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Abstract

Multiple time series of environmental quality data with similar, but not necessarily identical, trends call for multivariate methods for trend detection and adjustment for covariates. Here, we show how an additive model in which the multivariate trend function is specified in a nonparametric fashion (and the adjustment for covariates is based on a parametric expression) can be used to estimate how the human impact on an ecosystem varies with time and across components of the observed vector time series. More specifically, we demonstrate how a roughness penalty approach can be utilized to impose different types of smoothness on the function surface that describes trends in environmental quality as a function of time and vector component. Compared to other tools used for this purpose, such as Gaussian smoothers and thin plate splines, an advantage of our approach is that the smoothing pattern can easily be tailored to different types of relationships between the vector components. We give explicit roughness penalty expressions for data collected over several seasons or representing several classes on a linear or circular scale. In addition, we define a general separable smoothing method. A new resampling technique that preserves statistical dependencies over time and across vector components enables realistic calculations of confidence and prediction intervals.
1 Introduction

Deterioration of an ecosystem is usually a slow process, and mathematical functions that describe the impact of humans on the environment will presumably vary smoothly over time. Furthermore, in many cases, a substantial fraction of the temporal changes in the measured state of the environment can be attributed to random fluctuations in weather conditions or other types of natural variability. Consequently, there is an obvious need for statistical methods that enable simultaneous extraction of smooth trends and adjustment for covariates.

The approaches most often used to detect trends in environmental quality in the presence of covariates have been reviewed by Thompson and coworkers (2001). Regression methods predominate and several investigators have employed nonparametric or semiparametric techniques because they enable unprejudiced inference about the shape of the trend curves (Shively & Sager, 1999; Gardner & Dorling, 2000 a,b; Stålnacke & Grimvall, 2001; Giannitrapani et al., 2004). In particular, it has been emphasized that generalized additive models (GAMs) provide a suitable framework for such inference (Giannitrapani et al., 2004). 
Residual resampling (Mammen, 2000) is a standard technique to assess the precision of parameter estimates in semiparametric or nonparametric regression models. Because new residuals are drawn randomly from the original model residuals in this procedure, it generates statistically independent error terms. Block resampling has been proposed as a means of preserving short-term correlations in time series data (Lahiri, 1999). Furthermore, it has been shown how block resampling procedures can be refined by concatenating with higher likelihood those blocks that match at their ends (Carlstein et al., 1998; Srinivas & Srinivasan, 2005). However, it is unclear how two-dimensional blocks should be selected and matched to achieve optimal results. Therefore, there is a need for new resampling techniques that can preserve dependencies in more than one direction.

Our research group has focused on applications in which the collected data represent several classes of observations, and the models are estimated using a roughness penalty approach that allows the smoothness conditions to be selected just as carefully as other model features. Two papers have addressed time series of riverine load data collected over several seasons (Stålnacke & Grimvall, 2001; Hussian et al., 2004), and Libiseller and Grimvall (2005) have presented a method for trend analysis and normalization of atmospheric deposition data representing several wind sectors. Both the riverine loads by season and the deposition by wind sector can be regarded as vector time series of annual data for which a joint analysis of temporal trends would be desirable. Additional examples of such multivariate data are observations from several sampling sites along a gradient or several congeners of an organic pollutant. 
Here, we show how an additive model in which the multivariate trend function is specified in a nonparametric fashion (and the adjustment for covariates is based on a parametric expression) can be used to estimate how the human impact on the ecosystem of interest varies with time and across components of the observed vector time series. More specifically, we demonstrate how a roughness penalty approach can be utilized to impose different types of smoothness on the function surface describing the trends in environmental quality as a function of time and vector component. In addition, we show how a new resampling technique that preserves statistical dependencies over time and across vector components can be used to compute realistic confidence and prediction intervals.
2 Basic semiparametric model

Let
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denote an m-dimensional vector time series representing the observed state of the environment at n equidistant time points, and let 
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be a matrix that includes contemporaneous values of p explanatory vectors representing natural fluctuations in yt. Further, assume that
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where the sequence of vectors 
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 represents a deterministic temporal trend,
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is a matrix of time-independent regression coefficients, and the error terms 
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, j = 1, …, m, t = 1, …, n, are identically distributed with mean zero.
Estimation of this semiparametric model requires that smoothness conditions be introduced to make the degrees of freedom (effective dimension) of the model less than the number of observations, which imposes constraints on the variation over time and across components. In addition, we note that smoothness conditions for the intercept parameters 
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are introduced in a more natural manner, if we reformulate the model so that the intercepts represent the expected response values when the covariates are equal to their expectations, that is
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(2)
The following discussion considers how the roughness penalty expressions can be tailored to achieve different smoothing patterns. The smoothing over time (years) is identical for all variants, whereas the smoothing across vector components differs. For example, when data represent different wind sectors, it is natural to introduce constraints that force the trend levels (intercepts) of adjacent sectors to be similar. Likewise, when data represent several seasons, it is natural to force the trend levels for the last season in one year and the first season in the following year to be close to each other. We use the terms circular and sequential smoothing for these types of constraints on the intercept parameters (Figure 1a, b). Data collected along a gradient may also require tailored smoothing in two directions: over time and along the sampled gradient (Figure 1c).
3 Circular smoothing

Circular smoothing is desirable when the collected data represent different classes on a circular scale. The previously mentioned example of deposition data for different wind sectors can be used to illustrate this situation. The expected responses are similar for adjacent classes, but the first and last classes are also closely interrelated.

To introduce circular smoothing in our semiparametric model, we estimate the parameters by minimizing the sum


[image: image9.wmf])

(

)

(

)

,

,

(

2

2

1

1

α

α

λ

β

α

L

L

S

l

l

+

+








(3)

where (1 and (2 are roughness penalty factors,
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is the residual sum of squares,
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(5)

represents smoothing of the multivariate temporal trend over time, and
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stands for smoothing across components of this trend. As usual, 
[image: image13.wmf].

i

x

denotes a mean value and, to simplify the notation for the circular smoothing, we use the notation
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The selection of smoothing factors (1 and (2 is based on block cross-validation (see Section 10).
4 Sequential smoothing

When data are collected over several seasons, there is an obvious relationship between the observations for adjacent seasons. This feature can be incorporated into the smoothing pattern by letting 
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 represent the sequential order of the observations and setting
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where 
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5 Gradient smoothing

Gradient smoothing can be suitable if the collected data come from sampling sites located along a transect or along a gradient of elevation, temperature or precipitation. Such smoothing can also be appropriate for data representing measured concentrations of chemical compounds, which can be ordered linearly with respect to, for instance, volatility, polarity, or lipophilicity. Ordering with respect to the mean of the vector components constitutes another important option. Regardless of how the linear ordering is defined, smoothing across coordinates can be accomplished by setting
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Figure 1. Different types of smoothing patterns for the intercept of the basic semiparametric model. The three graphs show circular smoothing for data representing several sectors (a), sequential smoothing for data collected over several season (b), and gradient smoothing for data collected at different sites along a gradient (c).
6 Separable smoothing
The circular, sequential and gradient smoothing are special cases of more general smoothing patterns that can be imposed by minimizing an expression of the form
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where
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and
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in order to generate horizontal smoothing (smoothing over time), whereas W2 is used to impose a vertical smoothing pattern (smoothing across coordinates). However, the model can accommodate any user-defined smoothing patterns W1 and W2. We shall refer to this general technique as separable smoothing. If both (1 and (2 are large, the fitted smooth trend surface will be almost a plane in R3. If both (1 and (2 are small, the smoothing of observed values will be practically negligible.

7 A new resampling technique preserving statistical dependencies
To assess the precision of parameter estimates in our semiparametric regression model we introduce a new form of constrained residual resampling that can preserve important statistical dependencies in the resampled data. In our case, constrained residual resampling implies that the resampling favours those combinations of the original residuals that have desirable dependencies over time and across vector coordinates. First we compute all the model residuals and their total variation
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Thereafter, we determine
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and
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(14)
where the first sum is used as a measure of the short-term temporal variation of the residuals, and the second one is introduced to capture variation across series. Finally, we form the ratios
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and
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(16)
that are subsequently used as targets for a step-by-step modification of ordinary bootstrap residuals 
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The modification of bootstrap residuals is based on an iterative proposal-rejection algorithm in which pairs of residuals are swapped. At each iteration, a pair of residuals is randomly selected, and the ratios
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and
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(18)
are computed before and after swapping the selected pair. If the swap decreases the Euclidean distance
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to the target it is accepted, otherwise it is rejected. The swapping is stopped after a predefined number of proposed swaps or consecutive rejections.

Figure 2 illustrates how the swapping can restore the statistical features of the residuals obtained for a synthetic dataset representing five sampling sites (stations). The upper graph shows residuals with a strong correlation across series. The ordinary bootstrap subsequently destroyed that correlation, but it was restored by the swapping. Dependencies in residuals of seasonal data or records on a circular scale can also be restored using our swapping procedure.
8 Smoothing and normalization
The models discussed in this article can be used to produce two major types of outputs. First, we can estimate the trend surface 
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 by suppressing all types of random variation in the collected data. Secondly, we can normalize the observed data by removing the variation that can be attributed to the covariates, that is, by forming
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where 
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 is the estimated regression coefficient for the jth component of the ith covariate. Figure 3 illustrates the results obtained when gradient smoothing was used to summarize the trends in mean annual concentrations of mercury in muscle tissue from flounder (Platichthys flesus) caught in the German Bight at five stations located at varying distances from the mouth of the Elbe River, which was heavily polluted until the beginning of the 1990s. Figure 4 illustrates the difference between the smooth trend surface and the considerably rougher surface of normalized values for monthly loads of nitrogen carried by the Rhine River.
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Figure 2. Constrained resampling of a set of synthetic residuals that are strongly correlated across vector coordinates (stations). The three graphs show the original data (top), an ordinary bootstrap sample of that dataset (middle), and the same bootstrap sample after 100,000 proposed swaps.
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Figure 3. Trend assessment of the concentration of mercury in muscle tissue from flounder (Platichthys flesus) caught in the German Bight at five stations (53o 53’ N, 9o 11’ E; 53o 52’ N, 8o 52’ E; 53o 56’ N, 8o 38’ E; 53o 57’ N, 8o 30’ E; 53o 45’ N, 8o 2’ E) in or outside the mouth of the Elbe River. The two graphs show observed annual means and a trend surface obtained by gradient smoothing ((1 = 2, (2 = 0.5). 
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Figure 4. Trend assessment of the total nitrogen load in the Rhine River at Lobith on the border between Germany and The Netherlands. The three graphs show observed monthly nitrogen loads and water discharge values (a), the estimated trend function (b), and flow-normalized monthly loads (c).
9 Missing and multiple values

To keep the notation as simple as possible, thus far we have assumed that we have exactly one observation of the response variable and the p explanatory variables for each combination of time point (year) and vector component. As pointed out by Hussian et al. (2004), the algorithms used to estimate the semiparametric models can easily be adapted to accommodate missing or multiple values by changing the diagonal elements of the above-mentioned band matrix. More generally, our approach can handle data sets of the type
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where t(k) and j(k) respectively denote the time point and the vector component of the kth observation.

Our resampling procedure can also be modified to accommodate missing and multiple values. For the general case with a varying number of observations per cell, we introduce the random effect model
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where 
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where
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and 
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denote the estimated variances of the two types of random effects (Hall & Maiti, 2006). Thereafter the 
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 are predicted by subtracting the predicted cell-specific components from the original residuals. Finally, constrained resampling is used to sample the 
[image: image50.wmf])

(

ˆ

j

t

d

, whereas the ordinary bootstrap is applied to the 
[image: image51.wmf])

(

,

ˆ

j

k

t

h

 representing variation within cells.

10 Computational aspects

For fixed values of the smoothing factors (1 and (2, the semiparametric models described in this article can be estimated by using back-fitting algorithms in which estimation of the slope parameters for fixed intercepts is alternated with estimation of the intercepts for fixed slopes. More specifically, ordinary regression algorithms can be used to estimate the slope parameters, whereas a system of linear equations with nm unknowns must be solved to estimate the intercepts. The latter can be achieved by Cholesky factorization of the coefficient matrix and sequential determination of the unknowns (Silverman & Green, 1994). In the case of sequential smoothing, Stålnacke and Grimvall (2001) demonstrated that the coefficient matrix is a positive definite symmetric band matrix with lower and upper bandwidth 2m. The other smoothing techniques described here give rise to symmetric band matrices that have the same bandwidth. Also, it can be noted that, for a given bandwidth, the computational burden is proportional to the number of time points n.
The smoothing factors (1 and (2 that control the effective dimension of the estimated models can be determined by cross-validation. However, it should be noted that conventional leave-one-out cross-validation may lead to over-fitting if the error terms are correlated (Shao, 1993; Libiseller & Grimvall, 2003). Hence, we propose block cross-validation in which the observed response values are divided into n blocks, each composed of p contemporaneous components of yt. 
The computational burden of the resampling varies strongly with the number of bootstrap replicates and swaps. We normally used 200 replicates and a maximum of 100,000 swaps for each replicate. Under these conditions the resampling approximately doubled the computational time.
A software package (Multitrend) containing our semiparametric smoothing method and resampling technique is available (LiU, 2008).
11 Further generalizations
Time-varying slope parameters

The model introduced in formula 2 has time-dependent intercepts, whereas the slope parameters are not dependent on time. Models in which the intercepts are time independent and the time-dependence of the slope parameters is controlled by roughness penalty expressions can be specified and estimated in a similar manner (Stålnacke & Grimvall, 2001). However, for computational reasons, it is not feasible to handle more than one explanatory variable in such semiparametric models. Furthermore, it is not practicable to let both the intercept and the slope parameters vary with time due to the following: back-fitting algorithms for such models may have convergence problems, and the computational burden increases dramatically with the number of roughness penalty factors determined by cross-validation.

Nonparametric analogues

The nonparametric specification of the intercepts can be justified by a desire to make unprejudiced inference about the shape of the trend surface. Similar arguments might rationalize the use of models in which both the trend and the influence of covariates are specified nonparametrically, for example, those of the type
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where 
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 are smooth functions. Furthermore, this generalization is easy to program when a back-fitting algorithm is used to estimate the model parameters, because, with such an approach, the estimation of 
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 for given intercepts can be reduced to mp nonparametric univariate regressions. However, it should be noted that models with very few structural constraints may lead to problems with over-fitting and slow convergence of the back-fitting algorithm.

12 Discussion

The current techniques for detecting trends in time series of environmental quality data are dominated by approaches in which the collected data are analyzed separately for each site and response variable. The major exceptions to this rule are the widespread use of multivariate linear models and the growing interest in spatio-temporal geostatistical models. In this article, we have demonstrated that roughness penalty approaches to the estimation of semiparametric regression models constitute a very flexible group of techniques for simultaneous detection of temporal trends and adjustment for covariates in vector time series of environmental quality data. 

In contrast to ARIMAX models and other classical multivariate time series models, which are based on stationarity or very simple forms of nonstationarity, our method enables careful modelling of the nonstationary features of the collected data. This property, it shares with a large class of methods that can be referred to as smoothing techniques for response surfaces. Thin plate splines, vector generalized additive models (GAMs), and kernel smoothers (Wahba, 1990; Yee & Wild, 1996; Härdle, 1997; Hastie et al., 2001) can all be appropriate for estimating nonlinear trends. However, this article shows that our roughness penalty approach has the advantage that the smoothing pattern can be tailored to take into account almost any relationship between the different components of the observed random vectors. Furthermore, the degree of smoothing can be fine-tuned in two directions without making the computational burden insurmountable.

Dynamic factor analysis (DFA) represents another promising approach to assessment of trends in vector time series data (Zuur et al., 2003). Inasmuch as DFA is a latent variable technique, it is particularly useful when the dimension of the analyzed vector time series is high. Nonetheless, it might be worth considering our method for such data. This is particularly true when then there is considerable prior knowledge about the interrelationship between the vector components or the proximity of the vector components can be modeled.
Some comments should also be made about the residual resampling technique. Our technique offers the important advantage of taking into account the correlation structure of the model residuals without employing any sophisticated spatio-temporal modelling. Moreover, it is well coordinated with the smoothers used to extract the trend surface. However, like any other form of residual resampling, our method creates a new resampled dataset by adding resampled residuals to fitted response values. This can be justified if the uncertainty of the fitted responses is considerably smaller than the individual error terms. In practice, this implies that the uncertainty estimates are reliable for models with relatively large smoothing factors.

Finally, it is worth noting that, although some of the computational aspects of parameter estimation in semiparametric models may require special attention (Schimek, 2001), the basic principles of such models are easy to communicate to a wide audience.
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