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Abstract

Changes in observational data over time can be regvalistorted by errors in
measurements, sampling, or reporting. Here, we dimw smooth trends in vector time
series can be separated from one or two abrupk $évis that occur simultaneously in
all coordinates. Trends are modelled nonparamdiricahereas abrupt changes and the
impact of covariates are modelled parametricallye Thodel is estimated using a back-
fitting algorithm in which estimation of smooth mi@s is alternated with estimation of
regression coefficients for covariates and assessaiesudden level shifts. The proposed
method is adaptive in the sense that the degresmmiothing over time and across
coordinates is controlled by a roughness penalty emvss-validation procedure that
automatically identifies the interdependence ofdhalysed data. Furthermore, it uses a
resampling technique that can accommodate cordelt®r terms in the assessment of
the uncertainty of both smooth trends and discaittes. The method is applied to water
quality data from Swedish national monitoring pargmes to illustrate how known
discontinuities can be quantified and how previgusirecognized discontinuities can be

detected.

Introduction

The concern about global warming and other longrtehanges in the environment has

led to increased interest in long time series ofirenmental data, and there is also a



growing awareness of issues related to data quélitsariety of guidance documents for
environmental monitoring have been prepared, abdtantial efforts have been made to
assess and assure the quality of the reported(eata Aguilaret al. 2003; Grathet al.
2007). Even so, trends in observational data caseberely contaminated by errors in
measurements, sampling, or reporting. Compilatiohgegional and global climate
datasets have revealed numerous examples of ativapges caused by things like new
instrumentation or relocation of sampling siteg).(eJones 1995; Klein Targt al. 2002).
Our own investigations of air and water quality @anwdicated that, in such data, artificial
level shifts can be a substantial problem eventafesof-the-art quality assurance is
applied (Libiselleret al. 2005; Wahlin and Grimvall 2008a). Accordinglyeth is a
strong need for statistical methods that can helpd and estimate discontinuities and
other inhomogeneities, and rescue information fabdnmonitoring data.

So far, the most systematic attempts to assesshoheogeneity of time series of
environmental data have been undertaken by climeatntists. The statistical methods
used in that field have their roots in a likelihocatio test for shift in level at some
unknown instant (Hawkins 1977; Worsley 1979), adl we a multivariate extension of
that test (Sristava and Worsley 1986). In his peoimg work, Alexandersson (1986)
embedded the mentioned type of tests in a proceaduveéhich the climate signal of a
candidate series is first removed by subtractingfarence series that is known to be
homogeneous. More recent methods aim to detectrinbeneities without specifying a
priori that some series are more reliable than reth8zentimrey (1997) developed
algorithms in which each series is compared withoptimally weighted mean of the
other series, and Caussinus and Mestre (2004) raebig decision algorithm based on
pairwise comparisons of data series from neighibgusites. Picard and co-workers
(2007) showed more generally how numerical algorghfor maximum likelihood
estimators in mixed linear models can be employedsimultaneously estimate an
arbitrary number of change points in a data matrix.

Outside the climate sector, efforts to detect iaréf level shifts in environmental data

have been less systematic. We have recently enzghthat joint analysis of multiple



time series is needed to efficiently detect andmede inhomogeneities (Wahlin and
Grimvall 2008b). However, the tools developed hynekologists are far from ideal for
estimating abrupt level shifts in vector time seiire which the coordinates have different
trends. Therefore, the aim of the current study wasreduce that deficiency by
developing methods for joint analysis of smootmdiee and synchronous discontinuities
in multiple data time series. In this article, virsstf describe our model for detection and
estimation of inhomogeneities. Thereafter, we shmw the model parameters can be
estimated, and, finally, we apply our techniquestioface and groundwater quality data

from Swedish national monitoring programmes.

Models and algorithms

A model class for level shifts in the presence of s mooth trends
Let us consider am-dimensional vector time series
Y, =(y®, ., y'™)7, t=1..,n

representing observations mademasites atn equidistant time points. Our model can

then be written
p p—
Ye =y +kZ:(th =X )Pty te, t=1..n
=1

wherea;, t = 1, ...,n, is a deterministic trend surface;, t =1, ...,n,k=1, ...,p, a set of
p vector time series of covariatgg,t = 1, ...,n, a sequence of vectors that are stepwise
constant in each coordinate, agdt = 1, ...,n, a sequence of random vectors with mean

zero and constant covariance matrix. As is custgmie symbolsx, , k =1, ...,p

represent sample means, and

B=(Bl )= (B B By BY)

denotes a time-independent vector of regressiofiicieats.



The sequencgy, t = 1, ...,n, can be parameterized in different manners ineckfit
applications. If observed data have a single chaog® common to all coordinates, we

can set

Y = wift<st,
CT e ittt

where 4j) denotes the level shift in tHéh coordinate between tinte andt;+1. The
parametery, which is unidentifiable in the presence of theteesa, t = 1, ...,n, is
normally selected so that the sum of gff’ is zero. Furthermore, we can introduce
simple parametric forms of the level shifts, sush a
6(j))=6,, j=1...m
or
6())=6,+6,j, j=1...m

Functions with two or more change points are defiaealogously. If it is suspected that
the measured data have been biased during a cent@rperiod, it may be of interest to

use the following parameterization:

YD = uift<tort>t,
t u+6(j),ift, <t<t,

Expressions of the form

Hiftst,
yO = u+06(j),ift=t +1
u+o()),ift>t +1

where0< 0 <1 can be useful if a level shift takes place in teosecutive steps.

Point estimation of parameters and selection of smo othing factors

Because the models presented above are over-parazedt it is necessary to introduce

some constraints or regularization functions whée fparameters are estimated.



Following the ideas previously outlined by our graoi@Grimvall et al. 2008), we used a

penalized least squares technique in which we niz@idhan expression of the form

S(@, B,7,2) =X X (Y = 90) + AL W, @) + AL, (W, a)

t=1j=1

where

LW,e)= ¥ (a -

(t,jte d2 s, ia )W,

(trodints s s, ja )W,

L, (Wz’a) = Z (at(ljl) -

andy” denotes a prediction of!” based on data for all time poing¢st t. The vector

A=(A,A4,) contains two nonnegative factors controlling timeosthness of the trend

surface, andV; andW, denote two different smoothing patterns. Normaly,is set to
Wo={(t, j,t=1 j,t+Lj), t=2..,n-1 j=L..,m }

in order to generate horizontal smoothing (smogjhuxer time), whereads, is used to
impose a vertical smoothing pattern (smoothing examordinates). However, the model
can accommodate any user-defined smoothing pattérasidW, (Grimvall et al. 2008).

If both A; andA; are large, the fitted smooth trend surface wilbbmost a plane iR>. If

both A; andA, are small, the smoothing of observed values wilpkactically negligible.

We achieved global minimization &(a, B, ¥ A) by systematically searching for
values that made the prediction error sum of sguf@ress) as small as possible when we
left out one year of observations at a time, esthdhe model parameters using the
remaining data, and summed the squared predictionsefor the observations that were
left out. Furthermore, it can be noted that theimiration ofSa, £, y; A) with respect to

a, B, and yfor given smoothing factors was accomplished byleging a back-fitting

algorithm alternating between estimation af B and y respectively. Written as



pseudocode, our algorithm to determipeess for given A-values had the following

structure:

Back-fitting algorithm for joint estimation of smooth trends and discontinuities

1.
2.

o0k

7.

Initialize y=0
Initialize B by using a multiple linear regression model wittercept to regress
oNXy, ..., Xp
Initilize press=0
Initializes=1
Repeat
T={1,...,81,stl, ...,n}
Cycle

) ) p ) N ) )
ut(J) — yt(l) _kz'gk(n(xlgtj) —xk(”)—yﬁ”, taT, j =1...m
=1

argmin i(ul‘” -a”? + AL W, a) + AL, (W,,a)

o [tOr j=1
ut(J) — yt(1) _at(J) _y(J) tadT, J =1....m

argmin s, 31 - 4, - 340 xk‘”»ﬂ
ﬂ [tor j=1

ut(]):yt(])_at(])_kZ_:lIBIEJ)(Xlgt])_)_(éJ))’ tdT, j=1,..,m

argmin ¥, 3 (u —ij))ﬂ

44 tar  j=1

Vt(j) - (J) mean(zzy(n)

tar j=1
until the relative change in the penalized suracpfares oii is below a
pre-specified threshold
press — press+2(y‘” _a(l) ZIB(I)(X(J) _)—(éj)) — yéj))Z
j=1
S ~ stl
untils=n

If the number of observations varies from cell &l @ the matrix defined by time and

site, it is easy to modify the formulae indicatémwae. Further details are given elsewhere
(Grimvall et al. 2008).



Uncertainty assessment

The uncertainty of the fitted trend surface and e¢kémated level shifts was assessed
using a residual resampling technique introducedGrymvall et al. (2008). As in
ordinary residual resampling in regression modelsh whon-random design, the
covariatesx, t = 1, ...,n, k=1, ...,p, were kept fixed, and new response values were

generated by setting
yD =yD —eD 1 g t=1..n j=1..m

where €V denotes a resampled residual, and the same sywiblmut an asterisk

denotes the original residual (Mammen 2000). Howeafer selecting new residuals by
sampling with replacement, pairs of resampled rted&d were swapped until the
correlation pattern was similar to that of the wora residuals. Further details are

available elsewhere (Grimvadt al. 2008).

Computational aspects

The algorithm presented above has been implemeastedVisualBasic macro for Excel
(LiU 2008). Extensive experiments in which the noawas tested on simulated data with
known level shifts showed that the back-fitting anably converged to solutions that
were coherent with the true data model. In addjtaur runs with real water quality data
did not reveal any convergence problems. The coatipuial burden varied strongly with
the mode in which the algorithm was run. Fittinghadel with given smoothing factors
and without resampling for uncertainty assessmémt& less than a second for the
datasets presented in this article, and this wageaed mainly by exploiting the band
matrix structure of the system ofin linear equations providing estimates of the
parameters (Hussiagt al. 2004; Stalnacke and Grimvall 2001). Moreover, thess-
validation was non-problematic, because the exactl$ of the selected smoothing
factors did not have a significant impact on theuhes obtained. The computational effort
in the resampling is more substantial. When we gegad 200 sample replicates and
allowed 100,000 residual swaps for each replidie,computational time varied from
less than a minute to almost an hour when our étstagere analysed on a standard PC.



However, if the error components are only weaklyaated, the number of swaps, and

hence also the total computational time, can bstanhally reduced.

Case studies of change-point detection

Observational data

We tested the methods and algorithms on surfacegemuhdwater data from national
monitoring programmes conducted in Sweden. Theasarfvater data represented one
site in Lake Vanern (Dagskarsgrundet) and sampidiected close to the mouths of
fifteen major rivers in the northern part of theauntry (Table 1). The statistical analysis
focused on total phosphorus, TOC (total organibaay, and COD (chemical oxygen
demand) measured as permanganate consumptioneBataml further information can
be obtained from the Swedish University of Agriaudtl Sciences (SLU 2008).

Table 1. The investigated rivers and their recipients: the Bothnian Sea (BS) and the
Bothnian Bay (BB)

River Recipient River Recipient

Torne BB Angermanélven BS
Kalix BB Indalsélven BS
Réane BB Ljungan BS
Lule BB Delangersan BS
Pite BB Ljusnan BS
Ume BS Gavlean BS
Ore BS Dalalven BS
Gide BS

The groundwater represented a total of 77 sitesci@pattention was paid to reported
levels of potassium and alkalinity, and recordsaofd neutralizing capacity (ANC)

computed according to
ANC =[Ca® [+ |Mg? |+|Na” |+ [k [+ |NH |- |c1”]-[soi |- [no;

Datasets and further information about the momtpprogramme can be obtained from
the Geological Survey of Sweden (SGU 2008).



Level shifts at known instants

Visual inspection of Figure 1 indicates that a leskift in the reported phosphorus
concentrations took place in 1996, after the prapedb correct for the blank level of the
chemical analysis was altered. As expected, itima®ssible to achieve a good fit to this
dataset when our model was run with large smootHexgors and without any

discontinuities.
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Figure 1. Total phosphorus (Tot-P) levels in surface water at Dagskarsgrund in Lake
Vanern, 1991-2005. Samples were collected on 4—6 occasions per year from April to

October at depths of 0.5, 10, and 20 m.

This was also the case when water temperature ma@sporated as a covariate, and
Figure 2 illustrates the rather rough trend surthe¢ was selected by our algorithm. We
subsequently augmented our model with a discorgirngtween 1995 and 1996, and the
level shift was assumed to be of the same sizé aampling depths. This modification

substantially improved the fit to reported data. rdtaver, the cross-validation then
indicated that the highest predictivity of the miod@s obtained for large values of the

smoothing factors (Fig. 3). The size of the dissanty was estimated to 3fg/l, and



residual resampling showed that the standard esfothe estimated level shift was

considerably smaller (0.449/1).

Normalized Tot-P conc. ( ug/l)

Figure 2. Trend surface without discontinuities for the total phosphorus (Tot-P) levels
shown in Figure 1. Cross-validation indicated that the optimal smoothing factors were A;

=0.16 and A, = 32.

In a recent study (Wahlin and Grimvall 2008a), werfd that there were also abrupt
level shifts in other phosphorus records from tame laboratory. Figure 4 shows the
measured concentrations of phosphorus in fiftegomneaers in northern Sweden. When
we reanalysed that dataset using the algorithmepted here, we found that the level
shift in 1996 was statistically significant, andathdiscontinuity emerged even more
clearly when the analysis was restricted to the fowers with the lowest frequency of

outliers. Figure 5 shows the fitted trend surfacghwhe estimated discontinuity.

Inasmuch as the change in the laboratory praatick place in the middle of 1996, we
used a model in which the discontinuity was spktween two consecutive years.

Furthermore, we used water discharge as a covaaatk allowed the size of the

10



discontinuity to vary with the average phosphorascentration in the analysed river.
Table 2 illustrates the estimated level shifts #redr standard errors. In particular, it can
be noted that level shifts also occurred in rivavthere measured phosphorus
concentrations were far above the detection lifihe analytical procedure employed.

Normalized Tot-P conc. ( pg/l)

Figure 3. Smooth trend surface augmented with a discontinuity between 1995 and 1996.
The underlying data were the same as in Figures 1 and 2, and cross-validation indicated
that the optimal smoothing factors were A; = 10240 and A, = 16.
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Figure 4. Total phosphorus (Tot-P) levels recorded at the mouths of fifteen major rivers

in northern Sweden. Monthly sampling was done in all rivers throughout the investigated

period.

Table 2. Estimated level shifts in total phosphorus data from four rivers in northern

Sweden. The model had level shifts that were equally split between 1995-96 and 1996—

97, and the size of the shifts was allowed to vary with the sampled river

River Level shift ( pg/l) Standard error ( yg/l)
Indalsélven —2.90927 1.130746

Réane -2.61134 0.774648
Dalalven -3.26740 1.115243

Gide —2.89887 1.348316
Average —2.92172 0.875484
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Figure 5. Trend surface with discontinuities fitted to total phosphorus (Tot-P)
concentrations in four major rivers in northern Sweden. The statistical model and the

sampled rivers were the same as in Table 2.

Level shifts at unknown instants

The response surfaces in Figures 3 and 5 werenelotavith change points specified by
the user. However, the results were identical whw®n algorithm was run with an
unprejudiced search for level shifts, and that aoe was expected because the abrupt
changes were quite evident. Figure 6 illustratedataset in which the presence and

location of discontinuities is less obvious.

Since the measured potassium levels varied strdreilyeen sampling occasions, and the
potential discontinuities were relatively small, iecused our study on average level
shifts. Figure 7 illustrates the annual means efastimated trend levels when the model

contained a discontinuity that was equally splith@®en two consecutive years. The thick

13



solid line with attached error marging 2 standard errors) contained two consecutive
level shifts specified by the user to occur in 29B@02, because the analytical procedure
was altered in the middle of 1991. The thick daslvesl was obtained in a purely data-
driven search for the most significant discontipurt the investigated time interval. As
can be seen, these two curves differ slightly widspect to the timing of the
discontinuity, whereas the size of the level shifias practically the same in the two
model runs. This was expected, considering thatithi@g can be strongly influenced by
a relatively small number of observations that @mporally close to the true change
point. The size of the level shift is less sensitio small subsets of observations,

provided that the smoothing factors are not toollsma
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Figure 6. Potassium concentrations in groundwater sampled in 1985-2007 at 19 sites in
the South Swedish Highlands. Samples were normally collected on 2—6 occasions per

year at each site, although there were also some longer breaks in the dataset.
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Figure 7. Annual means of potassium trends, including discontinuities, at 19 sites in the
South Swedish Highlands. The thick solid and the thick dashed line represent two
modes of the model runs: predefined change points and unprejudiced search for

discontinuities, respectively.

Figure 8 shows the trend lines obtained after gtenated level shifts were removed.
Apparently, there were only minor differences betwéhe results obtained with a user-

defined change point and those acquired in an yghoed search for discontinuities.
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Figure 8. Annual means of potassium trends after removing the estimated level shifts.
The thick solid and the thick dashed line represent two modes of the model runs:

predefined change points and unprejudiced search for discontinuities, respectively.

Temporary bias

Since 1987, the amount of organic matter in Swedisface waters has been measured
as both TOC and COD (analysis of the latter usioiggsium permanganate as oxidant).
Although there is no fixed relationship between tsults obtained by the two methods,
the data for each water body are normally strorglyelated, which makes it possible to
identify time periods when the TOC or COD measums\@ave been biased. We chose
to examine data from 1990 to 2005, because theféve years of TOC measurements

were deemed to be less accurate.
Figure 9 illustrates the variation in TOC-to-CODtiwa for fifteen major rivers in

northern Sweden. This dataset was analysed usimggdal with two level shifts that were

of the same size but had different signs. The gnahthe level shifts was estimated from

16



the data, and Figure 10 shows the sum of the esiramooth trend surface and level
shifts. As expected, the algorithm identified 198¥ a period during which the data
deviated strongly, and closer analysis showed @l lghift of 0.062 for that year, with a
standard error of 0.0038.
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Figure 9. TOC-to-COD ratios recorded at the mouths of fifteen major rivers in northern

Sweden. Monthly sampling was done in all the rivers throughout the investigated period.
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Figure 10. Trend surface with discontinuities fitted to the data given in Figure 9. Two
level shifts of equal size but with different signs were assumed to be present during the
period 1990-2005. The timing of the shifts was determined by an unprejudiced search.

In our previously cited article on data quality (Ma and Grimvall 2008a), we claimed
that alkalinity trends in Swedish groundwaters we@ntaminated by systematic
measurement errors in the early 1980s. We rearthlyse dataset in the present work.
More specifically, we examined the difference betwealkalinity and ANC in samples
with low ANC levels (less than 0.3 but greater tHtaG5 meq/l). We found that our
algorithm, which can accommodate observationsareatinevenly distributed in time and
space, confirmed our previous suspicion. Figurdl@gtrates how introduction of a new
analytical procedure stabilized the annual meathefestimated trend surface (including

discontinuities) after 1984.
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Figure 11. Annual means of trend levels (including discontinuities) fitted to differences

between alkalinity and ANC in low-ANC samples from 77 Swedish groundwater sites.

Discussion

This article has demonstrated how smooth trendsvactor time series can be separated
from abrupt level shifts that occur simultaneouslyall coordinates. Such methods are
obviously needed in environmental monitoring, Hugyt can also be applied in almost
any context in which several time series with samitrends are recorded. We developed
our method primarily to facilitate unprejudiced s#ees for abrupt level shifts at
unknown time points. However, our procedure id apbplicable if we know when there
has been some kind of major change, such as ahsimitaboratory, personnel, analytical
procedure, or sampling technique. More specificalye can test the statistical
significance of a level shift and examine whetlner $tep size increases or decreases with

the coordinate of the analysed vector time series.

The greatest strength of our method is its adaptharacter. If the analysed time series

have different trends, it is unlikely that the mdanction can be made stepwise constant

19



by subtracting a suitable reference from each sefieis implies that, in such cases, none
of the existing methods mentioned in the introduttiare applicable. It has been
suggested that ordinary regression models in wtiiehmean function is linear between
the change points can serve as alternatives to Iadéh stepwise constant means
(Alexandersson and Moberg 1997; Easterling andr§®tel995). However, that model
class forces the user to choose between constantianontinuous trend slopes. Our
method is based on the more natural assumptiorthibatend slope (after removing the
level shifts at the change points) varies smootvgr the entire study period, and the
selection of smoothing factors by cross-validatanrtomatically adapts the degree of

smoothness to the analysed data.

The limitations of our method are also relatedtsoadaptive character. In principle, our
technique can be generalized to handle multiplenghagoints that occur at different
times in different coordinates of the studied vedime series. However, there are two
major obstacles to such generalizations. Firgs, difficult to distinguish between smooth

changes in the trend surface and the combinedteffemultiple discontinuities, which

occur relatively close in time. In addition, theaee computational obstacles to the
handling of multiple change points. The model weppse is a three-step back-fitting
algorithm in which the smooth trend surface, thgression coefficients of the covariates,
and the discontinuities are estimated separatelthis type of algorithm, each step must
be very fast, because it is repeated many timaaglthhe model fitting and an even larger
number of times during the cross-validation and Hrealysis of resampled data.
Consequently, it is not feasible to make unprejadisearches for complex patterns of
discontinuities in the presence of smooth trends thay vary from coordinate to

coordinate.

Some comments should also be made about the raagngthnique we used to assess
the uncertainty of the detected level shifts. Guhhique offers the important advantage
of taking into account the correlation structuretloé model residuals. Moreover, it is
well coordinated with the smoothers used to extifaettrend surface. However, like any

other form of residual resampling, our method @eat new resampled dataset by adding

20



resampled residuals to fitted response values. €pently, it is tacitly assumed that the
errors in the fitted responses are considerablyllsmtnan the individual error terms.
This assumption is reasonable as long as the fitgpdonses are influenced by a large
number of observations, but it is less approprifateere are only a few influential data
points. In practice, this implies that the uncertyiestimates are reliable for models with

relatively strongly regularized trend surfacesgéat-values).
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