrend, the parameters were estimated by using a back-

fitting algorithm in which estimation of αααα alternated with estimation of ββββ and γγγγ. 

Further details are given in Paper IV.  
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5 Assessing data quality and trends in surface water 

records 

Time series representing a network of stations are often analysed one by one, but 

the work reported in this chapter demonstrated the added value of performing a 

joint analysis of multiple data series. In particular, it was noted how synchronous 

increases and decreases in water quality can be revealed without utilizing 

complex space-time modelling. The response surface methodology employed 

has already been described in Chapters 3 and 4.  

The aim at the onset of this study was to extract major long-term trends from 

a water quality database that was considered to be of high quality. However, the 

results obtained made it necessary to focus on data quality issues and detection 

of artificial level shifts. Substantial parts of the results provided by the methods 

discussed in Chapter 3 were published in Paper II, and our analysis of change 

points presented in the following sections was based on the information given in 

Paper IV. 

5.1 Investigated data 

Concentration data from major rivers and the two largest lakes in Sweden were 

acquired from the Swedish University of Agricultural Sciences (SLU, 2008), and 

runoff data were provided by the Swedish Meteorological and Hydrological 

Institute. Figure 5.1 and Tables 5.1 and 5.2 contain information about the 

sampling sites and water quality parameters that were investigated. 
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Figure 5.1 Map of Sweden with location of sampling sites in the investigated rivers and 

lakes. 

 

Table 5.1  Water quality parameters and number of observations for the investigated water 

bodies 

Water quality parameter Time span No. of 
observations* 

Total nitrogen (persulphate digestion) 1988–2005 200–222 
Kjeldahl nitrogen 1980–2005 282–312 
Sum of nitrite and nitrate nitrogen 1980–2005 283–312 
Ammonium nitrogen 1980–2005 283–312 
Total phosphorus 1980–2005 283–312 
Phosphate phosphorus 1980–2005 283–312 
Total organic carbon 1987–2005 205–228 
Chemical oxygen demand (permanganate 
consumption) 

1980–2005 283–323 

pH 1980–2005 283–323 
Absorbance (420 nm, 25 oC, filtered and unfiltered 
samples) 

1980–2005 283–323 

*Sampling was done more often in the Skivarpsån River and less frequently in the Gideån 
River and Alsterån River than in the other watercourses. 
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Table 5.2  Recipients, sampling sites, and runoff area for the investigated rivers and sampling 

sites in Lakes Vänern and Vättern 

Recipient Nr River Sampling site Runoff area (km 2) 
 

1 Torne Älv Mattila 34,441 
2 Kalix Älv Karlsborg 23,845 
3 Råne Älv Niemisel 3,781 
4 Lule Älv Luleå 25,225 

Bothnian Bay 

5 Pite Älv Bölebyn 11,285 
6 Ume Älv Stornorrfors 26,567 
7 Öre Älv Torrböle 2,860 
8 Gide Älv Gideåbacka 3,442 
9 Ångermanälven Sollefteå 30,638 

10 Indalsälven Bergeforsen 25,767 
11 Ljungan Skallböleforsen 12,085 
12 Delångersån Iggesund 1,992 
13 Ljusnan Ljusne Strömmar 19,820 
14 Gavleån Gävle 2,453 

Bothnian Sea 

15 Dalälven Älvkarleby 28,921 
16 Nyköpingsån Spånga 3,589 
17 Motala Ström Norrköping 15,387 
18 Botorpström Brunnsö 975 
19 Emån Emsfors 4,441 
20 Alsterån Getebro 1,333 
21 Ljungbyån Ljungbyholm 735 
22 Lyckebyån Lyckeby 810 
23 Mörrumsån Mörrum 3,365 
24 Helgeån Hammarsjön 4,144 
25 Skivarpsån Skivarp 102 

Southern Baltic 

26 Råån Helsingborg 166 
27 Rönneån  Klippan 963 
28 Lagan Laholm 6,133 
29 Nissan Halmstad 2,677 
30 Ätran Falkenberg 3,340 
31 Viskan Åsbro 2,160 
32 Göta Älv Trollhättan 47,035 
33 Örekilsälven  Munkedal 1,335 

Kattegat and 
Skagerrak 

34 Enningdalsälven  N. Bullaren 631 
35  Megrundet  Lake Vänern 
36  Dagskärsgrund  

Lake Vättern 37  Jungfrun  
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5.2 Examples of synchronous temporal changes 

5.2.1 Total phosphorus 

Simple scatter charts of observed phosphorus concentrations versus time 

indicated that, in the majority of the investigated rivers, the concentrations 

decreased from 1980 to 1983 and then increased, and there also seemed to be a 

drop around 1996. This temporal pattern emerged more clearly when the 

response surface methodology presented in Chapter 3 was used to fit smooth 

trend surfaces to annual normalized concentrations for selected groups of rivers. 

Figure 5.2 illustrates the results obtained for fifteen rivers flowing into the 

Bothnian Bay and Bothnian Sea when the observed levels of total phosphorus 

were normalized with respect to water discharge and amount of particulate 

matter (the latter measured as the difference in absorbance between unfiltered 

and filtered water samples). 
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Figure 5.2  Trend surface fitted to normalized annual summaries of total phosphorus (Tot-P) 

concentrations in fifteen Swedish rivers flowing into the Bothnian Bay and Bothnian Sea 

(Table 5.2). The normalization was done with respect to water discharge and the amount of 

particulate matter, measured as the difference in absorbance between unfiltered and filtered 

samples. 
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Closer examination of the data underlying Figure 5.2 indicated that the 

synchronous decrease around 1996 actually was a step change. This 

discontinuity emerged even more clearly when the analysis was restricted to the 

four rivers that had the lowest frequency of outliers. Because a change in 

laboratory practice took place in the middle of 1996, we used a model in which 

the discontinuity was split between two consecutive years. Furthermore, we used 

water discharge as a covariate and allowed the size of the discontinuity to vary 

with the average phosphorus concentration in the analysed river (see Paper IV). 

Figure 5.3 shows the fitted trend surface, with the detected discontinuity, for 

those four rivers and Table 5.3 presents the estimated level shifts and their 

standard errors. In particular, it can be noted that level shifts also occurred in 

rivers where the measured phosphorus concentrations were far above the limit of 

detection of the analytical procedure. 
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Figure 5.3  Trend surface with discontinuities fitted to total phosphorus (Tot-P) levels in four 

major rivers in northern Sweden. The statistical model and the sampled rivers were the same 

as in Table 5.3. 
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Table 5.3  Estimated level shifts in total phosphorus concentrations recorded in four rivers in 

northern Sweden. The model had level shifts that were equally split between 1995–1996 and 

1996–1997, and the size of the level shifts was allowed to vary with the sampled river 

River Level shift ( µg/l) Standard error ( µg/l) 

Indalsälven –2.90927 1.130746 

Råne –2.61134 0.774648 

Dalälven –3.26740 1.115243 

Gide –2.89887 1.348316 

Average –2.92172 0.875484 

 

In search of further evidence of synchronous changes in phosphorus 

concentrations, we also analysed data from Lakes Vänern and Vättern (Paper II). 

Figure 5.4 shows that the temporal changes in phosphorus concentrations at 

Dagskärsgrund in Lake Vänern were almost identical at depths ranging from 0.5 

to 20 m. In addition, the trough in the early 1980s and the drop around 1996 that 

we had found in the data from rivers in northern Sweden were also observed 

here. 
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Figure 5.4  Trend surface fitted to temperature-normalized concentrations of total phosphorus 

(Tot-P) at Dagskärsgrund in Lake Vänern. The samples included in this analysis were 

collected at three different depths (0.5, 10, and 20 m). 
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Because the response surface methodology used to obtain the diagram in 

Figure 5.4 may have smoothed out step changes to produce gradual changes, we 

also plotted the individual concentration records along with trends fitted 

separately to data from 1980–1995 and 1996–2005 (Figure 5.5). This graph 

strongly indicated that the decrease around 1996 was actually a step change, 

whereas the decrease in the early 1980s seemed to include changes spread out 

over several years.  
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Figure 5.5  Trend curve for temperature-normalized concentrations of total phosphorus 

(Tot-P) shown along with individual concentration records of that element in samples 

collected at different depths (0.5, 10, and 20 m) at Dagskärsgrund in Lake Vänern. 

 

To quantify the step change between 1995 and 1996, we fitted the change point 

model described in Chapter 4 to data from 1991 and onwards, and the results are 

illustrated in Figure 5.6. The size of the discontinuity was estimated to 3.1 µg/l, 

and residual resampling showed that the standard error of the estimated level 

shift was much smaller (0.44 µg/l). Possible causes of these surprisingly 

synchronous level shifts are scrutinized in section 5.3.1. 
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Figure 5.6  Smooth trend surface (augmented with a discontinuity between 1995 and 1996) 

fitted to total phosphorus (Tot-P) concentrations at Dagskärsgrund in Lake Vänern. 

5.2.2 Total nitrogen 

Statistical analyses of total nitrogen measurements based on persulphate 

digestion (Tot-N(ps)) revealed a pronounced downward trend that started in the 

mid 1990s. Figure 5.7 shows the trend observed for rivers discharging into the 

Kattegat and Skagerrak, and a similar pattern was found for rivers flowing into 

the Baltic Sea. In northern Sweden, where the average nitrogen concentration is 

lower, the downward trend was weaker. 

Total nitrogen levels can also be determined by computing the sum of 

Kjeldahl nitrogen, nitrite, and nitrate nitrogen. In theory, these computed 

concentrations (Tot-N(Kj)) should be strongly correlated with the Tot-N(ps) 

values. However, simple scatter charts revealed some remarkable discrepancies. 

Firstly, there was a small subset of Tot-N(ps) records that indicated levels that 

were twice as high as they should have been, and this could be ascribed to 

calculation or dilution errors in the chemical analysis (Paper II). Secondly, there 

was an unexpectedly strong downward trend in the amount of organically bound 
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nitrogen (Org-N(ps)), which was estimated by computing the difference between 

the Tot-N(ps) value and the sum of the measured concentrations of inorganic 

nitrogen species (ammonium, nitrite, and nitrate).  
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Figure 5.7  Trend surface fitted to flow-normalized concentrations of total nitrogen (Tot-N(ps)) 

in seven rivers (the Lagan, Nissan, Ätran, Viskan, Göta, Örekilsälven, and Enningdalsälven 

Rivers) discharging into the Kattegat and Skagerrak. 

 

Figure 5.8 shows a smooth response surface fitted to Org-N(ps) records for 

the major Swedish rivers discharging into the Kattegat and Skagerrak. It seems 

that the computed Org-N(ps) values started to decline in the mid 1990s. 

Furthermore, this decrease was remarkably synchronous, even though the 

hydraulic residence times in lakes upstream of the sampling sites ranged from 

less than a year to almost ten years in the Göta River Basin. A similar analysis of 

organic nitrogen records obtained by subtracting the sum of nitrite and nitrate 

concentrations from Kjeldahl nitrogen did not reveal any clear temporal trends.  
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Figure 5.8  Trends in flow-normalized concentrations of organic nitrogen (Org-N(ps)) in rivers 

discharging into the Kattegat and Skagerrak. The investigated rivers were the same as in 

Figure 5.7. 

Figure 5.9 provides further evidence that the choice of measure of the nitrogen 

content had a dramatic effect on the conclusions that can be drawn about recent 

temporal trends. 
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Figure 5.9  Trend lines and associated 95% confidence bands for the arithmetic mean of 

flow-normalized concentrations of Tot-N(ps) and Tot-N(Kj) in rivers discharging into the 

Kattegat and Skagerrak. The investigated rivers were the same as in Figure 5.7. 
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5.2.3 Organic matter 

At all of the studied sites, the amount of organic carbon in the collected water 

samples has long been measured as chemical oxygen demand by means of 

potassium permanganate titration (COD(KMnO4)). Since 1987, the samples have 

also been analysed for total organic carbon (TOC) using a TOC analyzer. Due to 

substantial interannual variation in both the TOC and COD records, it was 

difficult to extract any clear temporal trends from the original time series of data. 

However, simple plots of TOC-to-COD ratios revealed several patterns that 

called for further attention. Figure 5.10 shows that the values recorded in 1997 

were clearly elevated, and that there was an upward tendency in the ratios 

calculated for 1987–1990. Moreover, almost identical temporal patterns were 

found when the entire dataset was split into subsets representing different 

regions in Sweden. Figure 5.11 shows the data for the riverine input to the 

Bothnian Bay and Bothnian Sea. 

Using the methods described in Chapter 4 and Paper IV, we undertook an 

entirely data-driven search for a time period when the average TOC-to-COD-

ratio differed from the general trends in the data. As expected, our algorithm 

identified 1997 as a period with abnormal data (see Fig. 5.12). Furthermore, the 

estimated level shift that year was 0.062 units, with a standard error of 0.0038. 
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Figure 5.10  TOC-to-COD ratios calculated for all 34 of the Swedish rivers that were 

investigated (Table 5.2). The vertical lines indicate change points. 
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Figure 5.11  TOC-to-COD ratios calculated for fifteen rivers discharging into the Bothnian Bay 

and Bothnian Sea (Table 5.2). The vertical lines indicate change points. 
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Figure 5.12  Trend surface with discontinuities fitted to the data given in Figure 5.11. Two 

level shifts of equal size but with different signs were assumed to be present during the 

period 1990–2005. The timing of the shifts was determined by an unprejudiced search. 

5.3 Interpretation of observed patterns 

Our study of water quality data provided numerous examples of remarkably 

synchronous temporal changes in rivers representing a wide range of 

hydrogeological conditions and anthropogenic pressures. Theoretically, there 

were four plausible explanations for such coinciding fluctuations: (i) large-scale 

human interventions; (ii) large-scale variation in weather conditions; (iii) 

intentional or inadvertent alterations in sampling and laboratory practices; (iv) 

artefacts in the statistical procedures used to analyse the collected data.  

Inasmuch as the data from different regions had been analysed separately, we 

could rule out the fourth explanation, namely, the possibility that the remarkably 

synchronous changes in water quality were merely an artefact of the statistical 

procedures used. Moreover, we noticed that the risk of undesired smoothing 

across sampling sites in our response surface methodology was generally small, 

because the smoothing factors were selected to optimize the predictive power of 
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the underlying regression model. In the sections that follow, the other three 

explanations are considered separately for each water quality parameter. 

5.3.1 Total phosphorus 

It is indisputable that, around 1996, the phosphorus levels decreased 

simultaneously in water bodies representing a wide range of anthropogenic 

pressures and hydraulic residence times ranging from less than a year to about 

80 years. In addition, our change point analyses gave a very strong indication 

that the decreases that were detected in both Lake Vänern and Lake Vättern, as 

well as in several of the investigated rivers, had occurred rather abruptly. 

Considering the magnitude and spatial distribution of the observed drops in 

phosphorus in 1996, we ruled out the possibility that those decreases could have 

been largely due to anthropogenic interventions.  

Internal loading triggered by specific weather conditions can occasionally 

cause relatively rapid changes in phosphorus concentrations in a body of water. 

However, inspection of water discharge and temperature data did not reveal any 

events that could explain why the decline in total phosphorus in 1996 was 

greater than all other interannual changes during the past fifteen years, and why 

the same pattern was found in both northern and southern Sweden in 1996. 

Accordingly, we also excluded the idea that the observed step change was a 

purely natural phenomenon.  

Thus the only plausible explanation remaining comprised changes that had 

occurred in the sampling methods, sample handling, or chemical analyses. 

Notably, a report from the laboratory that conducted the chemical analyses did 

describe changes in the methods used to determine low concentrations of the 

substances of interest (Sonesten & Engblom, 2001). However, our analysis 

strongly indicated that the size of the artificial level shift was larger than 

reported by the cited authors, and also that concentrations far above the limits of 

detection were influenced.  
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Possible explanations for the trough in the early 1980s were discussed in 

Paper II. By the process of elimination, we concluded that this pattern in the 

reported data was also strongly influenced by changes in sampling or laboratory 

practices. 

5.3.2 Total nitrogen 

The dramatic decrease in the computed levels of organic nitrogen (Org-N(ps)) is 

an indisputable fact. Let us for a moment assume that both the total nitrogen 

measurements based on persulphate digestion and the observed levels of 

inorganic nitrogen were correct. Then there must have been an unprecedented 

change in the composition of organic matter in Swedish watercourses (Paper II). 

More precisely, an almost 50% decrease in the amount of organic nitrogen that 

could have been digested by persulphate would have coincided in time with a 

general increase in the amount of organic matter that could have been oxidized 

with permanganate. We regarded this as very improbable. 

In search of plausible explanations for the downward trend in Tot-N(ps), it 

came to our knowledge that the laboratory conducting the chemical analysis had 

informed some clients about incomplete digestion of the organic matter in the 

analysed samples. Our statistical analysis of the nitrogen data revealed the 

magnitude and duration of those problems. 

5.3.3 Organic matter 

Cycles in the meteorological forcing and water pathways can be responsible for 

considerable temporal changes in the amount of organic matter in surface water 

samples, and it cannot be excluded that changes in land use may be responsible 

for long-term trends in such data. However, much of the variability is suppressed 

by calculation of TOC-to-COD ratios, and hence it is remarkable that the 

computed average level of those ratios suddenly increased by about 30% in 1997 
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and then returned to the previous level. In light of the finding that this temporary 

level shift occurred simultaneously in different parts of Sweden and in water 

bodies representing a wide range of hydrogeological conditions and 

anthropogenic pressures, it seemed very improbable that there were natural 

explanations for this abrupt change. Accordingly, we concluded that artificial 

level shifts had also influenced the reported concentrations of organic matter in 

Swedish rivers. However, we were unable to ascertain whether such artefacts 

had primarily affected the TOC or the COD records.  

5.4 Implications for surface water monitoring  

The results of our analysis of Swedish surface water data challenge the present 

priorities in water quality monitoring. According to Figures 5.6 and 5.9 and the 

associated discussion, the temporal trends in total phosphorus and total nitrogen 

(Tot-N(ps)) concentrations reported over the past fifteen years were influenced 

to a greater extent by artificial level shifts than by actual changes in the 

environment. Furthermore, Figure 5.12 indicates that records of organic matter 

were also strongly contaminated by artificial level shifts. This situation is, of 

course, unsatisfactory. Moreover, it is very unfortunate that the current 

monitoring system has incomplete information about known measurement 

errors, and no attempts have been made to remove systematic errors that affect 

large amounts of data. 

Individual records that are obviously flawed can be detected and removed by 

methods for process control or by using more specific tools for water quality 

monitoring (Clement et al., 2007). However, both our analysis of water quality 

data and the current efforts to extract temporal trends from observational climate 

series show that the major problems in interpreting the collected data are related 

to relatively small systematic errors that affect a large number of observations. 

Such data problems may not emerge until the whole history of measurements 
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from an entire network of sampling sites is scrutinized. Hence, there is a strong 

need for a monitoring system in which conventional quality assurance is 

complemented with thorough statistical follow-up of reported values. Regarding 

the statistical tools that are needed, we noted the following: 

(i) Visual inspection of scatter charts containing data from many sampling 

sites is an important element in any statistical evaluation of monitoring data. 

(ii) Noise reduction by adjustment for covariates or formation of ratios or 

differences between interrelated water quality parameters can greatly 

facilitate the detection of trends and data quality problems. 

(iii) Fitting of trend surfaces to data representing an ordered set of stations 

enables detection of synchronous (artificial or real) level shifts without 

utilizing complex space-time modelling. 

(iv) Models combining smoothing and change-point detection in multiple 

time series of data provide a useful tool for quantifying synchronous level 

shifts and correcting historical data. 

Visual inspection and noise reduction have long been used within the field of 

data analysis. However, our response surface methodologies to estimate smooth 

trends and change points at an ordered set of stations constitute a new and 

powerful tool. In addition, our new technique for resampling statistically 

dependent data enabled realistic calculations of confidence intervals and 

assessment of the statistical significance of detected level shifts. 

The mentioned data quality problems also highlight the difference between 

an environmental information system and a monitoring system that is focused 

almost exclusively on data collection. Our study has demonstrated that it is 

possible to supplement the present raw data with filtered datasets in which 

obviously flawed data have been removed and other records have been adjusted 

for known systematic errors. 
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6 Assessing data quality and trends in groundwater 

records 

The data on groundwater quality scrutinized in the work described in this 

chapter proved to have a number of features that called for special attention: (i) 

they were relatively scattered in space and time; (ii) serial correlation of 

observed concentrations might have been responsible for spurious trends; (iii) 

the evidence of anthropogenic trends varied strongly from station to station. 

Accordingly, the statistical analysis focused on the problem of achieving an 

overview of a fairly large dataset. The results presented in this chapter are 

primarily based on Papers III and IV. 

6.1 Investigated data 

The Geological Survey of Sweden (SGU) is responsible for the national 

monitoring of groundwater quality. A relatively large number of groundwater 

bodies are normally sampled 2–6 times a year, and the physico-chemical 

analysis of the collected samples includes determination of major inorganic ions, 

pH, conductivity, and temperature (SGU, 2008). We investigated data from a 

total of 77 sites in ten hydrogeological regions (Fig. 6.1) where sampling has 

been conducted regularly at least since 1980. In particular, we examined the 

concentration of sulphate and the buffering capacity measured as alkalinity and 

acid-neutralizing capacity (ANC), and the ANC levels were computed according 

to 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]−−−+++++ −−−++++= 3
2
44

22 NOSOClNHKNaMgCaANC  

It is worth noting that, since July 1992, the same laboratory has been responsible 

for the chemical analysis of both surface water and groundwater samples 

collected in the national Swedish environmental monitoring programme. Before 
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that time, the groundwater samples were analysed at two other laboratories 

under contract from May 1980 to June 1984 and from July 1984 to June 1992, 

respectively. 
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Figure 6.1  Sweden divided into ten geographical regions based on bedrock, hydrology, and 

position relative to the highest coastline. 

6.2 Detection and interpretation of trends and change points 

6.2.1 Alkalinity and ANC 

A search for outliers in the reported concentrations of major cations and anions 

revealed that a small fraction of the samples (148 out of 5,557) had at least one 

obviously erroneous recorded concentration, and the data on those samples were 

omitted from the statistical analysis. Moreover, both MK statistics for temporal 

trends and visual inspection of the collected data clearly indicated that local 

pollution, presumably from road salt, had influenced seven of the 77 sites. All 

data from these sites were excluded, because we were primarily interested in 

regional trends and the possible response to decreased acid deposition. 

C

B 
C 
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In an attempt to detect major patterns in the selected data, ordinary univariate 

MK tests were employed to examine the presence of trends in alkalinity levels. 

When the achieved significance levels (p-values) were assembled only 

according to hydrogeological region, there was no obvious pattern in the results 

that were obtained. However, after the p-values were sorted with respect to 

median alkalinity, a striking pattern emerged. As can be seen in Figure 6.2, there 

were significant downward trends at sites with low alkalinity, and there were 

significant upward trends at sites with high alkalinity. This was unexpected 

because (i) the acid deposition in Sweden has decreased considerably over the 

past two decades (Miljömål, 2008), and (ii) low alkalinity groundwaters are 

found primarily in aquifers with relatively short residence times. In addition, the 

downward trends in groundwater were contradicted by upward trends in river 

water. Notably, we observed the strongest upward trends in low-alkalinity rivers 

and sampling sites located in catchments that had previously been exposed to 

high sulphur deposition. 

To further elucidate the existence of acidification trends in groundwater, we 

also examined time series of ANC levels. Figure 6.3 shows the achieved 

significance levels. In contrast to the results for alkalinity, the most significant 

upward trends in ANC were discerned for groundwaters with low to medium 

buffering capacity. In addition, we noted that there was generally good 

agreement between the ANC trends in groundwater and river water (not shown).  
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Figure 6.2  Achieved significance levels in MK tests for trends in alkalinity at 70 sites ordered 

according to median alkalinity. Symbols: +++, ++, and + indicate positive trends significant at 

levels of 0.1%, 1%, and 5%, respectively; ---, --, and - signify negative trends. The station 

labels refer to the national Swedish groundwater monitoring programme. Three-star 

significances (positive and negative) were noted for (from left to right) stations 58_4, 13_107, 

33_202, 19_15, 20_1, 75_2, 70_14, 3_14, 3_53, 29_8, 3_49, and 9_1. 
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Figure 6.3  Achieved significance levels in MK tests for trends in ANC at 70 sites ordered 

according to median ANC. Symbols: +++, ++, and + indicate positive trends significant at 

levels of 0.1%, 1%, and 5%, respectively; ---, --, and - signify negative trends. Three-star 

significances (positive) were noted for (from left to right) stations 54_18, 16_101, 37_56, 

14_15, and 23_11. 
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Considering that both alkalinity and ANC are integrative measures of 

buffering capacity, we expected the two parameters to be strongly 

intercorrelated. However, visual inspection of scatter charts of reported 

alkalinity and ANC levels revealed a shift in the lowest alkalinity levels in 1984, 

at which time a new laboratory was engaged to conduct the chemical analysis 

(Paper III). After developing our new technique for change-point detection (see 

Chapter 4), we re-analysed the alkalinity and ANC records. More specifically, 

we examined the difference between alkalinity and ANC in samples with low 

ANC levels (less than 0.3 but greater than 0.05 meq/l). Figure 6.4 illustrates how 

the annual mean of the estimated trend surface (including discontinuities) was 

stabilized after 1984, when a new analytical procedure was introduced. 

Consequently, we concluded (i) that the alkalinity levels recorded during 

different time periods were not fully comparable, and (ii) that the ANC levels 

computed in the present study constituted a more reliable indicator of trends in 

buffering capacity. 
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Figure 6.4  Annual means of trend levels (including discontinuities) fitted to differences 

between alkalinity and ANC in low-ANC samples for all groundwater stations investigated. 

 



Chapter 6 

 56 
 

Further analysis of the ANC data revealed pronounced serial correlation at many 

of the investigated sites. Therefore, we also computed achieved significance 

levels in MK tests in which the effect of serial correlation was suppressed by 

reorganizing the data into biannual time series. However, as can be seen in 

Figure 6.5, there was still clear evidence of upward trends in ANC. The 

strongest trends prevailed in waters with low to medium alkalinity in southern 

Sweden, whereas the trends in northern Sweden were weak or nonexistent.  
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Figure 6.5  Significance in MK tests for trends in ANC at 70 sites ordered according to 

median ANC, showing levels achieved when the data were reorganized into time series of 

biannual data. Symbols: +++, ++, and + indicate positive trends significant at levels of 0.1%, 

1%, and 5%, respectively; ---, --, and - signify negative trends. Three-star significance 

(positive) was noted for station 16_101. 

 

Chloride is sometimes used as an indicator of soil water movement, because, 

correctly or not (Bastviken et al., 2007; Schlesinger, 1997), it is considered to be 

inert in soil. Accordingly, we undertook partial MK tests of ANC levels, using 

chloride as a covariate. Furthermore, we computed ANC-to-chloride ratios that 

we tested for trends. Compared to the ordinary MK tests, the partial tests 

produced results that were almost the same, albeit slightly less significant. There 
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were considerably fewer significant trends in the ANC-to-chloride ratios, 

because the formation of those ratios increased the coefficient of variation of the 

data that were analysed for trends. 

In summary, our trend assessment provided strong evidence of upward ANC 

trends in the areas where acid deposition has decreased over the past decades. 

However, the results varied substantially between the sampling sites. 

6.2.2 Potassium  

Considering Figure 6.6, which illustrates potassium levels in groundwater from 

region B (see map in Fig. 6.1), the presence and location of discontinuities is 

less obvious. 
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Figure 6.6  Potassium levels in groundwater sampled 1985–2007 at 19 sites in region B. 

Samples were normally collected on 2–6 occasions per site each year, but some longer gaps 

were also present in the dataset. 

 

Because the measured potassium levels varied strongly between sampling 

occasions and the potential discontinuities were relatively small, our study 

focused on average level shifts at all 19 sites that were investigated. Figure 6.7 

illustrates the annual means of the estimated trend levels when the model 
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contained a discontinuity that was equally split between two consecutive years. 

One of the solid lines with attached error margins (± 2 standard errors) contained 

level shifts specified by the user to occur in 1990–1992, because the analytical 

procedure was altered in the middle of 1991. The other solid line was obtained 

in a purely data-driven search for the most significant discontinuity in the 

investigated time interval. As can be seen, the two curves differed slightly with 

respect to the timing of the discontinuity, whereas the size of the level shifts was 

practically the same in the two model runs. This shows that our change point 

model can also detect minor level shifts, provided that the number of sampling 

sites is large. 
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Figure 6.7  Annual means of potassium trends, including discontinuities, at 19 sites in region 

B. The two solid lines represent two modes of the model runs: predefined change points and 

unprejudiced search for discontinuities. 

6.2.3 Sulphate 

Figure 6.8 illustrates the results of MK tests for sulphate trends.  
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Figure 6.8 Achieved significance levels in MK tests for sulphate trends at 70 sites ordered 

according to median sulphate concentration. Symbols: +++, ++, and + indicate positive 

trends significant at levels of 0.1%, 1%, and 5%, respectively; ---, --, and - signify negative 

trends. Three-star significances (positive and negative) were noted for (from left to right) 

stations 23_23, 19_15, 74_1, 58_6, 70_13, 23_11, 33_104, 16_28, 16_101, 14_15, 5_14, 

54_103, 16_71, 65_7, 70_14, 16_102, 54_18, 17_10, 84_1, 13_1, 84_4, 12_1, 23_26, 69_1, 

60_42, 69_10, 3_14, 21_9, 41_1, 75_2, 20_10, and 41_5. 

 

Apparently, there were many downward trends but only a few upward trends. 

Closer examination of the test results revealed that there were several 

statistically significant downward trends in southern Sweden, particularly in 

hydrogeological region B (see Fig. 6.1), whereas the trends in northern Sweden 

were weak or nonexistent. The trends detected in region B were expected, 

because (i) the sulphur deposition in that part of Sweden has decreased 

significantly over the past decades, and (ii) shallow moraines on a primary 

bedrock enable rapid response to changes in deposition. Furthermore, the results 

of our analysis were concordant with the pronounced downward trends that were 

revealed when we analysed river water data from the same region. 
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Further examination of the sulphate levels in region B showed that the 

average concentration in that area decreased at about the same rate over the 

entire study period. However, there was substantial variation between sites, 

which is illustrated by the trend surface in Figure 6.9. 
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Figure 6.9 Trend surface fitted to observed sulphate concentrations at the 19 investigated 

stations in hydrogeological region B. 

 

Inasmuch as repeated assessments of data quality constitute an important part 

of our analysis, we also searched for inexplicable level shifts in the reported 

sulphate concentrations. We noted that the major changes in sulphate levels 

seemed to be caused by natural dilution processes, because they normally 

coincided temporally with natural fluctuations in conductivity and other major 

ions. However, inspection of raw data and deviations from the fitted response 

surfaces also indicated a substantial serial correlation in the analysed time series. 

Consequently, we repeated the MK tests on data that had been reorganized in 

series with longer time steps. Figure 6.10 presents the results obtained when the 

impact of serial correlation for up to two years was suppressed. As can be seen, 

many significant downward trends remained.  
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Figure 6.10  Significance in MK tests for trends in sulphate at 70 sites ordered according to 

median sulphate concentration, showing levels achieved when the data were reorganized 

into time series of biannual data. Symbols: +++, ++, and + indicate positive trends significant 

at levels of 0.1%, 1%, and 5%, respectively; ---, --, and - signify negative trends. Three-star 

significances (positive and negative) were noted for (from left to right) stations 58_6, 70_13, 

16_101, 14_15, 16_71, 54_18, 17_10, 84_1, 13_1, 84_4, 23_26, 69_1, 3_14, 75_2, and 

20_10. 

 

Using chloride as a covariate had approximately the same effect on the 

sulphate trends as on the ANC trends. Compared to the ordinary MK tests, the 

partial tests produced results that were almost the same, although slightly less 

significant, and there were considerably fewer significant trends in the ANC-to-

chloride ratios. 

To summarize, the sulphate data produced strong evidence of downward 

trends, especially in region B. However, there was no simple explanation for the 

spatial pattern of all downward and upward trends. 
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6.3 Implications for groundwater monitoring  

Groundwater monitoring programmes aim to detect the impacts of human 

activities, which can be rather small compared to the weather-driven fluctuations 

and random measurement errors that influence individual observations. In 

addition, the relationships between causes and effects can be obscured by time 

lags and spurious trends. These circumstances imply two things: 

(i) that assessments of regional trends must be based on relatively large 

networks of stations; 

(ii) that the data analysis requires statistical methods for joint analysis of 

multiple interrelated time series. 

Our assessment of Swedish groundwater data indicated that MK tests can play a 

key role in both exploratory data analyses and more formal tests for temporal 

trends. In particular, we noted that MK tests are extremely useful if they are 

carried out in a software package equipped with the following features: 

(i) automated testing for joint trends in numerous subgroups of sampling 

sites; 

(ii) adjustment for serial correlation; 

(iii) adjustment for trends in covariates (PMK tests); 

(iv) convenient handling of censored data. 

Furthermore, our study demonstrated that evaluation of a relatively large and 

complex dataset requires efficient integration of different statistical tools. Most 

importantly, we found that our response surface methodology was an almost 

ideal complement to MK tests. Such tests proved to be efficient tools for 

detecting relatively small upward or downward shifts in substantial amounts of 

data, and our response surface methodology provided valuable information 

about the timing of water quality changes at different sites and the presence of 

artificial level shifts. 
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Our alkalinity and ANC study also illustrated the need for repeated 

assessment of data quality and the importance of performing such assessments 

on data from a whole network of stations. None of the data series from 

individual sites indicated any serious problems related to the quality of the data. 

As reported in Paper III, it was not until the MK tests had indicated 

unanticipated alkalinity trends that extensive plotting of observed data provided 

some clues. The final evidence of data quality problems was then provided by 

response surfaces and trend lines fitted to alkalinity records for low-ANC 

samples. 

Serial correlation is another issue that must be considered in any assessment 

of temporal trends in environmental data. It is well known that even a 

moderately large autocorrelation can make the actual significance level 

considerably higher than the nominal level (Yue & Wang, 2004). We found that 

a simple generalization of the idea behind Hirsch and Slack’s trend test for 

seasonal data is a viable alternative to the techniques currently in use. Of 

particular interest, our method has the advantage that it can be applied to any of 

the MK tests proposed in this thesis. 

Chapter 5 emphasized the need for transforming the current system for 

monitoring surface water into an information management system. That 

conclusion also applies to groundwater monitoring. As national databases are 

merged into international databases, it will become increasingly important to 

remove clearly erroneous observations and to complement raw data with 

information about data quality in the past and the possible impact of local 

pollution. Because a single time series provides little information about regional 

trends, it would be an advantage if such an information system could also 

provide outputs from joint analyses of multiple time series of data. 
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7 Using process-based models to assess 

observational data 

A thesis devoted to statistical evaluation of environmental monitoring data 

would not be complete without mentioning process-based models and their 

relation to observational data. Obviously, observational data are needed for 

calibration and validation in process-based modelling, and it is also clear that 

such models can be employed for spatial or temporal interpolation of 

observational data. However, it is not equally accepted that process-based 

models can contribute to assessing the quality of observational data and 

temporal trends therein. Neither is it widely recognized that statistical analysis of 

inputs and outputs from process-based models can create new roles for such 

models in environmental management.  

This chapter briefly summarizes the relevance of process-based modelling in 

statistical evaluations of observational data. The INCA-N model of nitrogen 

flows through catchments (Wade et al., 2002) is used as an example, but the 

conclusions are more general in nature. Parts of the discussion here are based on 

Paper V, and consideration is also given to complementary material derived 

from a research proposal coordinated by our group (Grimvall et al., 2008). 

7.1 The INCA-N model of nitrogen in catchments 

Numerous process-oriented deterministic models have been developed to 

explain and predict the flow of nitrogen through catchments (e.g., Arheimer & 

Brandt, 1998; Refsgaard et al., 1999). The INCA-N model simulates the key 

factors and processes that affect the amount of NO3 and NH4 stored in soil and 

groundwater systems, and it feeds the output from these systems into a multi-

reach river model. The input fluxes that are taken into account in this model 
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include the following: atmospheric deposition of ammonium and nitrate (wet 

and dry), application of NO3 and NH4 fertilizers, mineralization of organic 

matter (yielding NH4), nitrification (yielding NO3), and nitrogen fixation. From 

these data, various output fluxes (plant uptake, immobilization, and 

denitrification) are subtracted before the amount available for stream output is 

calculated. The final output of INCA-N consists of daily estimates of water 

discharge and NO3 and NH4 concentrations in stream water at discrete points 

along the main channel of the river. 

7.2 Model-assisted normalization and trend assessment 

Trend assessment of water quality data is a matter of separating random 

(weather-driven) fluctuations from more persistent changes over time. In 

Chapter 5, observed concentrations of total nitrogen were normalized with 

respect to monthly runoff by using the latter variable as a covariate in the 

semiparametric model described in Chapter 3. In other words, it was assumed 

that the average runoff during the month the sample was collected captured a 

substantial part of the influence of past and current weather conditions on the 

observed concentrations. Statistical analyses of input-output relationships in a 

process-based nitrogen model can suggest more relevant covariates. For 

example, such analyses can be used to judge the relevance of normalizing 

observed concentrations with respect to different combinations of 

contemporaneous or time-lagged runoff records. 

Another approach to model-assisted normalization of observed 

concentrations is based on decomposing the output of a process-based model 

into one weather-dependent and one weather-normalized (weather-independent) 

component. Figure 7.1 shows how such decomposition was achieved in the 

study reported in Paper V. First, an observed time series of meteorological 

inputs to the INCA-N model was resampled to produce a collection of synthetic 
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meteorological inputs representing the climate in the investigated catchment. 

More precisely, we used a form of block resampling that preserved both the 

seasonal pattern and the autocorrelation structure of the observed time series. 

Thereafter, the mean output for all synthetic inputs was regarded as weather-

normalized, and the weather-specific component was isolated by subtracting this 

mean from the model output obtained with the actually observed meteorological 

forcing. 

 

 
 
Figure 7.1  Principle of generating synthetic meteorological inputs and decomposing the 

output of a process-based model into a weather-specific (random) component and a 

weather-normalized mean function representing the effects of human interventions and 

normal seasonal variation. 

 

If the process-based model were perfect, and there were no measurement errors 

in the chemical analysis of the water samples, we could remove the random 

fluctuations in an observed time series of water quality data simply by 

subtracting the weather-specific component derived according to Figure 7.1 

from our observational data. In practice, no model is perfect. However, the 

weather-specific component derived from a process-based model may 

nonetheless function well as a covariate in the semiparametric models described 
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in Chapters 3 and 4. Consequently, it can also help reveal trends or data quality 

problems that might otherwise be overlooked. 

7.3 Judging the plausibility of detected trends 

The statistical tests and response surface methodologies described in this thesis 

can reveal and quantify temporal trends and other statistical patterns in the 

observed data. However, identification of causes of such patterns is a matter of 

plausibility, which gives process-based models another important role in trend 

assessments. Figure 7.2 shows how our technique to generate synthetic 

meteorological inputs and weather-independent model outputs can clarify the 

possible effects of specific anthropogenic interventions, such as increased 

fertilizer application or atmospheric deposition, and present them in a manner 

that is easy to comprehend and use in a discussion regarding plausibility. In 

particular, such calculations can help to judge the plausibility of the magnitude 

and timing of temporal trends detected by statistical methods. 
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Figure 7.2 Delay in response of riverine loads of inorganic nitrogen to impulses in fertilizer 

inputs on arable land and atmospheric deposition on forests during the first year of the study 

period. The first diagram (a) illustrates the distribution of travel times for the fraction of the 

applied nitrogen fertilizer that is leached to water, and the second diagram (b) shows the ratio 

of the cumulated increase in riverine loads to the magnitude of the impulse. 

 

The discussion of data quality problems in Chapter 5 contained a judgment of 

the likelihood that natural phenomena can be responsible for synchronous 

changes in water quality in catchments representing a very wide range of 

geohydrological conditions. We deemed that highly unlikely because: (i) the 

meteorological forcing was not synchronous in all investigated catchments, and 

(ii) the current process-based modelling is based on the premise that water 

residence time has a strong impact on water quality dynamics. If large-scale 

weather phenomena play a more important role than previously assumed, it 

should also be noted that the monitoring strategies that are currently in use need 

to be drastically revised. It is relatively easy to separate the impacts of human 

interventions from statistically independent, purely random errors in the data, 
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whereas it is an extremely difficult task to distinguish between seemingly 

persistent weather effects and the influence of human activities. 

7.4 Implications for water quality monitoring 

The brief examples in this chapter clearly show the need for a two-way 

interaction between process-based modelling and the assessment of 

observational data. In short, not only do observational data constitute support for 

process-based modelling, but such modelling can also play a decisive role in the 

interpretation of observational data. More specifically, our investigations 

showed the potential of the following forms of feedback: 

(i) reduction of noise in observational data; 

(ii) estimation of the magnitude of human interventions; 

(iii) judgment of the plausibility of synchronous increases and decreases in 

water quality. 
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8 Conclusions and final remarks 

The research underlying this thesis has contributed to more efficient 

environmental monitoring in three respects: 

(i) by providing several examples of technical improvements of statistical 

methods and accompanying software; 

(ii) by integrating different elements of data analysis into a roadmap for 

retrospective analysis of multiple time series; 

(iii) by drawing attention to the need for new paradigms in environmental 

monitoring. 

8.1 Technical improvements 

The technical improvements presented here aimed to meet the demand for 

statistical methods that can accommodate the common peculiarities of time 

series of environmental data and that are also easy to comprehend without being 

simplistic. 

The MK (Mann-Kendall) tests that we refined and applied to water quality 

data make the family of such tests more complete. Procedures that can handle 

censored data were incorporated into both ordinary and partial MK tests. 

Furthermore, a simple method to handle serial correlations extending over more 

than one year was presented (Paper III), and an accompanying software package 

enabled automated testing of trends in various groups of user-defined data. 

A versatile smoothing algorithm that can be used to search for smooth trends 

and synchronous increases and decreases in vector time series of data was also 

reported (Paper I). In particular, it can be noted that this smoothing algorithm is 

equipped with a new resampling procedure that can handle error terms that are 

correlated over time and/or across coordinates in the investigated vector time 

series. 
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A new method for the detection and estimation of abrupt level shifts in the 

presence of smooth trends in vector time series was also described (Paper IV). 

This technique unified existing approaches focusing on change points or 

smoothing alone. 

Finally, we showed how repeated runs of process-based models can be 

undertaken to extract important features from temporally aggregated model 

outputs (Paper V). This provided an example of the need for a better integration 

of process-based modelling and statistical data analysis. Additional examples 

were briefly outlined in Chapter 7. 

8.2 The importance of listening to the data 

Following the device “listen to the data,”  we integrated our methods into a 

roadmap for the entire pathway extending from a set of observed concentrations 

to conclusions about the quality of the data and existence of trends therein. 

Figure 8.1 shows that we made assessment of data quality a recurrent element in 

our analysis. The figure also illustrates how we exploited the fact that hypothesis 

testing and fitting of response surfaces complement each other and play different 

roles at different stages in the data analysis (Paper III). 

At the initial stage of the analysis, the univariate MK tests and the 

nonparametric smoothing techniques were used as interactive exploratory tools. 

More specifically, we performed the following: 

(i) visual inspection of p-values for trends in time series ordered with respect 

to sample means or other user-defined station characteristics; 

(ii) tests for joint trends in groups of samples determined by user-defined 

factors or classes; 

(iii) visual inspection of response surfaces in search of synchronous trends 

and level shifts in multiple data series. 
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After each step, data quality was assessed, and erroneous data were removed or 

corrected (Paper III). 

Outlier
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Figure 8.1  Roadmap for trend detection and assessment of data quality. 

 

Next, we made a more formal trend analysis in which we ascertained whether 

the detected trends remained significant when our improved MK-tests and 

response surface methodologies were used to correct for covariates and 

correlated error terms. Finally, the presence of artificial level shifts was 

assessed, and, if necessary, a corrected response surface was computed. 

To facilitate repeated analysis of multiple time series and to emphasize that 

data analysis is a much broader task than merely estimating parameters in given 

probability models, we also modified and extended software previously 
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developed by our group. Practical work with the Multitest and Multitrend tools 

demonstrated that simultaneous analysis of multiple time series of data, and 

integration of visual inspection and more formal statistical analyses, constituted 

the key to both trend assessment and detection of flawed data. 

8.3 The need for new paradigms 

The datasets that were analysed in the current studies were selected to represent 

the best of environmental monitoring in Sweden, a country with a very long 

tradition of regular measurements of water quality. The records on surface water 

and most of the information on groundwater that we examined came from a 

highly reputable laboratory that has long practised state-of-the-art quality 

assurance. Moreover, the analytical procedures and sampling methods applied 

have been in use for many years, and the sampling sites have been essentially 

the same since the 1980s. Together, this implies that the conditions for 

producing excellent observational data are better in water quality monitoring 

than in most other fields of environmental surveillance. Nevertheless, our 

research revealed several remarkable problems associated with the quality of the 

reported data. 

The level shift in potassium in groundwater (Paper IV) may be of minor 

practical importance. However, it is more troubling that none of the most 

significant temporal changes in total nitrogen (measured by persulphate 

digestion), total phosphorus, and TOC-to-COD ratios in surface water data from 

the past fifteen years could be attributed to human interventions in the 

environment (Papers II and IV). On the contrary, we presented strong evidence 

that the detected trends and level shifts were due to measurement or sampling 

problems. Likewise, it is less satisfactory that, according to our assessments, the 

strongly significant downward trends in alkalinity in acidic groundwaters were 

an artefact caused by poor data quality in the early 1980s (Papers III and IV). 
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Increased efforts to refine conventional quality assurance of reported data 

may reduce the problems that have been revealed, but it would be unwise to 

claim that such efforts can completely eliminate observational data of low 

quality. In addition, it is of great interest to rescue as much as possible of the 

information that can be extracted from existing time series of environmental 

quality data that obviously have artificial level shifts. This calls for a change in 

priorities. In Paper IV, we pointed out that climatologists have long been 

working on methods to detect and remove artificial level shifts in observational 

data (Alexandersson, 1986) and that these endeavours have recently been 

intensified. Similar efforts could be initiated in water quality monitoring and 

several other fields of environmental monitoring. The results reported in this 

thesis show that appropriate homogenization techniques are indeed available 

(Paper IV). 

The dramatic advances in computer science and technology have made it 

feasible to make even more profound changes in the monitoring system and its 

interaction with the users of the collected data. First, it would be an easy task to 

provide more information about known or suspected data quality problems and 

the procedures used in the post-control of the collected data. Second, it would be 

possible to make available not only the originally observed data, but also various 

filtered datasets that have been homogenized to more correctly show the 

dominating overall trends. 

The interaction between process-based modelling of the environment and 

monitoring based on data collection is another issue that deserves increased 

attention. Observational data are widely used to validate the former approach, 

but the feedback from such modelling to conventional monitoring is poorly 

developed. As shown in Chapter 7, both trends and artificial level shifts can be 

more efficiently identified if process-based models are used to estimate and 

remove the weather-driven fluctuations in the measured state of the 

environment. Finally, it should also be noted that there is substantial room for 
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better coordination of environmental monitoring and the production of official 

statistics regarding the pressure on the environment. In conclusion, it is both 

feasible and desirable to transform the current environmental quality monitoring 

from a system for gathering and storing observational data to an information 

system that provides adequate support for environmental management. 
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