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Abstract 

Monotonic regression is a nonparametric method for estimation of 

models in which the expected value of a response variable y increases or 

decreases in all coordinates of a vector of explanatory variables x = (x1, …, xp). 

Here, we examine statistical and computational aspects of our recently 

proposed generalization of the pool-adjacent-violators (PAV) algorithm from 

one to several explanatory variables. In particular, we show how the goodness-

of-fit and accuracy of obtained solutions can be enhanced by presorting 

observed data with respect to their level in a Hasse diagram of the partial order 

of the observed x-vectors, and we also demonstrate how these calculations can 

be carried out to save computer memory and computational time. Monte Carlo 

simulations illustrate how rapidly the mean square difference between fitted 

and expected response values tends to zero, and how quickly the mean square 

residual approaches the true variance of the random error, as the number of 

observations increases up to 104. 
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1. Introduction 

Monotonic response patterns play a fundamental role in the modeling 

and analysis of a great variety of technical, biological, and economic systems. 

For example, it is common that the rates of biological, chemical, and physical 

processes are monotonic functions of factors such as temperature, pressure, and 

humidity. Moreover, it can be reasonable to assume that health risks are 

monotonic functions of a set of risk factors, and that the sale of a product will 

increase with decreasing price and increased advertising.  

Monotonic regression (MR) is a nonparametric method used to estimate 

models of the form 

njxxfy jpjjj ...,,1,)...,,( 1 =+= ε  

where f is increasing or decreasing in each of the coordinates, and {εj} stands 

for independent error terms with mean zero. The special case when the 

expected response is increasing in all explanatory variables is referred to as 

isotonic regression (IR). Generally, MR and IR can be formulated as 

optimization problems in which a loss function is minimized under a set of 

simple monotonicity constraints (Ayer et al., 1955; Barlow et al., 1972; Best 

and Chakravarti, 1990). If Mn = {(x1j, …., xpj, yj),  j = 1, …, n} denotes a set of 

observed data, we can, for example, determine the fitted values 

,...,,1, njz j =  that minimize 
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under the constraints 
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zi ��zj  if  xki ��xkj for all k = 1, …, p 

Despite its simplicity, the practical use of MR/IR has long been 

hampered by the lack of computational methods that can accommodate several 

explanatory variables. The most commonly used algorithm, known as the pool-

adjacent-violators (PAV) algorithm (Barlow et al., 1972; Hanson et al., 1973), 

is appropriate mainly for regression in one discrete or continuous explanatory 

variable, or two or more discrete variables that are varied at only a few levels 

(Dykstra and Robertson, 1982; Bril et al., 1984). Other computational methods, 

such as algorithms based on averages of monotonic functions embracing the 

entire data set, can accommodate an arbitrary set of explanatory variables 

(Mukarjee, 1988; Mukarjee and Stern, 1994; Strand, 2003). However, the 

derived solutions can be rather far from optimal in the sense of least squares. 

Yet other techniques are restricted to specific types of isotonic regression 

problems (Restrepo and Bovik, 1993; Schell and Singh, 1997; Pardalos and 

Xue, 1999) or are computationally very time-consuming for large data sets 

(Maxwell and Muchstadt, 1985; Roundy, 1986; Best and Chakravarti, 1990). 

In two recent reports (Burdakov et al., 2004; 2006), we presented a new 

approach to MR/IR problems in which the PAV algorithm was generalized 

from fully to partially ordered data. This algorithm, which we refer to as the 

GPAV (generalized pool-adjacent-violators) algorithm, made it feasible to 

handle regression problems involving thousands of observations of two or 

more continuous x-variables. Specifically, we showed that this algorithm 

provides close to optimal solutions in the sense of least squares and has 

complexity O(n2), where n is the number of observations. Here, we emphasize 

that the GPAV algorithm treats the observations sequentially and that the order 

in which data are introduced may influence the obtained result. A solution can 
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be provided by any topological sort, i.e., any arrangement of the data that is 

compatible with the partial order of the observed explanatory variables, but the 

accuracy of that solution depends on the order in which the observations are 

entered. In this paper, we examine the advantages of using Hasse diagrams of 

partially ordered data to presort the observations. In addition, we show how the 

computations involved in such combinations of sorting procedures and the 

GPAV algorithm can be performed in a manner that simultaneously saves 

computer memory and makes the computational burden surmountable. 

 

2. Computational methods 

The PAV and GPAV algorithms 

The PAV algorithm for IR in one explanatory variable (Barlow et al., 

1972; Hanson et al., 1973) assumes that the data Mn = {(xi , yi), i = 1, …, n} are 

presorted so that x1, …, xn form a nondecreasing sequence. Then the fitted 

response values form a nondecreasing sequence zi, i = 1, …, n, that can be 

represented as clusters of adjacent indices for which the associated z-values are 

identical. The PAV algorithm identifies these clusters and z-values in a 

recursive procedure in which the observations yi, i = 1, …, n, are entered into 

the calculations one at a time. If z1, …, zr denote the solution for Mr that is 

optimal in the sense of least squares, we form a preliminary solution for Mr+1 by 

adding a new cluster consisting of the integer r+1 and setting zr+1 =  yr+1. This 

preliminary solution is subsequently modified into an optimal solution for Mr+1 

by pooling the adjacent preliminary z-values that violate the monotonicity 

constraints; to be more precise, the same value (yr+1 + … + yr+1-k)/(k+1) is 
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assigned to each of zr+1-k, …, zr+1, where k is the smallest integer such that z1, 

…, zr-k along with new values of zr+1-k, …, zr+1 form a non-decreasing sequence. 

The GPAV algorithm developed by Burdakov and coworkers (2004; 

2006) can provide optimal or close to optimal solutions to the IR problem for 

an arbitrary set of explanatory variables. As in the ordinary PAV algorithm, 

observations are entered in the calculations one at a time, and monotonicity 

violators are removed by pooling the z-values associated with adjacent clusters 

of indices. 

To enable a stringent definition of the GPAV algorithm, we introduce 

the partial order 

pkxx kjkiji ...,,1allfor, =≤⇔xx �  

where xi = (x1i, …, xpi) and xj = (x1j, …, xpj)  denote vectors of explanatory 

variables. Furthermore, we sort observed data to ensure for all indices i  ≤  j 

that either xi and xj are not compatible or xi  is dominated by xj. The resulting 

order is called topological. 

The main idea of the GPAV algorithm is described below (for details see 

Burdakov et al., 2004; 2006). First, we introduce the notation 

},...,{ 1 miiI = for a cluster of indices i1, …, im, the symbol ω(I) = m for the 

number of elements in I, and the symbol z(I) for the common value of all zi, 

i∈I. Moreover, when two adjacent clusters I1 and I2 are joined to form a new 

cluster I1∪I2, we compute the associated z-value by setting 

))()((/))()()()(()( 21221121 IIIzIIzIIIz ωωωω +⋅+⋅=∪  

The recursive procedure is started by forming the cluster I = {1} and setting z1 

= y1, and then the subsequent steps are defined as follows: 
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(i) Given that the clusters I1, …, Iq and their associated values z(I1), …, 

z(Iq) are a solution for Mr, a preliminary solution for Mr+1 is formed by 

introducing the cluster Iq+1 consisting of the integer r+1 and setting 

z(Iq+1) = yr+1. 

(ii) The final solution for Mr+1 is obtained by sequentially joining Iq+1 with 

immediate predecessor clusters until the clusters for which the 

associated z-values violate the monotonicity constraints have been 

removed. (A cluster Ij is called an immediate predecessor of Il, if an 

i∈Ij and a k∈Il exist such that ki xx �  and there is no m (different 

from i and k) such that km xxxi �� .) 

If a cluster has more than one immediate predecessor, the clusters violating the 

monotonicity are removed sequentially, starting with the cluster representing 

the strongest violation.  

When p = 1, the GPAV and PAV algorithms are identical and provide 

(unique) solutions that are optimal in the least squares sense. When p > 1, 

different orderings of the data may give rise to different solutions to the MR/IR 

problem under consideration. However, after it has been determined in which 

order the observations should be entered in the calculations, GPAV produces a 

unique solution. 

 

General computational aspects of the MR/IR problem 

A conventional mathematical formulation of the MR/IR problem 

involves matrices of size nxn. The partial order on the set of x-vectors can be 

summarized in the adjacency matrix  
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( )ijpP =  

where 

⎩
⎨
⎧

=
otherwise,0

if,1 ji
ijp

xx �
 

If the x-vectors have been sorted topologically to match the given partial order 

and none of these x-vectors are identical, P is upper triangular. Furthermore, it 

is easy to see that 

Q = P- sgn(P2) 

is a binary upper triangular matrix, if the operator sgn replaces positive entries 

with ones, and also that 

⎩
⎨
⎧

=
otherwise,0

 ofr  predecesso immediatean  is  if,1 ji
ijq

xx
 

In other words, the matrix Q = (qij) summarizes all the nonredundant 

monotonicity constraints that will be taken into account when the MR/IR 

problem is solved. It can also be noted that the powers of Q provide 

information about the size of the longest chain of elements in the partially 

ordered set of x-vectors. If r is the smallest integer for which Qr = 0, then the 

maximum chain length is r - 1. 

Our computational algorithms are based on two observations. First, Q is 

normally a sparse matrix (see the results of the simulation experiments), which 

implies that it can be stored in the standard compact manner by listing the row 

and column numbers (i , j) for which qij = 1. Second, this list can be established 

recursively without storing more than one column of the P-matrix that, in 

general, has a large number of nonzero elements. If the observations are 
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entered one at a time, the list of row and column numbers (i , j) for which qij = 

1 can be extended step by step by recursively extending the list 

}and1);,{( kjqjiL ijk ≤==  

for k = 1, …, n.  

 

Hasse diagrams 

 A Hasse diagram (Davey and Priestly, 2001) can provide a simple 

picture of a finite partially ordered set (poset) S. Each element of S is presented 

by a vertex in the diagram, and two vertices xi and xj are connected with a line 

that goes upward from xi to xj, if ji xx �  and there is no xk (different from xi 

and xj) such that jxxx ki ��  (Figure 1).  

 

 

 

 

 

 

Figure 1. Seven points in the Euclidean space R2 and two alternative 
Hasse diagrams of this partially ordered set. 
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Any Hasse diagram uniquely determines a partial order, but there 

are many possible diagrams for specifying a given order. Here, we 

(partly) standardize our Hasse diagrams by following the concept of 

level to assign vertical positions to the elements of a poset. In fact, we 

consider two different definitions of this concept.  

Definition 1: All minimal elements are assigned level 0, and then the other 

elements are assigned one level higher than the maximum level of all their 

predecessors. 

Definition 2: All maximal elements are assigned a preliminary maximum level 

lmax, and the other elements are subsequently assigned one level lower than the 

minimum level of all their successors. The minimum level is then set to zero by 

shifting down the entire Hasse diagram vertically. 

The diagrams in the middle and on the right in Figure 1 are coherent 

with definitions 1 and 2, respectively. In both cases, the levels range from 0 to 

3. 

 

Using Hasse diagrams to sort observed data 

Our preliminary simulation experiments (Burdakov et al., 2004; 2006) 

indicated that the accuracy of the GPAV solutions can be enhanced, if the 

observations are entered into the calculations according to an order that takes 

into account the number of predecessors or successors of each x-vector. In the 

current study, we further examined the impact of presorting observed data by 

comparing procedures that we refer to as GPAV-R, GPAV-H1, and GPAV-H2, 

where R stands for random and H for Hasse. All three of these algorithms are 
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started by employing a quick-sort algorithm to topologically order the 

observations as follows. If all x1j,  j = 1, …, n, are different, it is sufficient to 

sort the x-vectors with respect to their first coordinate; otherwise, remaining 

ties can be removed by using additional coordinates. Given a topologically 

ordered set of observations, we generate all non-redundant monotonicity 

constraints. GPAV-R involves no further reordering of observed data, whereas 

the GPAV-H algorithms include another quick-sorting of the x-vectors with 

respect to their levels in a Hasse diagram. H1 and H2 refer to definitions 1 and 

2, respectively. 

In addition, we introduce an algorithm called GPAV-M(ixed), 

which is constructed by computing the optimal convex linear 

combination of the solutions obtained with the other three GPAV 

algorithms. If the data set to be analyzed is completely ordered, as for p 

= 1, all four algorithms provide identical solutions. In the more general 

case, when data are partially ordered, the solutions obtained with 

GPAV-R are at greater risk of being influenced by the initial (random) 

ordering of the observations than are the more standardized GPAV-H 

solutions. 

Simulation experiments 

Data generation 

Test sets of data were generated according to the equation 

nixxy iiii ...,,1,2211 =++= εββ  
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where the values of the explanatory variables were drawn from a bivariate 

normal distribution with mean zero and covariance matrix 

⎟⎟⎠

⎞
⎜⎜⎝

⎛
=

1

1

ρ
ρ

C  

The error terms (ε) were independent and identically distributed, and light- or 

heavy-tailed distributions of these error terms were generated according to 

normal and double- exponential distributions with mean zero and variance one. 

More detailed information about the different models that were utilized is 

presented in Table 1. The number of observations was varied between 100 and 

10,000, and the number of simulated data sets for each model was 1,000 for the 

two smaller sample sizes (n = 100 and 1,000) and 100 for the largest sample 

size (n = 10,000).  

 

Table 1. Summary of the models used in the simulation experiments 

Regression 
coefficients 

Model 

β1 β2 

Correlation between 
explanatory variables 

Error term 
distribution 

1 1 1 0 Normal 

2 1 1 0 Double-exponential 

3 1 1 0.9 Normal 

4 1 1 0.9 Double-exponential 

5 0 0 0 Normal 

6 0 0 0 Double-exponential 

7 0 0 0.9 Normal 

8 0 0 0.9 Double-exponential 
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Computational burden and memory requirements 

Table 2 shows that 10,000 is far below the maximum number of 

observations for which it is feasible to undertake monotonic regressions on a 

laptop with moderate capacity. Furthermore, it is worth noting that additional 

explanatory variables can easily be handled, because these variables are entered 

in the calculations only through the partial order of the x-vectors. The 

numerical results presented in this section were obtained by implementing the 

all algorithms in Visual Basic for Excel on a PC (1.5 GHz) running under 

Windows XP. A MATLAB implementation of the same algorithms required 

somewhat more CPU time. Closer examination of the computational burden 

showed that the identification of all nonredundant constraints was the 

computationally most time-consuming part of the proposed algorithms. Also, it 

can be noted that the CPU time was approximately proportional to the square 

of the sample size, which agrees with previously published theoretical results 

(Burdakov et al., 2006). 

 

Table 2. Average CPU time for different parts of the GPAV approach to 
isotonic regression, using data samples generated according to model 1 

Average CPU time (s) No. of 
observations 

Quick-sorting 
observed data 

Identification of 
non-redundant 

constraints 

Running 
GPAV-R 

Running GPAV-
H1 and  GPAV-

H2 

100 0.001 0.013 0.005 0.013 

1,000 0.012 1.61 0.41 0.76 

10,000 0.15 198 36 76 
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The array of pairs Lk is the largest matrix created by the entire algorithm. 

Theoretically, it is possible to construct sequences of posets for which the 

number of such constraints grows in proportion to n2. However, typical 

regression data are usually much more favorable from a computational point of 

view. Table 3 provides some examples of the number of nonredundant 

constraints (edges in Hasse diagrams) that are needed to define the partial order 

of samples from bivariate normal distributions. 

 

Table 3. Average number of edges in Hasse diagrams of samples from 
bivariate normal distributions 

Average number of edges No. of 
observations 

Independent explanatory 
variables (ρ = 0) 

Strongly correlated explanatory 
variables (ρ = 0.9) 

100 324 275 

1,000 5,501 4,742 

10,000 77,737 69,416 

 

Goodness-of-fit and accuracy 

The application of different implementations of the GPAV algorithm to 

simulated data illustrates the advantages of using levels defined by Hasse 

diagrams to determine the order in which observations should be entered in the 

GPAV algorithm. In all simulations in which the expected response increased 
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in relation to the explanatory variables (models 1–4), this sorting reduced the 

mean square residual 

∑ −=
i

ii nyzMSR /)( 2  

of the obtained solutions (see Table 4). For the largest samples (n = 10,000), 

the improvement was dramatic. For example, when data were generated 

according to model 1, the mean square residuals for the GPAV-R, GPAV-H1, 

and GPAV-H2 algorithms were 1.526, 0.906 and 0.906, respectively. The 

results regarding the accuracy of the fitted response function were even more 

convincing. While the mean square error 

∑ −=
i

iii nyEzMSE /))|(( 2x  

for the two GPAV-H algorithms tended to zero with increasing sample size, the 

GPAV-R algorithm failed to produce consistent estimates of the true response 

surface E(y | x).  

The results in Table 4 also show that, on average, the two GPAV-H 

algorithms performed almost identically, and combining the two GPAV-Hasse 

solutions (and the GPAV-R solution) into an optimal convex linear expression 

had relatively little effect on the goodness-of-fit. However, some of the results 

obtained for large data sets indicate that there exist cases in which merging 

different GPAV solutions in an optimal linear combination may be worth the 

extra computational effort. For instance, for model 1 and sample size 10,000 it 

can be seen that the mean square differences between fitted and expected 

response values were 0.026, 0.039, and 0.040 for GPAV-M, GPAV-H1, and 

GPAV-H2, respectively. 
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Due to the flexibility (high effective dimension) of MR models, the 

unadjusted mean square residual can strongly underestimate the true variance 

of the error terms. In part, this can be attributed to the fact that 0=− ii yz  if xi 

is a minimal element in the poset of x-vectors, and the associated error term εi 

has a large negative value. Similarly, 0=− ii yz  if xi is a maximal element, 

and the associated error term εi is large and positive. Table 4 illustrates the 

over-fitting to data generated by models in which there was a strong 

(monotonic) relationship between the response variable and the explanatory 

variables. Although the true variance of the error terms was equal to 1 in all 

investigated models of this type (models 1–4), the expected value of the mean 

square residual was invariably less than 1. In fact, it was only about 0.4 when 

the sample size was moderately large (n = 100) and the explanatory variables 

were independent. The over-fitting was less pronounced for the largest data 

sets (n = 10,000). This problem was also reduced when the correlation of the 

explanatory variables was increased, because we then approached the case of a 

single explanatory variable. 

We have already noted that the mean square difference between fitted 

and expected response values decreased steadily to zero with increasing sample 

size (n). A tenfold increase in sample size made this expression about three 

times lower (see Table 4). Closer examination of the fitted response values 

indicated that this rate of convergence would not have been dramatically 

improved even if we had had access to an algorithm that provided exact 

solutions to the MR/IR problem. The over-fitting to observations representing 

minimal and maximal x-vectors can not be avoided, which implies that the 

fitted values may differ substantially from the true expected responses in such 

points. 
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The simulation results presented in Table 5 show that all the GPAV 

algorithms performed satisfactorily for data sets generated by models in which 

the expected response was constant, (i.e., did not depend on the explanatory 

variables). This was expected, because, for such data, a solution consisting of a 

single cluster gives the most accurate estimates of )|( iiyE x , and hence 

nothing can be gained by using different GPAV algorithms to optimize the 

formation of the clusters. 

Table 6 presents additional details regarding the effective dimension of 

MR models. We let D denote the number of clusters in the GPAV solution and 

used the correction factor c = 1.5 proposed by Meyer and Woodroofe (2000) to 

compute the following adjusted estimates of the residual variance: 

∑ −−=
−

=
i

iiAdj Dnyz
Dn

n
MSRMSR )5.1/()(

5.1
2  

As can be seen, these adjusted estimates of the residual variance are still 

biased. 
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Table 4. Goodness-of-fit and accuracy of the solutions obtained for 
different GPAV-algorithms when the data sets were generated by 
models with a strong relationship between the response variable and 
the explanatory variables (β1 = β2 = 1). Standard errors of the estimated 
means are given within brackets. 

Mean square residual Mean square error 

M
od

el
 n 

GPAV-
R 

GPAV-
H1 

GPAV-
H2 

GPAV-
M 

GPAV-
R 

GPAV-
H1 

GPAV-
H2 

GPAV-
M 

100 0.434 
(0.003) 

0.412 
(0.003) 

0.411 
(0.003) 

0.406 
(0.003) 

0.360 
(0.002) 

0.344 
(0.002) 

0.343 
(0.002) 

0.341 
(0.002) 

1,000 0.952 
(0.002) 

0.724 
(0.001) 

0.722 
(0.001) 

0.715 
(0.001) 

0.280 
(0.001) 

0.109 
(0.0003) 

0.108 
(0.0003) 

0.101 
(0.0003) 

1 

10,000 1.526 
(0.003) 

0.906 
(0.001) 

0.906 
(0.001) 

0.893 
(0.001) 

0.600 
(0.002) 

0.039 
(0.0003) 

0.040 
(0.0003) 

0.026 
(0.0002) 

100 0.456 
(0.005) 

0.432 
(0.005) 

0.431 
(0.005) 

0.426 
(0.005) 

0.344 
(0.003) 

0.327 
(0.003) 

0.325 
(0.003) 

0.324 
(0.003) 

1,000 0.973 
(0.003) 

0.739 
(0.002) 

0.736 
(0.002) 

0.730 
(0.002) 

0.283 
(0.001) 

0.104 
(0.0004) 

0.103 
(0.0004) 

0.097 
(0.0004) 

2 

10,000 1.565 
(0.039) 

0.905 
(0.021) 

0.905 
(0.021) 

0.893 
(0.020) 

0.636 
(0.029) 

0.037 
(0.003) 

0.037 
(0.003) 

0.026 
(0.002) 

100 0.542 
(0.003) 

0.531 
(0.003) 

0.529 
(0.003) 

0.525 
(0.003) 

0.236 
(0.002) 

0.230 
(0.002) 

0.229 
(0.002) 

0.228 
(0.002) 

1,000 0.874 
(0.001) 

0.797 
(0.001) 

0.795 
(0.001) 

0.790 
(0.001) 

0.110 
(0.0003) 

0.064 
(0.0002) 

0.064 
(0.0002) 

0.060 
(0.0002) 

3 

10,000 1.090 
(0.001) 

0.929 
(0.001) 

0.929 
(0.001) 

0.922 
(0.001) 

0.145 
(0.0003) 

0.020 
(0.0001) 

0.020 
(0.0001) 

0.013 
(0.0001) 

100 0.556 
(0.005) 

0.547 
(0.005) 

0.546 
(0.005) 

0.542 
(0.005) 

0.224 
(0.002) 

0.218 
(0.002) 

0.217 
(0.002) 

0.216 
(0.002) 

1,000 0.875 
(0.002) 

0.807 
(0.002) 

0.806 
(0.002) 

0.801 
(0.002) 

0.101 
(0.0003) 

0.062 
(0.0003) 

0.061 
(0.0003) 

0.057 
(0.0003) 

4 

10,000 1.082 
(0.002) 

0.927 
(0.002) 

0.928 
(0.002) 

0.921 
(0.002) 

0.140 
(0.0004) 

0.020 
(0.0001) 

0.020 
(0.0002) 

0.014 
(0.0001) 
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Table 5. Goodness-of-fit and accuracy of the solutions obtained for 
different GPAV-algorithms when the data sets were generated by 
models in which the response variable did not depend on the 
explanatory variables (β1 = β2 = 0). Standard errors of the estimated 
means are given within brackets. 

Mean square residual Mean square error 

M
od

el
 n 

GPAV-
R 

GPAV-
H1 

GPAV-
H2 

GPAV-
M 

GPAV-
R 

GPAV-
H1 

GPAV-
H2 

GPAV-
M 

100 0.875 
(0.004) 

0.857 
(0.004) 

0.856 
(0.004) 

0.852 
(0.004) 

0.128 
(0.002) 

0.146 
(0.002) 

0.147 
(0.002) 

0.148 
(0.002) 

1,000 0.981 
(0.001) 

0.970 
(0.001) 

0.970 
(0.001) 

0.969 
(0.001) 

0.020 
(0.0003) 

0.031 
(0.0003) 

0.031 
(0.0003) 

0.031 
(0.0003) 

5 

10,000 0.998 
(0.001) 

0.995 
(0.001) 

0.995 
(0.001) 

0.995 
(0.001) 

0.003 
(0.0001) 

0.005 
(0.0001) 

0.005 
(0.0001) 

0.005 
(0.0001) 

100 0.867 
(0.007) 

0.851 
(0.007) 

0.851 
(0.007) 

0.847 
(0.006) 

0.127 
(0.002) 

0.143 
(0.002) 

0.143 
(0.002) 

0.143 
(0.002) 

1,000 0.982 
(0.002) 

0.972 
(0.002) 

0.972 
(0.002) 

0.971 
(0.002) 

0.019 
(0.0003) 

0.029 
(0.0004) 

0.029 
(0.0004) 

0.029 
(0.003) 

6 

10,000 0.994 
(0.002) 

0.992 
(0.002) 

0.992 
(0.002) 

0.991 
(0.002) 

0.003 
(0.0001) 

0.005 
(0.0001) 

0.005 
(0.0001) 

0.005 
(0.0001) 

100 0.928 
(0.004) 

0.926 
(0.004) 

0.926 
(0.004) 

0.925 
(0.004) 

0.075 
(0.001) 

0.077 
(0.001) 

0.077 
(0.001) 

0.078 
(0.001) 

1,000 0.989 
(0.001) 

0.987 
(0.001) 

0.987 
(0.001) 

0.987 
(0.001) 

0.012 
(0.0002) 

0.014 
(0.0002) 

0.014 
(0.0002) 

0.014 
(0.0002) 

7 

10,000 0.999 
(0.001) 

0.998 
(0.001) 

0.998 
(0.001) 

0.998 
(0.001) 

0.002 
(0.0001) 

0.002 
(0.0001) 

0.002 
(0.0001) 

0.002 
(0.0001) 

100 0.921 
(0.007) 

0.920 
(0.007) 

0.920 
(0.007) 

0.919 
(0.007) 

0.072 
(0.002) 

0.074 
(0.002) 

0.074 
(0.002) 

0.075 
(0.002) 

1,000 0.990 
(0.002) 

0.988 
(0.002) 

0.988 
(0.002) 

0.988 
(0.002) 

0.011 
(0.0002) 

0.013 
(0.0002) 

0.013 
(0.0002) 

0.013 
(0.0002) 

8 

10,000 0.995 
(0.002) 

0.995 
(0.002) 

0.995 
(0.002) 

0.995 
(0.002) 

0.002 
(0.0001) 

0.002 
(0.0001) 

0.002 
(0.0001) 

0.002 
(0.0001) 
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Table 6. Average number of clusters and adjusted mean square 
residuals for the solutions obtained for different GPAV algorithms when 
the data sets were generated by bivariate regression models in which 
the error terms had a standard normal distribution and β1 = β2 = 1 or β1 = 
β2 = 0 

No. of clusters Adjusted mean square residual 

M
od

el
 n 

GPAV-R GPAV-H1 GPAV-H2 GPAV-R GPAV-H1 GPAV-H2 

100 39 42 42 1.051 1.139 1.142 

1,000 77 138 139 1.077 0.913 0.914 

1 

10,000 108 340 336 1.551 0.954 0.954 

100 29 31 31 0.967 0.997 1.002 

1,000 65 96 96 0.969 0.931 0.929 

3 

10,000 108 250 240 1.108 0.966 0.964 

100 10 12 12 1.030 1.047 1.049 

1,000 15 21 22 1.003 1.003 1.003 

5 

10,000 19 34 34 1.001 1.001 1.001 

100 7 7 7 1.029 1.033 1.033 

1,000 10 12 11 1.004 1.005 1.004 

7 

10,000 13 17 17 1.001 1.001 1.001 

 

Optimal weighting of solutions 

We have already noted that the two GPAV-Hasse algorithms normally 

produced similar solutions and that any of these algorithms is superior to the 
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GPAV-R algorithm. This was further confirmed by recording the weights of 

the GPAV-R, GPAV-H1 and GPAV-H2 solutions in the optimal linear 

combination GPAV-M. The results given in Table 7 show that, on average, the 

GPAV-R solution was assigned a small weight, whereas the two GPAV-Hasse 

solutions were given approximately the same weight. 

 

Table 7. Optimal weighting of the solutions obtained with the algorithms 
GPAV-R, GPAV-H1, and GPAV-H2. Standard errors of the estimated 
means are given within brackets. 

Weights Model No. of observations 

GPAV-R GPAV-H1 GPAV-H2 

1 100 0.085  
(0.005) 

0.422 
(0.010) 

0.494 
(0.011) 

1 1,000 0.001 
(0.000) 

0.469 
(0.004) 

0.531 
(0.004) 

1 10,000 0.000 
(0.000) 

0.504 
(0.005) 

0.496 
(0.005) 

3 100 0.125 
(0.006) 

0.360 
(0.010) 

0.515 
(0.010) 

3 1,000 0.001 
(0.0001) 

0.466 
(0.004) 

0.534 
(0.004) 

3 10,000 
 

0.000 
(0.0000) 

0.501 
(0.005) 

0.499 
(0.005) 

 

Discussion 

We recently demonstrated that the GPAV algorithm can provide optimal 

or close to optimal solutions to MR/IR problems, and it also outperforms 



 21

alternative techniques, such as simple averaging (Burdakov et al., 2004; 2006). 

Our present findings show that the calculations can be carried out with 

algorithms that combine a reasonable computational burden with very modest 

computer memory requirements. Furthermore, our simulation results 

demonstrate that the performance of the GPAV algorithm to a large extent 

depends on the order in which the observations are entered into the 

calculations. In particular, we found that algorithms with observations entered 

according to the Hasse diagram level of their x-vectors outperform an 

algorithm (Hasse-R) in which no attempts are made to select a particular 

ordering among all those that are consistent with the given partial order. 

Forming linear combinations of two or more solutions to an IR/MR 

problem can improve the goodness-of-fit and accuracy of the fitted values. This 

was especially apparent in some of the simulations involving large samples (n 

= 10,000). However, in general, the the individual GPAV-Hasse solutions are 

almost as good as the optimal linear combination of GPAV-R, GPAV-H1 and 

GPAV-H2. Moreover, there are only small differences in the performance of 

GPAV-H1 and GPAV-H2. 

When parametric or nonparametric regression models are fitted to 

observed data, it is customary to determine the (approximate) degrees of 

freedom and to use an adjusted mean square residual to estimate the variance of 

the error terms in the original observations (Mallows, 1973; 1995; Hastie et al., 

2001). Such adjustments are based on the assumption that a parametric form of 

the model is known or that the true response surface is smooth, thus they are 

not directly applicable to MR. Nonetheless, the results presented in Tables 4 

and 5 provide rules of thumb regarding the magnitude of the over-fitting 

problem when MR is used to analyze small or moderately large data sets. 
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As early as the 1970s, Hanson and coworkers (1973) discussed the 

consistency of least squares solutions to the MR problem. These authors 

presented sufficient conditions for the case of a single explanatory variable, 

whereas the results obtained for p > 1 were very limited. The consistency of the 

GPAV estimates is even more intricate, because the obtained solutions need 

not be optimal in the least squares sense. Notwithstanding, our simulation 

results are convincing. Regardless of the sample size and error term, the mean 

square difference between fitted and true expected response values decreased 

steadily to zero when the sample size was increased and any of the GPAV-H 

algorithms was employed to determine the fitted response values. 

Taken together, the results reported in this article demonstrate that the 

GPAV approach to MR in two or more variables is now ready for large-scale 

application. 
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