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Abstract 

Changes in observational data over time can be severely distorted by errors in 

measurements, sampling, or reporting. Here, we show how smooth trends in vector time 

series can be separated from one or two abrupt level shifts that occur simultaneously in 

all coordinates. Trends are modelled nonparametrically, whereas abrupt changes and the 

impact of covariates are modelled parametrically. The model is estimated using a back-

fitting algorithm in which estimation of smooth trends is alternated with estimation of 

regression coefficients for covariates and assessment of sudden level shifts. The proposed 

method is adaptive in the sense that the degree of smoothing over time and across 

coordinates is controlled by a roughness penalty and cross-validation procedure that 

automatically identifies the interdependence of the analysed data. Furthermore, it uses a 

resampling technique that can accommodate correlated error terms in the assessment of 

the uncertainty of both smooth trends and discontinuities. The method is applied to water 

quality data from Swedish national monitoring programmes to illustrate how known 

discontinuities can be quantified and how previously unrecognized discontinuities can be 

detected. 

 

Introduction 

The concern about global warming and other long-term changes in the environment has 

led to increased interest in long time series of environmental data, and there is also a 
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growing awareness of issues related to data quality. A variety of guidance documents for 

environmental monitoring have been prepared, and substantial efforts have been made to 

assess and assure the quality of the reported data (e.g., Aguilar et al. 2003; Grath et al. 

2007). Even so, trends in observational data can be severely contaminated by errors in 

measurements, sampling, or reporting. Compilations of regional and global climate 

datasets have revealed numerous examples of abrupt changes caused by things like new 

instrumentation or relocation of sampling sites (e.g., Jones 1995; Klein Tank et al. 2002). 

Our own investigations of air and water quality have indicated that, in such data, artificial 

level shifts can be a substantial problem even if state-of-the-art quality assurance is 

applied (Libiseller et al. 2005; Wahlin and Grimvall 2008a). Accordingly, there is a 

strong need for statistical methods that can help detect and estimate discontinuities and 

other inhomogeneities, and rescue information from old monitoring data. 

 

So far, the most systematic attempts to assess the homogeneity of time series of 

environmental data have been undertaken by climate scientists. The statistical methods 

used in that field have their roots in a likelihood ratio test for shift in level at some 

unknown instant (Hawkins 1977; Worsley 1979), as well as a multivariate extension of 

that test (Sristava and Worsley 1986). In his pioneering work, Alexandersson (1986) 

embedded the mentioned type of tests in a procedure in which the climate signal of a 

candidate series is first removed by subtracting a reference series that is known to be 

homogeneous. More recent methods aim to detect inhomogeneities without specifying a 

priori that some series are more reliable than others. Szentimrey (1997) developed 

algorithms in which each series is compared with an optimally weighted mean of the 

other series, and Caussinus and Mestre (2004) designed a decision algorithm based on 

pairwise comparisons of data series from neighbouring sites. Picard and co-workers 

(2007) showed more generally how numerical algorithms for maximum likelihood 

estimators in mixed linear models can be employed to simultaneously estimate an 

arbitrary number of change points in a data matrix. 

 

Outside the climate sector, efforts to detect artificial level shifts in environmental data 

have been less systematic. We have recently emphasized that joint analysis of multiple 
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time series is needed to efficiently detect and estimate inhomogeneities (Wahlin and 

Grimvall 2008b). However, the tools developed by climatologists are far from ideal for 

estimating abrupt level shifts in vector time series in which the coordinates have different 

trends. Therefore, the aim of the current study was to reduce that deficiency by 

developing methods for joint analysis of smooth trends and synchronous discontinuities 

in multiple data time series. In this article, we first describe our model for detection and 

estimation of inhomogeneities. Thereafter, we show how the model parameters can be 

estimated, and, finally, we apply our technique to surface and groundwater quality data 

from Swedish national monitoring programmes. 

 

Models and algorithms 

A model class for level shifts in the presence of s mooth trends 

Let us consider an m-dimensional vector time series 
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representing observations made at m sites at n equidistant time points. Our model can 

then be written 
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where ααααt, t = 1, …, n, is a deterministic trend surface, xkt, t = 1, …, n, k = 1, …, p, a set of 

p vector time series of covariates, γγγγt, t = 1, …, n, a sequence of vectors that are stepwise 

constant in each coordinate, and εεεεt, t = 1, …, n, a sequence of random vectors with mean 

zero and constant covariance matrix. As is customary, the symbols kx , k = 1, …, p 

represent sample means, and 
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denotes a time-independent vector of regression coefficients. 
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The sequence γγγγt, t = 1, …, n, can be parameterized in different manners in different 

applications. If observed data have a single change point common to all coordinates, we 

can set 
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where θ(j) denotes the level shift in the jth coordinate between time t1 and t1+1. The 

parameter µ, which is unidentifiable in the presence of the vectors ααααt, t = 1, …, n, is 

normally selected so that the sum of all )( j
tγ  is zero. Furthermore, we can introduce 

simple parametric forms of the level shifts, such as 
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Functions with two or more change points are defined analogously. If it is suspected that 

the measured data have been biased during a certain time period, it may be of interest to 

use the following parameterization:  
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where 10 << δ  can be useful if a level shift takes place in two consecutive steps. 

Point estimation of parameters and selection of smo othing factors 

Because the models presented above are over-parameterized, it is necessary to introduce 

some constraints or regularization functions when the parameters are estimated. 
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Following the ideas previously outlined by our group (Grimvall et al. 2008), we used a 

penalized least squares technique in which we minimized an expression of the form 
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and )(ˆ j
ty  denotes a prediction of )( j

ty  based on data for all time points ts ≠ . The vector 

),( 21 λλ=λ  contains two nonnegative factors controlling the smoothness of the trend 

surface, and W1 and W2 denote two different smoothing patterns. Normally, W1 is set to 

}...,,11...,,2),,1,,1,,{(1 mjntjtjtjtW =−=+−=  

in order to generate horizontal smoothing (smoothing over time), whereas W2 is used to 

impose a vertical smoothing pattern (smoothing across coordinates). However, the model 

can accommodate any user-defined smoothing patterns W1 and W2 (Grimvall et al. 2008). 

If both λ1 and λ2 are large, the fitted smooth trend surface will be almost a plane in R3. If 

both λ1 and λ2 are small, the smoothing of observed values will be practically negligible. 

 

We achieved global minimization of S(αααα, ββββ, γγγγ, λλλλ) by systematically searching for λ-

values that made the prediction error sum of squares (press) as small as possible when we 

left out one year of observations at a time, estimated the model parameters using the 

remaining data, and summed the squared prediction errors for the observations that were 

left out. Furthermore, it can be noted that the minimization of S(αααα, ββββ, γγγγ, λλλλ) with respect to 

αααα, ββββ, and γγγγ for given smoothing factors was accomplished by employing a back-fitting 

algorithm alternating between estimation of αααα, ββββ, and γγγγ, respectively. Written as 
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pseudocode, our algorithm to determine press for given λ-values had the following 

structure: 

 

Back-fitting algorithm for joint estimation of smooth trends and discontinuities 
1. Initialize γγγγ ≡ 0 
2. Initialize ββββ by using a multiple linear regression model with intercept to regress y 

on x1, …, xp 
3. Initilize press = 0 
4. Initialize s = 1 
5. Repeat 
6.  T = {1, …, s-1, s+1, …, n} 
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  until the relative change in the penalized sum of squares on T is below a 
  pre-specified threshold 
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  s ← s+1 
7. until s = n 
 

If the number of observations varies from cell to cell in the matrix defined by time and 

site, it is easy to modify the formulae indicated above. Further details are given elsewhere 

(Grimvall et al. 2008). 
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Uncertainty assessment 

The uncertainty of the fitted trend surface and the estimated level shifts was assessed 

using a residual resampling technique introduced by Grimvall et al. (2008). As in 

ordinary residual resampling in regression models with non-random design, the 

covariates xkt, t = 1, …, n, k = 1, …, p, were kept fixed, and new response values were 

generated by setting 

mjnteeyy j
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where )*( j
te  denotes a resampled residual, and the same symbol without an asterisk 

denotes the original residual (Mammen 2000). However, after selecting new residuals by 

sampling with replacement, pairs of resampled residuals were swapped until the 

correlation pattern was similar to that of the original residuals. Further details are 

available elsewhere (Grimvall et al. 2008). 

Computational aspects 

The algorithm presented above has been implemented as a VisualBasic macro for Excel 

(LiU 2008). Extensive experiments in which the macro was tested on simulated data with 

known level shifts showed that the back-fitting invariably converged to solutions that 

were coherent with the true data model. In addition, our runs with real water quality data 

did not reveal any convergence problems. The computational burden varied strongly with 

the mode in which the algorithm was run. Fitting a model with given smoothing factors 

and without resampling for uncertainty assessments took less than a second for the 

datasets presented in this article, and this was achieved mainly by exploiting the band 

matrix structure of the system of mn linear equations providing estimates of the α-

parameters (Hussian et al. 2004; Stålnacke and Grimvall 2001). Moreover, the cross-

validation was non-problematic, because the exact levels of the selected smoothing 

factors did not have a significant impact on the results obtained. The computational effort 

in the resampling is more substantial. When we generated 200 sample replicates and 

allowed 100,000 residual swaps for each replicate, the computational time varied from 

less than a minute to almost an hour when our datasets were analysed on a standard PC. 
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However, if the error components are only weakly correlated, the number of swaps, and 

hence also the total computational time, can be substantially reduced. 

 

Case studies of change-point detection 

Observational data 

We tested the methods and algorithms on surface and groundwater data from national 

monitoring programmes conducted in Sweden. The surface water data represented one 

site in Lake Vänern (Dagskärsgrundet) and samples collected close to the mouths of 

fifteen major rivers in the northern part of the country (Table 1). The statistical analysis 

focused on total phosphorus, TOC (total organic carbon), and COD (chemical oxygen 

demand) measured as permanganate consumption. Datasets and further information can 

be obtained from the Swedish University of Agricultural Sciences (SLU 2008). 

 

Table 1.  The investigated rivers and their recipients: the Bothnian Sea (BS) and the 

Bothnian Bay (BB) 

River Recipient River Recipient 
Torne BB Ångermanälven BS 
Kalix BB Indalsälven BS 
Råne BB Ljungan BS 
Lule BB Delångersån BS 
Pite BB Ljusnan BS 
Ume BS Gavleån BS 
Öre BS Dalälven BS 
Gide BS   

 

The groundwater represented a total of 77 sites. Special attention was paid to reported 

levels of potassium and alkalinity, and records of acid neutralizing capacity (ANC) 

computed according to 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]−−−+++++ −−−++++= 3
2
44

22 NOSOClNHKNaMgCaANC  

Datasets and further information about the monitoring programme can be obtained from 

the Geological Survey of Sweden (SGU 2008). 
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Level shifts at known instants 

Visual inspection of Figure 1 indicates that a level shift in the reported phosphorus 

concentrations took place in 1996, after the procedure to correct for the blank level of the 

chemical analysis was altered. As expected, it was impossible to achieve a good fit to this 

dataset when our model was run with large smoothing factors and without any 

discontinuities.  
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Figure 1.  Total phosphorus (Tot-P) levels in surface water at Dagskärsgrund in Lake 

Vänern, 1991–2005. Samples were collected on 4–6 occasions per year from April to 

October at depths of 0.5, 10, and 20 m. 

 

This was also the case when water temperature was incorporated as a covariate, and 

Figure 2 illustrates the rather rough trend surface that was selected by our algorithm. We 

subsequently augmented our model with a discontinuity between 1995 and 1996, and the 

level shift was assumed to be of the same size at all sampling depths. This modification 

substantially improved the fit to reported data. Moreover, the cross-validation then 

indicated that the highest predictivity of the model was obtained for large values of the 

smoothing factors (Fig. 3). The size of the discontinuity was estimated to 3.1 µg/l, and 



 10 

residual resampling showed that the standard error of the estimated level shift was 

considerably smaller (0.44 µg/l ). 
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Figure 2.  Trend surface without discontinuities for the total phosphorus (Tot-P) levels 

shown in Figure 1. Cross-validation indicated that the optimal smoothing factors were λ1 

= 0.16 and λ2 = 32. 

 

In a recent study (Wahlin and Grimvall 2008a), we found that there were also abrupt 

level shifts in other phosphorus records from the same laboratory. Figure 4 shows the 

measured concentrations of phosphorus in fifteen major rivers in northern Sweden. When 

we reanalysed that dataset using the algorithm presented here, we found that the level 

shift in 1996 was statistically significant, and that discontinuity emerged even more 

clearly when the analysis was restricted to the four rivers with the lowest frequency of 

outliers. Figure 5 shows the fitted trend surface with the estimated discontinuity. 

Inasmuch as the change in the laboratory practice took place in the middle of 1996, we 

used a model in which the discontinuity was split between two consecutive years. 

Furthermore, we used water discharge as a covariate and allowed the size of the 
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discontinuity to vary with the average phosphorus concentration in the analysed river. 

Table 2 illustrates the estimated level shifts and their standard errors. In particular, it can 

be noted that level shifts also occurred in rivers where measured phosphorus 

concentrations were far above the detection limit of the analytical procedure employed. 
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Figure 3.  Smooth trend surface augmented with a discontinuity between 1995 and 1996. 

The underlying data were the same as in Figures 1 and 2, and cross-validation indicated 

that the optimal smoothing factors were λ1 = 10240 and λ2 = 16. 
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Figure 4.  Total phosphorus (Tot-P) levels recorded at the mouths of fifteen major rivers 

in northern Sweden. Monthly sampling was done in all rivers throughout the investigated 

period. 

 

Table 2.  Estimated level shifts in total phosphorus data from four rivers in northern 

Sweden. The model had level shifts that were equally split between 1995–96 and 1996–

97, and the size of the shifts was allowed to vary with the sampled river 

River Level shift ( µg/l) Standard error ( µg/l) 
Indalsälven –2.90927 1.130746 

Råne –2.61134 0.774648 
Dalälven –3.26740 1.115243 

Gide –2.89887 1.348316 

Average –2.92172 0.875484 
 



 13 

Indalsälven R.

Råne R.

Dalälven R.

Gide R.
1991

1993
1995

1997
1999

2001
2003

2005

8

10

12

14

16

18

20

22

N
or

m
al

iz
ed

 T
ot

-P
 c

on
c.

 (
µµ µµg

/l)

 

Figure 5.  Trend surface with discontinuities fitted to total phosphorus (Tot-P) 

concentrations in four major rivers in northern Sweden. The statistical model and the 

sampled rivers were the same as in Table 2. 

 

Level shifts at unknown instants 

The response surfaces in Figures 3 and 5 were obtained with change points specified by 

the user. However, the results were identical when the algorithm was run with an 

unprejudiced search for level shifts, and that outcome was expected because the abrupt 

changes were quite evident. Figure 6 illustrates a dataset in which the presence and 

location of discontinuities is less obvious. 

 

Since the measured potassium levels varied strongly between sampling occasions, and the 

potential discontinuities were relatively small, we focused our study on average level 

shifts. Figure 7 illustrates the annual means of the estimated trend levels when the model 

contained a discontinuity that was equally split between two consecutive years. The thick 
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solid line with attached error margins (± 2 standard errors) contained two consecutive 

level shifts specified by the user to occur in 1990–1992, because the analytical procedure 

was altered in the middle of 1991. The thick dashed line was obtained in a purely data-

driven search for the most significant discontinuity in the investigated time interval. As 

can be seen, these two curves differ slightly with respect to the timing of the 

discontinuity, whereas the size of the level shifts was practically the same in the two 

model runs. This was expected, considering that the timing can be strongly influenced by 

a relatively small number of observations that are temporally close to the true change 

point. The size of the level shift is less sensitive to small subsets of observations, 

provided that the smoothing factors are not too small. 
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Figure 6.  Potassium concentrations in groundwater sampled in 1985–2007 at 19 sites in 

the South Swedish Highlands. Samples were normally collected on 2–6 occasions per 

year at each site, although there were also some longer breaks in the dataset. 
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Figure 7.  Annual means of potassium trends, including discontinuities, at 19 sites in the 

South Swedish Highlands. The thick solid and the thick dashed line represent two 

modes of the model runs: predefined change points and unprejudiced search for 

discontinuities, respectively. 

 

Figure 8 shows the trend lines obtained after the estimated level shifts were removed. 

Apparently, there were only minor differences between the results obtained with a user-

defined change point and those acquired in an unprejudiced search for discontinuities. 
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Figure 8.  Annual means of potassium trends after removing the estimated level shifts. 

The thick solid and the thick dashed line represent two modes of the model runs: 

predefined change points and unprejudiced search for discontinuities, respectively. 

 

Temporary bias 

Since 1987, the amount of organic matter in Swedish surface waters has been measured 

as both TOC and COD (analysis of the latter using potassium permanganate as oxidant). 

Although there is no fixed relationship between the results obtained by the two methods, 

the data for each water body are normally strongly correlated, which makes it possible to 

identify time periods when the TOC or COD measurements have been biased. We chose 

to examine data from 1990 to 2005, because the first few years of TOC measurements 

were deemed to be less accurate. 

 

Figure 9 illustrates the variation in TOC-to-COD ratios for fifteen major rivers in 

northern Sweden. This dataset was analysed using a model with two level shifts that were 

of the same size but had different signs. The timing of the level shifts was estimated from 
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the data, and Figure 10 shows the sum of the estimated smooth trend surface and level 

shifts. As expected, the algorithm identified 1997 as a period during which the data 

deviated strongly, and closer analysis showed a level shift of 0.062 for that year, with a 

standard error of 0.0038. 
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Figure 9.  TOC-to-COD ratios recorded at the mouths of fifteen major rivers in northern 

Sweden. Monthly sampling was done in all the rivers throughout the investigated period. 
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Figure 10.  Trend surface with discontinuities fitted to the data given in Figure 9. Two 

level shifts of equal size but with different signs were assumed to be present during the 

period 1990–2005. The timing of the shifts was determined by an unprejudiced search. 

 

In our previously cited article on data quality (Wahlin and Grimvall 2008a), we claimed 

that alkalinity trends in Swedish groundwaters were contaminated by systematic 

measurement errors in the early 1980s. We reanalysed that dataset in the present work. 

More specifically, we examined the difference between alkalinity and ANC in samples 

with low ANC levels (less than 0.3 but greater than 0.05 meq/l). We found that our 

algorithm, which can accommodate observations that are unevenly distributed in time and 

space, confirmed our previous suspicion. Figure 11 illustrates how introduction of a new 

analytical procedure stabilized the annual mean of the estimated trend surface (including 

discontinuities) after 1984. 
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Figure 11.  Annual means of trend levels (including discontinuities) fitted to differences 

between alkalinity and ANC in low-ANC samples from 77 Swedish groundwater sites.  

 

Discussion 

This article has demonstrated how smooth trends in a vector time series can be separated 

from abrupt level shifts that occur simultaneously in all coordinates. Such methods are 

obviously needed in environmental monitoring, but they can also be applied in almost 

any context in which several time series with similar trends are recorded. We developed 

our method primarily to facilitate unprejudiced searches for abrupt level shifts at 

unknown time points. However, our procedure is still applicable if we know when there 

has been some kind of major change, such as a switch in laboratory, personnel, analytical 

procedure, or sampling technique. More specifically, we can test the statistical 

significance of a level shift and examine whether the step size increases or decreases with 

the coordinate of the analysed vector time series. 

 

The greatest strength of our method is its adaptive character. If the analysed time series 

have different trends, it is unlikely that the mean function can be made stepwise constant 
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by subtracting a suitable reference from each series. This implies that, in such cases, none 

of the existing methods mentioned in the introduction are applicable. It has been 

suggested that ordinary regression models in which the mean function is linear between 

the change points can serve as alternatives to models with stepwise constant means 

(Alexandersson and Moberg 1997; Easterling and Peterson 1995). However, that model 

class forces the user to choose between constant and discontinuous trend slopes. Our 

method is based on the more natural assumption that the trend slope (after removing the 

level shifts at the change points) varies smoothly over the entire study period, and the 

selection of smoothing factors by cross-validation automatically adapts the degree of 

smoothness to the analysed data. 

 

The limitations of our method are also related to its adaptive character. In principle, our 

technique can be generalized to handle multiple change points that occur at different 

times in different coordinates of the studied vector time series. However, there are two 

major obstacles to such generalizations. First, it is difficult to distinguish between smooth 

changes in the trend surface and the combined effect of multiple discontinuities, which 

occur relatively close in time. In addition, there are computational obstacles to the 

handling of multiple change points. The model we propose is a three-step back-fitting 

algorithm in which the smooth trend surface, the regression coefficients of the covariates, 

and the discontinuities are estimated separately. In this type of algorithm, each step must 

be very fast, because it is repeated many times during the model fitting and an even larger 

number of times during the cross-validation and the analysis of resampled data. 

Consequently, it is not feasible to make unprejudiced searches for complex patterns of 

discontinuities in the presence of smooth trends that may vary from coordinate to 

coordinate. 

 

Some comments should also be made about the resampling technique we used to assess 

the uncertainty of the detected level shifts. Our technique offers the important advantage 

of taking into account the correlation structure of the model residuals. Moreover, it is 

well coordinated with the smoothers used to extract the trend surface. However, like any 

other form of residual resampling, our method creates a new resampled dataset by adding 
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resampled residuals to fitted response values. Consequently, it is tacitly assumed that the 

errors in the fitted responses are considerably smaller than the individual error terms. 

This assumption is reasonable as long as the fitted responses are influenced by a large 

number of observations, but it is less appropriate if there are only a few influential data 

points. In practice, this implies that the uncertainty estimates are reliable for models with 

relatively strongly regularized trend surfaces (large λ-values). 
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