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Chapter 1

Introduction

1.1 Frame coverage errors

In the early stage of planning a sample survey, a decision must be made
on what frame to use for sampling. Sometimes, there are several frames
available. In other instances, there is no suitable frame at hand, but there
is a need to construct one. The significance of the choice of sampling frame
ought not to be underestimated. If the sampling frame has some serious
shortcomings, the quality of the final output, the survey estimates, can be
questioned. More precisely, frame imperfections may bias and increase the
variance of the estimators.

The purpose of the sampling frame is to offer ‘observational access’ to
the target population. Ideally, the population linked to the frame in use is
identical to the target population. If some elements of the target population
lack association to the frame, this is usually referred to as undercoverage.
If the frame contains some elements that are not part of the target popu-
lation, the frame is correspondingly said to suffer from overcoverage. Aside
from coverage errors, a sampling frame may for example have multiplicity
problems or contain erroneous or incomplete auxiliary information. For a
thorough treatment of various frame problems, and references, see Lessler
and Kalsbeek [8].

To see the bias effect of frame coverage errors, consider the problem
of estimating a population total t = 3 ;; yx, where U denotes the target
population, y;, is the study variable value for element k£ € U, and ) ;; yx is a
shorthand for ), ;s yx. To simplify, we assume that all 3, are positive. Let
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Ur denote the set of elements included in the frame. Assume that the frame
has either undercoverage (Ur C U) or overcoverage (U C Up) but no other
imperfections. The total for the frame population is ty = ZUF yr. A sample
sp of elements is drawn from Ug by some (without-replacement) sampling
design. The Horvitz-Thompson estimator of ¢z is tpy = > sp YK/ Tk, Where
7y, is the probability of including element k& € Up in the sample. If the
frame has undercoverage, tp <t and tpr has a negative bias as estimator of
t, whereas in the case of frame overcoverage, tg > t and tpy is a positively
biased estimator of ¢.

Remark 1.1.1 Throughout this thesis, the system of notation (and the way
of tackling the inference problem in survey sampling) is taken mainly from
Sdarndal et al. [11]. This means, among other things, that we use the term 7
estimator for the well-known Horvitz-Thompson estimator, and indicate it
with a . Also, the sampling designs relevant in this thesis are abbreviated
as follows: SI for simple random sampling without replacement, SIR for
simple random sampling with replacement, pps for probability-proportional-
to-size sampling with replacement, and STSI for stratified sampling with ST
sampling applied in all strata.

1.2 Formulation of the problem

This thesis addresses a frame coverage problem urgent in a particular road
traffic survey, the Survey on Vehicle Speeds (SVS), conducted annually by
the Swedish National Road Administration (SNRA) since 1996. The aim of
the survey is to estimate parameters such as the total vehicle mileage and,
most importantly, the average vehicle speed, for the Swedish urban road
network. Hypothetically, the target population, the road network, is viewed
as partitioned into one-meter road sites, which represent the population
elements. A three-stage sampling design is employed, where the primary
sampling units are population centers and the secondary sampling units are
small areas. For each selected small area, a frame of the road network is
employed. The frame units are road links, and the frame contains informa-
tion on the length of each link. From each small area frame road network,
an SI sample of road sites is selected for observation.

When the small area frames were constructed, the link lengths were

4



1.2. Formulation of the problem

determined manually from maps. Hence, the lengths may be subject to
measurement errors. It is not quite obvious how this frame problem should
be examined. One may say that the frame suffers from coverage errors, or
that, due to faulty auxiliary information in the frame, incorrect element-
inclusion probabilities are used.

The coverage error view Apart from rounding errors, a link length cor-
responds to a geographically ordered vector of population elements. If
a road link is shorter in the frame than in reality, this corresponds to
an undercoverage of target elements. Correspondingly, if a frame link
is too long, the frame suffers from overcoverage.

The incorrect inclusion probabilities view The length is known for each
frame unit (road link) prior to sampling; thus, length can be thought
of as an auxiliary variable. If a road link is shorter or longer in the
frame than in reality, this corresponds to an incorrect auxiliary vari-
able value. For a given small area, the sum of all link lengths in the
frame is supposed to be the number of road sites that make up the
road network (the population). If this summed length is in error, but
the sample of road sites actually is selected from the target popula-
tion, the inclusion probabilities that are used for sampled road sites
are incorrect.

The latter view is somewhat more general, since incorrect inclusion prob-
abilities may arise for other reasons in other types of surveys. However, for
our purposes, it does not really matter how we decide to entitle the problem.

Discrepancies between measured and actual link lengths have implica-
tions on the data collection stage of the survey. This follows since, in the
presence of erroneous frame link lengths, the instructions to the field staff
may no longer hold. Field staff are told to seek out a sampled road site lo-
cated a certain number of meters into a specified link. In reality, the location
may simply not exist, if the link is shorter than the frame says. If the link
in reality is much longer than the frame says, the location will indeed exist,
but on different places depending on from what direction the link is entered.
In each case, the field staff adjust to real-life conditions by observing the
traffic “somewhere” along the designated link.

Our aim is to investigate the bias and variance of the employed estimators
under these circumstances. To simplify, all possible frame imperfections
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other than erroneous road lengths are ignored. In particular, we assume
that the small area frames list all the links in the areas correctly.

1.3 Our approach to the problem

Among the essential features of our approach, consider first the problem of
estimating a total ¢ for one small area. The target population U is the set of
one-meter road sites (of size N) that make up the area road network. The
frame population Ug of size Np is the set of road sites represented in the
frame. From Up, an SI sample s of road sites of size n is drawn. Then,
the probability 7 of including road site k& € Up in the sample is n/Np.
The resulting estimator of ¢ is tpe =N FYsy, where ¥, is the sample mean.
Since the frame may have both undercoverage and overcoverage, the sign of
possible bias of £ is unknown. We handle this situation by assuming that
sp in practice can be regarded as an SI sample s from U. Then, the only
remaining difference between the unbiased estimator of ¢, tx = N7, and the
employed estimator, tpy, is that the latter is weighted by Ny instead of N.
Due to measurement errors associated with the frame construction process,
Nr may deviate from the true road length N. A model is stated in which
Np is viewed as composed of N and a random error (. The expectation
and variance of g, is derived jointly with respect to the sampling design
(conditional on stages one and two) and the error model.

This was the basic idea of our approach. In reality, we are interested
in the statistical properties of employed estimators of totals and ratios not
for a single small area but for the whole road network. Then, the full
three-stage sampling design is taken under consideration. In our general
model for Np, we do not specify the relation between the true value and
the error. As special cases, however, we derive results for a simple additive
and multiplicative error structure. Emphasis is given to the latter, which we
believe to be the most realistic. In addition to our theoretical derivations,
we present results from an empirical study of the errors in the frame.

As far as we know, most studies of traffic characteristics are based on
nonprobability samples. Instead of choosing road sites at random from a
frame, efforts are made (by visual inspection of the road) to pick “repre-
sentative” sites for observation. It is therefore not very surprising that we
have not seen this frame problem treated in the traffic research literature.
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The statistical literature on frame errors, on the other hand, mainly deals
with errors in sampling frames used in surveys of individuals or households.
The conditions of such surveys differ substantially from those in the SVS,
so the methods suggested for evaluating the impact of coverage errors are
not quite applicable to our problem.

Our work is, however, inspired by the approaches to measurement errors
discussed in, among others, Biemer and Stokes [2] and Sérndal et al. [11,
Ch. 16]. In this field of research, a survey is viewed as a two-stage process
such that each stage contributes with randomness to the estimators. The
first stage, the sample selection, determines what part of the population to
observe. The second stage is the measurement procedure, which generates
an observation for each element in the sample. Unlike traditional sampling
theory, the observations are not presupposed to coincide with the true values,
but assumed to be subject to random errors. In order to evaluate the impact
of measurement errors on the estimators, the relation between observed and
true values is modeled.

1.4 QOutline of the thesis

This thesis is arranged as follows. Chapter 2 presents the main method-
ological features of the vehicle speed survey. The target population, the
main study variables, and the related parameters are described, as well as
how the variables of study are measured. Since this is a sample survey,
we also describe the sampling design, the sampling frames in use and the
employed estimators of the parameters of interest. Chapter 3 is devoted
to the formulation and use of our error model. We start by stating the
model and discussing its plausibility. Then, we derive the expected values
and variances of the survey estimators with respect jointly to the sampling
design and the model. At the outset, neither a particular error structure
nor identically distributed errors are assumed. Some special cases are, how-
ever, also examined, in particular the case of multiplicative errors with equal
expectation and variance. Chapter 4 treats the execution and results of
the empirical study. In Chapter 5, some consequences of using erroneous
inclusion probabilities when estimating a population total are investigated.
This chapter, which does not relate directly to the vehicle speed survey, can
be read independently of the others. Finally, in Chapter 6, we summarize
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our findings and make some suggestions for further work.



Chapter 2

The survey on vehicle speeds

2.1 Background and survey objectives

Since 1993, the Swedish National Road Administration (SNRA) has had
overall responsibility for traffic safety work in Sweden. The model for this
work is the National Road Traffic Safety Programme for 1995-2000 [12]; on
a long view, its goal is that nobody should be killed or seriously injured as
a result of traffic accidents. The work is organized in focus areas, called
‘road traffic safety reforms,” such as “reduction in speeding offences,” “use
of cycle helmets,” and “use of safety equipment in cars.” Operational goals
are stated for each reform, and it is assumed that if a reform goal is reached,

this should contribute to a reduction in traffic deaths and injuries.

In order to assess whether development is heading toward the reform
goals, the SNRA conducts several surveys regularly. The largest of them,
the Survey on Vehicle Speeds (SVS), aims at measuring the results of efforts
within the traffic safety reforms “reduction in speeding offences” and “re-
duction in other driving offences.” There are many possible driving offences
other than exceeding speed limits, but in the “other” category the survey
deals only with that of driving too close to the vehicle ahead (“too short
headway”).
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2.2 Population

The target population is the entire Swedish road network except rural private
roads. It is divided into two subpopulations of special interest — state roads
and ‘urban’ roads (local authority roads and private roads in built-up areas)
— that also serve as strata when the sampling is conducted. In this thesis, we
restrict our attention to the part of the survey that concerns the urban roads,
and refer throughout to the urban road network as the target population.
We think of this road network as partitioned into one-meter road sites, which
we call ‘measurement locations,” that are the population elements.

From the target population, the following road sections are excluded.

e From major roads: 100 meters before and after each intersection with
traffic lights.

e From non-major roads: 100 meters before and after each intersection.

The main reason for excluding road sections close to intersections is to
avoid observational difficulties. In the SVS, observations are carried out by
measurement equipment installed on the road (see Section 2.5). Certain traf-
fic situations, such as vehicles lining up, accelerating, or decelerating, have
the potential to cause measurement problems. Such situations frequently
occur close to intersections.

Survey results are demanded not only for the whole target population,
but also for specific subpopulations or ‘domains.” One important goal of the
survey is to provide results for each SNRA region. The SNRA organization
includes seven regional road management directorates (Figure 2.1), which
are responsible for the SNRA’s regional management, including traffic safety
work within their geographic areas.

The definition of the target population is not complete without some
restriction in time. The SVS is always conducted during the summer months,
but the exact period of study changes somewhat from year to year. In the
last survey round, in 1999, the study period was June 14 to September 30.
The period of study is thought of as a population in time with twentyfour-
hour periods as population elements.

10
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Regional Road

Management Directorates

Northern Region
BD Norrhotten county

BD

AC Vasterbotten county
Lulgd

Ceniral Region AG Maélardaten Ragion
Z Jimtland county C Uppsala county
Y Visternorriand county Y D Sddermanland county
X Gévleborg county T Orebro county
W Dalarna county Harnasand U Viastmanland county

Western Region

§ Viarmland county

0 Vistra Gitaland county
N Halland county

Skane Region Gitehary

M Skane county

Slockhoim Region

AB Stockholm county
| Gotland county

South-Eastern Region
E Ostergitiand county
F Jénkdping county
G Krongherg county

H Kalmar county

TR
Kristianstad K Blekinge county

Figure 2.1: The SNRA Regional Road Management Directorates. (Source:
SNRA)
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2.3 Variables and parameters

The primary study variable in the SVS is the traffic flow, y. In general,
for a given point on a road and a specified period of time, the traffic flow
is defined as the number of passing vehicles. Since in this survey a road is
viewed as made up of one-meter sections, a ‘point’ is interpreted as a one-
meter section (a measurement location). From the total flow, other study
variables of interest can be derived; some examples include:

e Flow above a certain speed limit
o Flow with less than a certain headway

e Flow by a certain type of vehicle (e.g., by cars with trailers)

The second main study variable is the travel time, z. For a given traffic
flow, the travel time is the total time all vehicles take to pass the road point.

Let U denote the target population “in space” — the set of measurement
locations that make up the urban road network — and Uy the target popu-
lation “in time” — the set of twentyfour-hour periods that make up the time
period of study. The population total of the study variable y, the ‘total
vehicle mileage’ for the road network and time under study, is ZUT YU Yis
where y; equals the traffic flow in measurement location £ € U during
twentyfour-hour period v € Uy. Correspondingly, the population total of
z, the ‘total travel time,” is given by > ;. >y 2;. Since the total vehicle
mileage is a measure of distance, and the total travel time a measure of time,
their ratio is a measure of speed.

In this thesis, we ignore possible time variability in y and z. That is, we
consider only the special case when y;) = y;, and z;] = 2, for all v € Uy, k €
U. Hence, we will hereafter drop the time index and talk simply about the

parameters ty =Y Yk, t- = ) 2 and R =t,/t,.

2.4 Sampling design

2.4.1 Use of a master frame

The SNRA’s traffic safety surveys share the same sampling in the first and
second stages. In each survey, the final sample consists of measurement

12
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locations selected from a master frame of roads. Depending on the nature
of the survey, the locations can be intersections with traffic lights (suitable
for observing motorists who drive against red light) or, as in the SVS, one-
meter sections of the road.

The method of using a master frame is discussed by, among others,
Kish [7, pp. 478-480], and can briefly be described as follows. Initially,
a ‘master sample’ of sampling units is selected. For each sampled unit, a
frame is prepared. The sample for a particular survey is then selected from
these frames, which serve for a longer time period.

The master sample used for the SNRA surveys was selected during 1995-
96 by a two-stage sampling design. The primary sampling units (PSUs) are
population centers, and the secondary sampling units (SSUs) are small areas.

2.4.2 Frames

When the master sample was selected, the frame used in the first stage was a
list, supplied by Statistics Sweden (SCB), of the Swedish population centers
1990. The list contained auxiliary information on the number of inhabitants
in each population center, which served as a size measure for pps sampling
(see Remark 1.1.1). The frames used in the second stage were lists of the
small areas within selected population centers. In all essentials, these small
areas agree with SCB’s small area market statistics (SAMS) regions. Vari-
ous population statistics collected by SCB are tied to developed properties.
In co-operation with the local governments, SCB has grouped similar adja-
cent properties. By a special technique called ‘register generated borders,’
geographic borders between the groups have been fixed. The resulting na-
tionwide area division is called SAMS. There are about 9,200 SAMS regions;
their main use is for statistical presentations.

For each selected small area, a list frame of road links was prepared
at the SNRA from city maps. Using the intersections as breakpoints, the
map road network was partitioned into links, and the link lengths were
determined manually by the use of map measurers.

2.4.3 Sample selection

In this section, the sampling design of the SVS is described. In each stage,
stratified sampling is used. In the first stage of sample selection, the popu-

13
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lation centers are stratified according to SNRA region (see Figure 2.1) and
three size classes:

e Large major population center of a municipality
e Other major population center of a municipality

e Other population center

In the second stage, the small areas within a selected population center
are stratified according to four development types:

e City
e Industrial
e Residential

e Other type

In the final stage, the road sites within a selected small area are stratified
according to three road types:

e Major roads with a speed limit of 70 kilometers per hour (km/h)
e Major roads with a speed limit of 50 km/h

e Other roads

However, to simplify, the stratification in each stage is hereafter ignored.
We also ignore the fact that in stage one, the three largest PSUs (Stockholm,
Goteborg, and Malmo) define a take-all stratum. The subsequent sampling
stages are somewhat different in the take-all stratum than described here.
All stated sample sizes refer to one stratum.

Selection of the master sample

The PSUs are the Ny population centers in Sweden, labeled ¢ = 1, ..., Nj. For
simplicity, we represent the ith PSU by its label i. Thus, we denote the set of
PSUs as Ur = {1,...,4, ..., Nr}. Population center ¢ € Uy is partitioned into
Npy; small areas, labeled g = 1, ..., Nyy;, that represent the SSUs. Again we

14
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represent the sampling units by their labels; hence, the set of SSUs formed
by the partitioning of i is denoted Urr; = {1, ...,q, ..., N1}

The master sample of small areas was selected in the following way. In
the first stage, a pps sample of PSUs was drawn with probability propor-
tional to the number of inhabitants. At every draw, p; is the probability
of selecting the ith PSU. Let i, denote the PSU selected in the vth draw,
v =1,...,my, where mj is the number of draws. The probability of select-
ing 4, is denoted p;,. If the ith PSU was selected in the vth draw, then
pi, = pi- The vector of selected PSUs, (i1,...,%p, ..., 7m, ), is the resulting
ordered sample osy.

In stage two, for every i, that is a component of osy, an SI sample
srri, of SSUs of size nyr;, was selected. The resulting sample of SSUs is the
master sample.

In practice, the sample sizes in each stage were my = 10 and nyr;, = 1.

Selection of the SVS final-stage sample

The road network in small area ¢ in population center i is viewed as par-
titioned into N;q one-meter road sections or measurement locations — the
population elements. This set of locations is Uj,. An SI sample s;, 4 of
locations of size n;,4 is drawn for every small area q¢ € srz;,. In practice,
the sample sizes are n;,; = 1. The sample of locations finally obtained is
denoted s.

For every location k € s, one twentyfour-hour period is randomly drawn
from the time population Ux.

2.5 Data collection and processing

A sampled location is positioned a certain number of meters into a road link.
The field staff search out the location and install measurement equipment
to collect data during the selected twentyfour-hour period. The equipment
consists of two pneumatic tubes stretched across the road in parallel, a fixed
distance apart, and connected to a traffic analyzer. When a wheel crosses a
tube, this changes the air pressure in the tube. The times of such events, or
pulses, are registered by the traffic analyzer. The analyzer further combines
the pulses into vehicles and calculates their travel direction, speed, and type

15
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(such as car or truck, with or without trailer). In the combination process,
some new pulses are fabricated and some registered pulses eliminated. The
variables of study are later calculated from the vehicle data produced by the
traffic analyzer.

2.6 Estimation

We will now describe how ¢, and R = t,/t, are estimated from the survey
data. We start by noting that the sampling design of the SVS is such that:

i. The PSUs are selected with replacement.

ii. Independent subsampling is conducted from every selection of a PSU
(whether a repetition or not).

Define the population totals t,;q = ZUiq Yy byi = ZUI” tyiq and tiq, Lz,
respectively. Further, define F = yr — Rz, and the corresponding totals
tpiq = tyiq — Rtzig and tp; = ty; — Rt,;. Estimators of the population totals
are denoted by a hat.

In standard sampling theory, the probability distribution of an estima-
tor is determined entirely by the sampling design p (s) and the parameter
state. In the language of Cassel et al. [4, p. 26], an estimator is said to be
p-unbiased, or design unbiased, for a parameter if its expected value with
respect to p (s) equals the true parameter value. The variance, with respect
to p (s), of an estimator is called the estimator’s p-variance. Let E, and V),
denote the expectation and variance operators with respect to p(s)!. For
some nonlinear estimators, such as the ratio of two estimated population
totals, it is the practice to use the variance of a linearized statistic as an
approximation to the exact variance. Let AV, denote such an approxima-
tive variance, again with respect to p(s). For details on the linearization
technique, see Sérndal et al. [11, Sec. 5.5].

The principal appearances of the estimators employed in the SVS are

1 i,
f,=— ) Hv 2.1
Y mfzzlpz‘,, 21)

v=

! Note the use of capital E as notation both for the variable y — Rz and for the expec-
tation operator.

16
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of t, and R = fy/fz of R. If i € Uy was selected in the vth draw, then
fyiy = fy,-. The expected values and variances of fy and R are investigated
in the following lemma.

Lemma 2.6.1 Under a sampling design p(s) satisfying the specifications
(i)-(ii), the expected value of t, is By (1) = Zfi’l E, (tyi). The p-variance
of fy 18

N; - N; 2 N; -
. 1 E, (ty; . 1 Vo, (tyi
V, (&) = _IZpi (% -> B, (tyi)> o > %}’). (2.2)
2 Bt v i=1 i=1 ¢

The estimator R has the approximate expected value Ej, (fy) /Ep (fz), and
the approximate p-variance

v, (A) _%{L§M+L S m} 23)
z mr i—1 Di mr i—1 Di

The part of Lemma 2.6.1 that refers to fy is a slight generalization of
Result 4.5.1 in [11] or Theorem 6.4 in [10], and the part that refers to R
a slight generalization of results presented in [10, Sec. 6.8.2.]. Unlike the
cited sources, we do not presuppose that the estimators fyi and tp; are p-
unbiased for t,; and tg;, respectively. Later in this thesis, an expanded
version of Lemma 2.6.1 is used to derive the expected values and variances
of the survey estimators with respect jointly to the sampling design and an
error model.

In the SVS, if the road lengths in the final-stage frames are in error, the
actual sampling procedure differs from the one described in Section 2.4.3.
Let Upiq denote the set of measurement locations (of size Ngiq) in (i, q)
according to the frame. For every small area q € syz;,, an SI sample sg;, 4 of
locations (of size n;,q) is drawn from Up;,. In the data-collection stage, the
field staff adjust to the real road network when installing the measurement
equipment. Consequently, the set of locations actually observed may differ
from sp;,4. We do not, however, introduce any special notation to distin-
guish between these sets. The sample of locations finally obtained (as well
as the sample finally observed) is denoted sp. The relevant totals are:

o tpy = ZU, lryi

17



2. The survey on vehicle speeds

® tryi = y,,. tFyig
® lryiq = EUFiq Yk

The totals tr,, tF.; and t F,q are defined correspondingly. Further, Rp =
tFy/tFZ, tFEiq = tryiq— RFtF2iq and tpp; = tpyi— Rptp.;. Estimators of the
population totals are denoted by a hat. In addition, 7 estimators (Horvitz-
Thompson estimators) are denoted by a 7.

The estimator of ¢, in use in the SVS is

myr

. 1 tFryi
fpy=—— 3 = (2.4)

mr <= pi,
where tpryi, = (N11i, /113,) 2,0 EFmyivg 20d Epmyi,g = (NPiya/Mivg) Dsp,, | Y-
If i € Ur was selected in the vth draw, then tpry;, = tFqyi and tpryiq =
t Fryig- The employed estimator of R is Rp=1 Fy/ try.

Consider the special case when, for every small area ¢ included in the
master sample, the frame road length Npg;, equals the true length V;,, and
Sriq is an SI sample from U;,. Then, the estimators fpy, Ltpwyi, and fpwyiq
are design-unbiased for t,, ty;, and ¢4, respectively, and the frame index F'
is no longer needed.

18



Chapter 3

Model approach

3.1 The model

In order to evaluate Fy and Rp as estimators of ty and R, respectively, we
formulate the following frame error model:

(1) The sample spiq is an SI sample from U, In mathematical terms, we
assume that spi; = si4.

(2) The frame road length Ny, is a function of the true length N;, and a
random error (.

(3) All Ngi,’s are independent random variables with expected values i,
2

and variances o7

In cases of unclear instructions due to frame errors, the field staff place
the measurement equipment ‘somewhere’ along designated links. Then, As-
sumption (1) holds if the road sections within the link can be considered
‘randomly ordered,’ or if the field staff randomly choose a road section within
the designated link for measurement. The field staff’s choice of a road sec-
tion within the link is probably more adequately described as haphazard
than as random. This follows since, when deciding upon a location, they
pay regard to the road environment (e.g., by avoiding locations where cars
parked by the roadside may obstruct the installation of the equipment). A
‘random ordering’ of the road sections is however, for the following reason,
quite likely. As described in Section 2.2, only road sections located more
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3. Model approach

than one hundred meters from an intersection are included in the target
population. Results from a pilot study [3] suggest that, within a link, the
remaining road sections are reasonably similar with respect to the study
variables. Consequently, it is not crucial which road section within link that
is actually measured — the result will be about the same anyway.

Under Assumption (1), the only remaining difference between ¢, and
the error-prone estimator ¢ Fryiq i that the latter is weighted by Ng;, instead
of Njg. A random error model for Np;, is stated in Assumptions (2)-(3),
but to be really useful the model needs further specification. The two most
simple error structures are the additive error model,

Nrig = Nig + (44 (3.1)
and the multiplicative error model,
Nriq = NigGiq (3.2)

We denote the expected value and variance of the random error ¢;, with 6;,

and qu, respectively. Then, under the additive error model, p;, = Niq + 04
2

iq’
and a?q = quT?q. Note that, depending on the assumed error structure, ;4
and T%q are expected to take quite different numerical values. Consider, for

and O'?q = 77 , whereas under the multiplicative error model, Wig = Nig0iq

instance, the case when the road length measurements are rather accurate,
so that i, approximately equals Njq. Under the additive error model, this
occurs when 0;4 is close to zero; under the multiplicative error model when
0;q is close to one.

3.2 Statistical properties of the error-prone esti-
mators

3.2.1 Unspecified error structure

In this section, we express the expected value and variance of the estimators
fpy and fm’p, taking into consideration that their probability distributions
are determined jointly by the sampling design p (s), the frame error model
m in Section 3.1, and the parameter state. So far, we do not make any
assumption on the error structure.

20



3.2. Statistical properties of the error-prone estimators

We call an estimator pm-unbiased if its expected value with respect to
p(s) and m equals the true parameter value. The estimator’s pm-variance
is defined correspondingly. Let E,,, Vpn, and AV,,, denote the expecta-
tion, variance, and approximate variance, respectively, with respect to the
sampling design and error model jointly.

In Lemma 2.6.1, the expectations and variances were taken with respect
only to the sampling design. In the following lemma, a straightforward
expansion of Lemma 2.6.1, the expectations and variances are taken with
respect jointly to the sampling design and the error model.

Lemma 3.2.1 Jointly under a sampling design p (s) satisfying the specifi-
cations (i)-(ii) in Section 2.6, and the error model m in Section 3.1, the
expected value of fpy is given by Eyy, (fpy) = Zfi’l Epm (fpyi). The pm-
variance of tpy is given by

2
N m t i N,
Vom (fry) = — sz ( om (ryi) -S>  Eom (tFyl)>

1=

NI
1 Vom (tFyi
D i L (_Fyl). (3.3)
mr im1 Di
The estimator RF has the approzimate expected value Eyy, (f Fy) / Epm (f Fz),
and the approximate pm-variance

Ny » 2 Ny ~
1 1 Epm (trE: 1 Vom (tFEi
AVy (Br) = t2{—2—( s ;(n ) LD D ](3' )}. (3.4)
=1 v i=1 v

We are now ready for the following theorem.

Theorem 3.2.1 Jointly under the SVS sampling design and the error model
m in Section 3.1, the expected value of fpy is given by

pm tFy Z Epm tFTI’y’L) (35)

where Eyp, (tApﬂyi) = ZU[” (Mz‘q/Niq) tyiq- The pm-variance of fpy is given
by

) 1 & (1 2
‘/;Jm (tFy) = E — pi (E ZUII1 ’i Z ZUIIv fi )
i=
Ny 7
1 Vznm (tFTryi)
LN Yo (Fema) 3.6
mr ; bi 0
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3. Model approach

where
2 L—fmi 1 i 1 i 2
Vom (trryi) = N¥; iy — —— Lt
pm ( F yz) It nrri N —1 ZUIH Niq v Nrn ZUIH Niq v
Nriri Hig .
Vo, (tr
Nnrri ZUIU Niq P ( yzq)
0 () i ) + 2]
nrri Urri Niq P Wqu v

The estimator RF is approximately pm-unbiased for E,y,, (fpy) /Epm (fpz),
with the approximate pm-variance

; ; 1 Y2y (Eerr:
A SIVIE SR

(3.7)

where Vi, (fp,rEi) is obtained from V,y, (tAFWy,-) by replacing tyiq with tgiq
and tAwyiq with LtﬂE,‘q.

The proof is given in Appendix A.1.

From Theorem 3.2.1, results can be derived for various situations of
interest. An important special case is when the frame road lengths Npyq
are ‘unbiased’ — that is, if in a (hypothetical) long run of repeated length
measurements on the same small area road network, the average of the
obtained values will equal the true value N;,. This case is treated in the
following corollary.

Corollary 3.2.1 If the frame road lengths Npiq have expected value N;q, the
estimator tpy is pm-unbiased for t,, and Rp is approximately pm-unbiased
for R. The use oftpy instead of ty as estimator of t, increases the variance
by

~ ~ 1 N 1 NIIi Oiq 2 2
me (tFy) - VP (ty) = Z . ZUI” N_ [V}’ ( WyZQ) + tyzq]

mr i1 pi NI iq

(3.8)

The variance increase due to the use of Rp instead ofR as estimator of R
is obtained from (3.8) by multiplying by t;2 and replacing tyiq with tpg and
tﬂyiq with tﬂEiq.
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3.2. Statistical properties of the error-prone estimators

Corollary 3.2.1 is easily derived from Theorem 3.2.1 by replacing j1,, with
Nigq.

3.2.2 Results for specified error structures

It is straightforward to adapt Theorem 3.2.1 to various error structures of
2

iq’
for the additive error model in (3.1), whereas by replacing ji;, with N;,0;,

interest. By replacing fi;, with Ni;+6;4 and afq with 77 | results are obtained

and agq with Nﬁlrfq, we get results for the multiplicative error model in (3.2).

In the remainder of this section, we will only look at the model we a
priori believe to be the most realistic: the multiplicative error model with
equal error expectations 6 and variances 72. The multiplicative error model
means that the error associated with Np;, depends on the true length N;,
— a view we regard as intuitively appealing. For example, it is probably
harder to obtain accurate measurements for areas with extensive road net-
works, since such networks usually are partitioned into a large number of
links. (Remember that each link length was measured separately.) Further,
we have no reason to believe the error expectations and variances to differ
between population centers or small areas. The same tool, a map measurer,
was used everywhere, and the staff performing the measurements were given

the same training. An important objective to the multiplicative model is
2

iq’
tional to the squared true lengths. It is not obvious that this assumption

that it states that the variances of the frame road lengths, o? , are propor-
holds; an equally natural assumption is that the variances are proportional
to the (unsquared) lengths.

For the assumed model, the following corollary applies.

Corollary 3.2.2 If the frame road lengths Npiq have expected value Niq0,
the pm-bias of ny as estimator of ty is given by t, (0 —1).

Corollary 3.2.2 is easily derived from Theorem 3.2.1 by replacing p;,
with N;,0. Note that if 6 equals one, both ¢p, and Rp are unbiased or
approximately unbiased.

Let us proceed by investigating the variances when 6 equals one.

Corollary 3.2.3 If the frame road lengths Np;q have expected value N;q and
variance Ni2q7—27 the use of fpy instead of fy as estimator of t, increases the
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3. Model approach

variance by

N
21 <~ 1 Ny

m i NI
I i— Di NIrs

> (Vo (i) + 8] (39)

The approzimate variance increase due to the use of Rp instead of R as
estimator of R is given by

AV (Br) = 4V, (R) = 724V, (R) (3.10)

The proof of Corollary 3.2.3 is given in Appendix A.2.

3.3 Discussion

It seems reasonable to expect the measurements of road lengths to “on the
average” be correct. The major sources of errors in the measurements are
probably the map measurer tool producing ‘shaky’ results and the haste un-
der which the measurements were performed. We have no reason to believe
that these errors have a systematic influence on the measurement values. If
our expectation is correct, the length error does not introduce bias in the
estimators — a very encouraging result. Of course, there will still be a loss
of precision due to the variability of the frame lengths.

The length of a small area road network may be viewed as a measure of
the degree of difficulty of the measurement task. With this view, the multi-
plicative error model makes sense. Analytically, things get especially simple
if these errors have the same expectations and variances; this also seems like
a realistic assumption. For this case, ‘unbiased’ road length measurements
corresponds to an error expectation equal to one. If this is fulfilled, the
length error implies a relative variance increase in the estimator of average
speed that is simply equal to the error variance. This variance is likely to
be numerically small, since the multiplicative errors are ‘relative.’

Although variance estimation is not really an issue in this thesis, we
would nevertheless like to comment briefly on it here. The SVS point esti-
mator of a total is the mean of independent and identically distributed (iid)
random variables. An unbiased estimator of its variance is the sample vari-
ance, divided by the number of observations. This holds whether a length
error is present or not. A nearly unbiased estimator for the variance of the
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3.3. Discussion

estimator of the ratio is constructed in a similar manner. Hence, the vari-
ance estimates calculated in the SVS hold also in the presence of a length
€rTor.
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Chapter 4

Empirical study

4.1 Study objectives

In Chapter 3, by use of an error model, we investigated theoretically the im-
pact of erroneous frame road lengths on the estimators ¢ Fy and Rp. Hence
a theoretical foundation is laid, but it needs to be complemented by knowl-
edge about the real road length errors in the frame. Then, a choice of a
realistic error structure can be made, the constant error expectations and
variances assumption can be evaluated and, if proved to hold, § and 72 can
be estimated. To gain this knowledge, we conducted an experiment, the
design and analysis of which we now present.

4.2 Design of the study

Data on the frame road length errors were collected in the following way.
From the 469 small areas included in the master sample, 70 small areas
were selected. A controller measured all the links in selected areas and fed
the result into computer files. In the course of the work, the controller had
access only to the originally used maps with the intersections numbered.
Hence, for a small area, she started by making a list of all the links found on
the map (using the existing numbering) and then measured them one after
the other.

In the selection of small areas for the experiment, we wanted areas from
different SNRA regions and from population centers of various sizes. Fur-
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4.3. Data processing

thermore, we wanted the areas to represent different development types.
Note that SNRA region, population center size class, and development type
were all used as stratification variables in the sample selection (see Sec-
tion 2.4.3). An SNRA region effect was possible since, when the frame was
constructed, each regional office was responsible for the work in its region,
including the length measurements. Population center size and development
type may correlate with the quality of available maps. To accomplish the
desired dispersion of small areas, they were randomly selected within SNRA
region, population center size class, and small area stratum.

For at least two reasons, the measurement values obtained in the study
are probably more accurate than the frame values. Above all, when the
frame was constructed, the road length measurements were made hurriedly
(the entire construction work was behind the schedule). Our controller was
not put under time pressure; on the contrary, she was encouraged to give
priority to carefulness and to take her time. Also, when the frame was con-
structed, the road lengths were determined by use of a digital map measurer.
This tool is convenient to use, since it can be programmed to produce length
data in meters for a map with a specified scale. In our experience however,
the tool is over-sensitive to the user’s hand movements. The controller used
a less sophisticated instrument, a common ruler, which we believe is less
subject to measurement errors.

4.3 Data processing

For five of the chosen areas, the available maps were of such poor quality
that the links could not be identified or measured properly. Therefore, those
areas were entirely omitted from the analysis. From each remaining area,
we excluded the links known to be administered by the state, as well as road
links that did not occur both in the frame and in the controller’s list. In
practice, we applied (in turn) the following rules for excluding road links:

1. Road links, found in control, that are missing in the frame.

2. Road links that, according to the frame, are state authority roads.

3. Road links included in the frame that, according to the control, do not
exist.
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4. Empirical study

Per cent of

Number original no.

Links in original data set 4123 100
Left after rule 1 applied 4013 97.3
Left after rule 2 applied 3762 91.2
Left after rule 3 applied 3618 87.8

Table 4.1: Exclusion of road links.

The resulting gradual reduction of the original data set (the set of all
links occurring either in the frames or in the controller’s lists) is shown in Ta-
ble 4.1. The allocation of the 65 small areas over SNRA regions, population
center size classes and small area development types is shown in Table 4.2.
In the table, the following numbering of size classes is used: ‘1’ for large ma-
jor population center of a municipality, ‘2’ for other major population center
of a municipality, and ‘3’ for other population center. Also, the small area
development types are assigned the numbers ‘1’ for city, ‘2’ for industrial,
‘3’ for residential, and ‘4’ for other areas.

In the data processing, we encountered several frame quality problems
other than erroneous road lengths. First, remember that we had to give up
five chosen areas because of bad maps. Most likely, the frames in use for
these areas are not, in general, very reliable. Second, we see in Table 4.1
that 110 links turned out to be missing in the frame and that 144 urban road
links that were included in the frame could not be found by the controller.
We take these figures as a warning signal that the frame may suffer from
some serious coverage errors regarding road links. Finally, as a result of
incorrect frame link lengths, some links may erroneously be excluded from
or included in the target population. Among the non-major road links in
our reduced data set, 42 links were shorter than 200 meters in the frame but
longer than 200 meters in the control, while 34 links were longer than 200
meters in the frame but shorter than 200 meters in the control.

Like erroneous frame road lengths, all the frame imperfections discussed
above may lower the quality of the survey estimates. In this thesis, we
restrict our attention solely to the length problem. An expanded study
would be needed in order to judge the influence and relative importance of
all frame imperfections on the total error of the estimates.
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4.4. Analysis

Population center size class 1 2 3

Small area development type

Central Region
Mélardalen Region

— = Ol

Northern Region

[ = S S SR

Stockholm Region

South-Eastern Region

_ o N = O K N
R O O~ O FH|lw

e e e e =l R

— = = O~ O N

S = = = O = =W

—_ O = R R R
1

— = O O = =
1
1

— oA = NN~ W

1
1
1
1
Skane Region 1
0
2
1

Western Region

Table 4.2: Number of small areas included in the analysis, by SNRA region,
population center size class and small area buildings type. Non-existing
strata are indicated by hyphens.

4.4 Analysis

Assume that the road link lengths according to the control are the true
lengths. Then, by summing the frame link lengths for a small area (i, q), we
get an observation on Np;4, and by summing the link lengths according to
the control, we get Nj;. Under the additive error model in Equation (3.1),
the error in the frame road length Np;, is given by (;, = Npig— Nig, whereas
under the multiplicative error model in Equation (3.2), the error is given by
Ciq = NFig /Niq. For the 65 small areas comprised by our analysis, the errors
were calculated under both the additive and the multiplicative error model
(see Figure 4.1). We see that in the additive case, the points scatter around
an imaginary horizontal line placed at a level close to zero, whereas in the
multiplicative case, the scatter is around a line at a level close to one. Hence,
under both error models, data suggest that the frame road lengths, on the
average, are correct. In the additive case, the variance for the scatter of
points seems constant, exactly as we had hoped for. In the multiplicative
case however, the point scatter shows a tendency to narrow with the true
length. This is a sign that the variance of the frame road lengths rather
is proportional to the true length than to the squared true length (as the
model states). However, due to the shortage of observations for large values
of the true length, it is hard to draw any certain conclusions.

In our study design, population center size classes are nested under the
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Figure 4.1: Observed errors under additive error model (top) and multi-
plicative error model (bottom).
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SNRA regions, and small area strata are nested under the size class levels.
Thus, it is a three-stage nested design (see, e.g., [9]). To account for the
design, we introduce some new notation. Consider again the length error
for small area (i,q), ;,- Let (;, = (514 if population center i is included in
SNRA region r and size class s, and small area ¢ is included in small area
stratum (development type) t. The analysis of variance (ANOVA) model
for our design is

grstq = o+ /67" + ’75(1*) =+ 5t(rs) + €(rst)q (41)

where « is an overall mean, 3, is the random effect of the rth region, v, is
the random effect of size class s within the rth region, () is the random
effect of small area stratum ¢ within size class s within the rth region, and
€(rst)q 18 a random error.

Each of the factors — region, size class, and small area stratum — has
a small number of possible levels (7, 3, and 4, respectively). Nevertheless
we consider these factors as random. Regarding the regional factor, we are
not interested in the administrative division in itself, but rather in potential
differences in the behavior of the staff. Hence, we view the seven SNRA
regions as a selection of levels from a population of behavior levels. Cor-
respondingly, we are not interested in the divisions in size classes or small
area strata, but in potential differences in the quality of the maps.

Assume that 3,., Vs(r)> Ot(rs) and €(rgp)q are independent with variances
2
v
are zero. That is, we want to know whether variability exists in the length

a%, o ag and o2, respectively. We would like to test if these variances
errors that is due to SNRA region, population center size class, or small
area stratum. We do not have enough data to perform such tests ‘by the
book,” but use instead a simplified (approximative) test procedure. To put
it briefly, we look only at one effect at the time and ignore the nesting.
This was done for each of the three effects and for the observed errors under
both the additive and the multiplicative error model. The relevant ANOVA
tables are given in Appendix B. In no case is the hypothesis of zero variance

rejected. We take this as an indication that the variances a%, o2, and ag

’y’
are all zero.

We proceed by viewing the observed length errors {(iq} simply as iid
random variables with mean 0 = « and variance 72 = ag. As unbiased

estimators of # and 72, we use the sample mean ¢ and the sample variance
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Error Sample statistics 95 % c.i. 95 % c.i.
structure ¢ sg for 0 for 72
Additive 18262 85481.915 [-89.340,52.816] [0, 115296.998]
Multiplicative ~ 1.00209  0.00629 [0.98281, 1.02137] [0,0.00848]

Table 4.3: Sample statistics and confidence intervals (c.i.). The intervals for

72 are upper bounded.

sg, respectively. The resulting estimates are given in Table 4.3. The con-
fidence intervals shown in the table hold under the added assumption of
normally distributed errors. We see that under the additive error model,
the hypothesis of # = 0 cannot be rejected. If in fact the hypothesis is true,
Corollary 3.2.1 applies and the length error does not bias ¢ Fy O Rp. Under
the multiplicative error model, the hypothesis of # = 1 can not be rejected.
If this hypothesis is true, Corollary 3.2.2 tells us that the length error does
not bias the estimators. We conclude that irrespective of which error struc-
ture we look at, our data do not suggest that the length error will cause bias
in the estimators.

We are also interested in the possible variance increase due to the length
error. Although the additive error model with equal error expectations and
variances seems to fit the data somewhat better than the multiplicative coun-
terpart (according to Figure 4.1), we choose the multiplicative model. The
reason for this is simply that if the errors are multiplicative, Corollary 3.2.3
applies and we can easily estimate the approximate variance increase due
to the use of Rp instead of R. Since the observed errors are numerically
quite small, the choice of model is not so crucial. If our point estimate of 72
in Table 4.3 coincides with the true parameter value, the relative variance
increase is only about 0.6 percent. Hence, at least for the ratio, the variance
increase seems negligible.
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Chapter 5

On erroneous weighting of
survey data

5.1 Introduction

The goal of a survey is to estimate some population characteristics or pa-
rameters of interest. Typically, a parameter can be expressed as function
of several population totals. A simple example of a linear function is the
population mean. In the SVS, the main parameter, average speed, is a non-
linear function (a ratio) of two totals. No matter what the function looks
like, the problem of estimating a population total obviously has a key role
in survey sampling. If the sampling is conducted without replacement, the
most important unbiased estimator is the 7 estimator. In with-replacement
designs, unbiasedness is assured by use of the pwr estimator (the name from
Sarndal et al. [11, p. 51]; pwr refers to “p-expanded with replacement”).
We have seen that in the SVS, these two estimation principles are com-
bined, due to the fact that in the first sampling stage, sampling is done
with replacement, while in the subsequent stages, sampling is done without
replacement.

The 7 estimator and the pwr estimator presuppose the knowledge and
use of the correct inclusion or drawing probabilities, respectively, for sam-
pled elements. The probabilities are used to weight obtained data in order
to reach the population level. As pointed out in Chapter 1, the frame prob-
lem addressed in this thesis may be looked upon as a case where incorrect
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5. On erroneous weighting of survey data

inclusion probabilities are used in the estimation. This view on our prob-
lem inspired us to investigate in some generality the consequences of basing
calculations of survey estimates on incorrect weights. The result of our ef-
forts is presented in this chapter. Expressions are given for the bias of the
7w estimator and the pwr estimator, as well as for the estimators of their
variances, if incorrect weights are used. Furthermore, some examples of use
of erroneous weights are examined. In the SVS, the correct inclusion proba-
bilites in the final sampling stage are unknown (since the true lengths of the
road networks in selected small areas are unknown). We revisit this problem
and fit it into the general theoretical framework (while ignoring the previous
sampling stages).

Another frame problem, that of unrecognized multiplicity in the frame,
is also treated. If the multiplicity of the frame can not be determined, the
correct inclusion probabilities (or drawing probabilities, depending on how
the sampling is done) are again unknown. An example where the correct
inclusion probabilites are available, but still not used, is also given.

5.2 Sampling without replacement

In without-replacement sampling designs, unbiased estimation of a popula-
tion total is achieved by use of the 7 estimator. Expressed in words, this
estimator is simply the sample sum of the observed values, weighted by
their inverse inclusion probabilities. A thorough theoretical motivation for
this estimator is given in Sérndal et al. [11, Ch. 2]|. In our investigation of
the consequences of using incorrect weights, we will follow the same path
as Sarndal et al, with the only difference that we replace the correct first-
and second-order inclusion probabilities, 7 and 7y, with some (possibly)
error-prone entities 7}, and 77;. Hence, we talk about 7* estimation instead
of 7 estimation.
The 7* estimator of a total t is given by
e =S 2 (5.1)
S Trk
where each sample value y; is weighted by 7. Equivalently, tr= can be
written as

s Yk
b = ZU Ik?f_i (5.2)
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5.2. Sampling without replacement

where I is the sample membership indicator of element k,

Ik:{l ifkeS (5.3)

0 otherwise

(k € U). S is the set-valued random variable that can take on every sample
s possible under the design in question. For k,l = 1,..., N, the expected
values and covariances are

E(Ik) = Tk; C(Ik;Il):ﬂ—kl_ﬂ—kﬂ—l :Akl (54)

where mp = Y- 5.0 (8), Thi = D gspea P (5), “s 2 k7 denotes that the sum is
over those samples s that contain the given k (and “s 3 k&I” that the sum is
over those samples s that contain both & and [), and p (s) is the probability
of selecting the sample s. The expected value of t,+ is given by

)=> ", E(I) jj—’; =3 :—iyk (5.5)

Thus, the bias of {;+ as estimator of ¢ is given by

The variance of ¢+ is given by
V() =Y AgZt 2L (5.7)
An estimator of V (fﬂ*) is obtained by weighting Ay with 77
- Ak 9
S Mgy TR
The expected value of V (t}*) is given by

N A
rlre] - SE ot

Wkl yk Y
= _— = 5.9
ZZW (5.9)

Obviously, V(% ( ﬂ*) is unbiased for V' (t}*) if 73, = 7y for all k, 1 € U.
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The variance increase due to the use of £, instead of ¢ is given by

7 n Ye Ui Yk Y1
Vite) =V (tr) = Ay | == —-==. 5.10
) V) = E, o (BE-22) 6w
For fixed size sampling designs, the variance increase can equivalently be
expressed as

v =T | (- 5) - (5-5)]
(5.11)

Equation (5.11) is derived by use of a variance expression due to Yates and
Grundy, see [11, pp. 45-46].

We will now take a look at some examples of use of erroneous weights in
without-replacement sampling designs.

5.2.1 Example 1: Frame with coverage errors

We start by looking at a weighting problem arising from use of a frame
with coverage errors. The conditions resemble those in the final stage of
sampling for the SVS, with one important difference. In the SVS, a multi-
stage sampling design is used, and the sampling is done with replacement
in the first stage. The variance estimates are then calculated by use of the
estimates of the totals for the first-stage sampling units. In this example,
to simplify, we assume a one-stage without-replacement sampling design.
Then, the variance is estimated directly from the sample data.

Consider the set of frame units F' of size M. Some target population
elements may be missing in £, and the frame may also contain elements that
are not part of U, but the frame has no other deficiencies. An SI sample s
of frame units of size n is drawn from F'. The target population size N is
unknown. We are interested in a situations where it is reasonable to make
the following assumption.

Assumption 5.2.1 The sample s is an SI sample from U.

For example, a survey is to be conducted by means of an area sample.
The sampling frame of area units is established on the basis of poor maps,
resulting in a frame with coverage errors. Furthermore, the low quality
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of the maps makes it hard for the field staff to accurately locate sampled
areas. When they fail, they make a haphazard choice of areas to study. This
informal selection procedure is such that every area in the target population
has a chance of being included in the sample, while areas not in the target
population do not.

Under Assumption 5.2.1, the true, but unknown, element inclusion prob-
abilities and delta values are

B ~ fork=1eU (5.12)
T e fork#leU '
£ 1—3) fork=1eU
Ay = N(,N 5.13
M {%N”(TND fork#£1eU (5.13)

The 7 estimator # of ¢, and its variance V' (t}), are obtained by inserting
these values in Equation (5.1) and (5.7), respectively. We get

tr = Nis (5.14)

where g = >, yr/n, and

V(i) =N (1- ) ‘%% (5.15)

where 57 ="y (ye — 90)* / (N = 1), g = Sy yw/N-
The inclusion probabilities available to the investigator are

i fork=1e€U
T = n(n—1)
AOT=D) fork#£1e€U

Using these probabilites, the estimator of ¢ is
b = Mijs = —tr. (5.16)
Apparently, the bias of {+ as estimator of ¢ is given by

B (lx) = E (Ine) —t = (%—1) t. (5.17)

The variance of ¢« is

2
) V (tx) (5.18)
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and the estimator of V' (t}*) is

V(i) = M? (1—%)%3

SR (F) e e

The bias of V (fﬂ*) as estimator of V' (fﬂ*) is given by
BV (i) = B[V ()] -V (ire)
_ {(1 - %) (1 - %)_1 - 1} V (i), (5.20)

We see that the size and direction of the bias of ¢« and 1% (t}*) depends
on the difference in size between the frame population and the target pop-
ulation. One possible way of handling the problem that M but not N is
known, is to view M as a function of N and a random error. This is the
strategy we use for tackling the SVS frame coverage problem.

5.2.2 Example 2: Stratified disproportionate sampling

This is an example of a case when the correct design weights are available
but not used. A popular sampling method is the STSI: stratified sampling
with SI sampling applied in all strata. If the stratum sample sizes are deter-
mined by proportional allocation, the first-order inclusion probabilities 7y,
coincide with those applicable in (unstratified) SI sampling. Hence, the ST
formula for point estimation of a population total can be used. This is not,
however, true for disproportionate allocations in general. Hansen et al. [5,
Ch. 2 Sec. 8] noted that, if disproportionate allocation is used but the inves-
tigator uses the ST estimator of ¢ (and hence fails to use the proper strata
inclusion probabilities), the employed estimator may be biased.

Let us look at the statistical properties of the SI estimator when ap-
plied on an STSI sample. We start by introducing some notation. Let the
population of interest, U, be partitioned into H strata Uy, ..,Up,...,Ug of
sizes N1, .., Np, ..., Ni, respectively. From each stratum h, an SI sample
sp, of size ny, is selected. The resulting total sample is s = UhH:1 sy, of size
n = Zthl np. Since the strata form a partition of U, and the sampling is
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independent in each stratum, the m estimator of ¢ for a stratified design is
H

br = thn (5.21)
h=1

where 5, is the 7 estimator of t;, = ZUh yr- Correspondingly, the variance
of t, is given by

H
V (tx) =DV (thr) -
h=1
The appearances of ¢, and V (t}m) are given by Equation (5.14) and (5.15),
respectively.
Erroneous use of the SI estimator of ¢ means that the weighting is done
by use of the inclusion probabilities

. n fork=1eU (522
Tl = n(n— :
T\ Ny fork#leU

The resulting estimator of ¢ is

N H N <l
- _E — S hy :E Lh
tﬂ,* = n syk . " Nhthﬂ h_lthﬂ- . (523)

Obviously, the bias of ;- as estimator of ¢ is given by

H
B (txs) = E (") t:Z(%;—Zl) th (5.24)
1

H 2
V () = Z: (%Z—f;) V (fnr) (5.25)

5.3 Sampling with replacement

In with-replacement sampling designs, a population total is estimated with-
out bias by the pwr estimator. At first glance, this estimator resembles
the 7 estimator, since the observed values are weighted (or “p-expanded”)
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by their inverse probabilities. The probabilities are, however, the drawing
probabilities, not the inclusion probabilities. Only in a sample of size one
do these coincide. Also, the pwr estimator is a sample average, not a sample
sum, of the weighted observations.

The construction of the pwr estimator is explained in Sérndal et al. [11,
Ch. 2]. We will again follow the same line of argumentation as in the cited
reference, but replace the correct drawing probabilities py with the (possibly)
error-prone p;.. Hence, we will talk about the pwr* estimator instead of the
pwr estimator.

The pwr* estimator of ¢ is given by

R 1 m yk:
Frogs = — E Zhv 5.26
pwr m < pzu ( )

where m is the fixed number of draws, k, is the element selected in the vth
draw (v = 1,...,m), yk, is the study variable value for k, and 1/p; is the
weight attached to k,. Equivalently, fpwr* can be written as

m

N 1 * 7%
tpwr* = % Z Zy = Zos (527)
v=1

where Z; is the random variable such that Z; = y;/p; if k, = k. For
v =1,...,m, the expectation and variance of Z} are, respectively,

* b
E(Z) = Y. p—fyk = jig (5.28)
k

2
* Yk Pk 2

VI(Z,) = g - - g — k) Pk = O« 5.29

(Z;) U (pk U pky Z ( )

where pi, = Pr(Z; = yi/p}). Since the Z}s are iid random variables, the
expected value of fpwr* is given by

E (fpwrr) = pige (5.30)

Obviously, the bias of fpwr* as estimator of ¢ is given by

B (tpwr=) = E (fpwr+) — t = ZU (@ — 1) Yk (5.31)

Pk
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5.3. Sampling with replacement

The variance of fpwr* is given by

A o2,

V (fpwre) = - (5.32)
and an unbiased estimator of V (fpwr*) by

o} ~ 52 *

\%4 (tpwr*) = % (5.33)

* % ) 2
where S%.,.=Y0r, (Z5 — Z5,)" [ (m —1).
If the weights pf = py, are used, piz. = t and 0%, = ¢ [(Yx/Pk) — t]* D-
Then, fpwr* equals the pwr estimator fpwr of t.

5.3.1 Example 3: Frame with unrecognized multiplicity

In Example 1, we looked at a weighting problem arising from use of a frame
with coverage errors. Another frame error which may cause weighting prob-
lems is when the frame contains duplicate listings; that is, multiple elements
in the frame population are attached to one element in the target popula-
tion. As pointed out by Lessler and Kalsbeek [8, p. 73], it is not always
feasible to determine multiplicity:

For example, one may wish to survey users of a certain prod-
uct; however, it may only be feasible to sample people at the time
of purchase. This is a sample of uses rather than users. People
will vary in terms of the number of times they use the product,
and more frequent users will have greater chance of being in the
sample.

As in Example 1, consider the set of frame units I’ of size M. The
only frame imperfection now is that the number of frame units having a
link with element k, L., exceeds one for some k € U. Assume that a
selection of frame units from F' is conducted by simple random sampling
with replacement (SIR). Frame units linked to the same element as a unit
already obtained are not eliminated if they are drawn again. The sample
selection will result in an ordered sample os of frame units. The notation
os can equivalently be used for the resulting with-replacement sample of
elements from U. If m independent draws are made from F' in order to
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5. On erroneous weighting of survey data

obtain os, the probability of selecting element k,, pg,, equals L. /M for
v =1,...,m. Hence, os is a pps sample of elements, drawn with probability
proportional to the number of duplicates in the frame.

We derive fpwr and V (fpwr) under current design by inserting px, =
L., /M in Equation (5.26) and (5.32), respectively. We get

. M Ny,
towr = oo Z o (5.34)
—1 v
and
X 1 M 2Lk
14 (tpwr) = ZU (L_kyk — t) 3 (5.35)

If the investigator treats os as an SIR sample of elements from U, she
will use the weights l/p”,;y = M for k € U, v = 1,...,m. The resulting
error-prone estimator of ¢ is given by

tpwr* = M@jos (536)

where Jos = S| Yk, /m. From Equation (5.31), the bias of £y as esti-
mator of ¢ is given by

B (tpwr) = B (fpwrr) =t = (L = 1)y (5.37)
As estimator of the variance of fpwr*, the investigator will use
R 52
V (fpwre) = M? 22 (5.38)
m
where S2,0 = >0 (Yk, — Gos)? / (m — 1). The employed variance estimator
is unbiased for the variance of fpwr*,
A 1 2 Ly
V (tpwer) = — ZU (Myk - ZU L.k@/k) T (5.39)

5.4 Summary

The use of a sampling frame suffering from either coverage errors or mul-
tiplicity may result in incorrect weighting of the observed values. Faulty
weighting may also arise by, for example, not taking stratification properly
into account. The use of incorrect weights will bias both the 7 estimator
and the pwr estimator of a total. The estimator of the variance of the w
estimator will also be biased, but not the variance estimator for the pwr
estimator.
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Chapter 6

Summary and final remarks

There is a strong belief at the SNRA that if one succeeds in reducing the
average speed on the roads, this will substantially reduce the number of
traffic deaths and injuries. Therefore, the annual SVS estimates of average
speed receive a lot of attention, and of course they need to be reliable. The
uncertainty due to the fact that only a subset of the population is surveyed
is quantified by confidence intervals, but these do not give the full picture
if there are nonsampling errors present. In this thesis, we investigated one
possible source of added uncertainty in the survey results: the road lengths in
the frames used in the final stage of sample selection. If these lengths are in
error, how are the statistical properties of the estimators affected? Average
speed is a complex parameter since it is the ratio of two population totals:
total vehicle mileage and total travel time. At present, survey estimates of
the totals are not published. Still we found it illustrative to let the estimator
of a total be comprised by our study, since the problems of estimating a ratio
and a total are closely related.

Our theoretical derivations, supported by an error model, resulted in
expressions for the effects of the length error on the bias and variance of
the estimators. In particular, we showed that if the errors are multiplicative
with expectation of one and constant variance, the length error has no bias
effect on the estimator of average speed, and the relative (approximate) vari-
ance increase for this estimator simply equals the error variance. We also
collected some data on the real errors in the frames. The observed errors
were found to be quite small, and for simplicity we choose the multiplica-
tive model, although the additive model actually had a slightly better fit.
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6. Summary and final remarks

The multiplicative errors were found to have an expectation close to one,
and their variance was estimated to less than one percent. Putting all this
together, our investigation led us to make the following conclusions (which
are good news to the survey management). First, neither the estimator of
average speed nor the estimator of a total seems to be biased by the length
error. Second, the variance increase due to the length error, for the average
speed estimator, seems to be negligible.

It should be noted that our results are useful only if one trusts our model,
since the entire investigation relies heavily upon it. The model includes a
very strong assumption: that the actual final-stage samples are selected
by simple random sampling from the true road networks. For the future,
we recommend that the data-collection instructions be given an overhaul.
Improved instructions would increase the chances that the model assumption
really holds. Also remember that the only frame imperfection considered in
this study was the length error. The empirical study exposed several other
imperfections, associated with the last-stage frames, that need to be dealt
with.

At first glance, the problem of erroneous road lengths seems unique to
a traffic survey like the SVS. However, apart from the implications for data
collection, the problem may be more generally formulated as that of using
incorrect inclusion probabilities in survey sampling. Since this problem to
our knowledge has not been treated in the literature, we paid it some at-
tention in Chapter 5. The most important unbiased estimators of a total
are the pwr estimator (for with-replacement sampling designs) and the 7
estimator (for sampling without replacement). The observations are then
weighted by the inverse of their drawing or inclusion probabilities. We saw
that use of other than the correct weights implies bias in both the estima-
tors. The estimator of the variance of the 7 estimator will also be biased,
however not the variance estimator for the pwr estimator. The latter result
is important for the SVS, where the sampling in the first stage is done with
replacement. It follows that despite the length error, the variances of the
survey estimators will be correctly estimated.

We conclude with some suggestions for further work. Our study does not
give a clear picture of the impact of the road length errors on the variances of
the estimators of the totals. Thus, if publication of survey estimates of the
totals is suggested, some additional work is needed. Otherwise, we suggest
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that future research is directed towards other nonsampling errors of possible
importance.

The error source that perhaps first comes to mind is the measurement
instrument. Surely there must be errors associated with the equipment —
the tubes and the traffic analyzer — used for observing the road traffic?
In fact, several problems are known to occur. For example, if the tubes
are not parallel, or if the distance between them differs from the intended,
this will result in incorrect time registrations. If the vehicles are either
accelerating or decelerating during passage, this will also result in erroneous
time registrations. These types of errors have already been subjected to
extensive analyses (see, e.g., [1]). However, a possible measurement error
that has not yet been investigated is the effect of the person installing the
equipment on the road — the analogue to the ‘interviewer effect’ known from
interviewer surveys.

The most serious nonsampling error that remains to be investigated is
probably the one of missing observations. It is common to distinguish be-
tween two types of missing data in a survey: unit nonresponse and item
nonresponse. In the SVS, unit nonresponse corresponds to a complete loss
of data from a measurement location, whereas item nonresponse corresponds
to the loss of data for some, but not all, of the passing vehicles. Neither
type of nonresponse is likely to occur at random. An important cause of
nonresponse is the capacity limit of the traffic analyzer, which results in a
greater loss of data if the traffic is heavy.

Another cause of nonresponse is that some locations are difficult or even
impossible to observe. For example, cars parked by the roadside may ob-
struct the installation of the tubes. Typically, such problematic places are
never observed, but replaced by neighboring locations. In other cases, mea-
surements from sampled locations are dismissed due to low-quality data;
such locations are re-measured later. These procedures represent two differ-
ent kinds of ‘field substitution.” Earlier work by the author [6] suggests that
the latter type of substitution probably has the least impact on the survey
estimates, since the variation in speed measurements due to twentyfour-hour
periods was found to be smaller than the location-to-location variation.
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Appendix A

Proofs

A.1 Proof of Theorem 3.2.1

Let N denote the (random) vector of all frame road lengths Ngj,. By the
use of conditioning, the pm-expected value and pm-variance of an estimator
1) can be written as

Epm <QZJ) = FEn [Ep <QZJ |NF):| ;
‘/pm ({b) = By [Vp (121 ‘NF):| + Vin |:Ep (121 |NF):| .
It suffices to show that under the SVS sampling design p (s) and the frame
errors model m, E,, (f pyi) equals the stated expression for £, (f pﬂyi) and
Vom (f Fyi) equals the stated expression for V), (f Fﬂyi). Let subscript I |Ng
indicate conditional expected value or conditional variance with respect to
the design used in stage two, given os; and Np, and subscript I1] |Ng
indicate conditional expected value or conditional variance with respect to
the design used in stage three, given osy, srr;, and Np. Then,
Eym (tpyi) = Em [Ernng Erinng (tryi)] = B
Vom (tryi) = Vi [Brong Briwg ((ryi) ] + B [Vinse Errng (Eryi)]
+Ew [Bring Virnne (Eryi)] = Vi + Va + Vs,
We start with the expectation

B NFiq B NFiq B Hig
E=En (ZUIH Niq tqu a ZUIH En Niq tqu a ZUIH N—iqtqu
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A.1. Proof of Theorem 3.2.1

which equals the stated expression for F,,, (fpﬂyi). Now we turn to the
variance. First,

NFiq Nriq 7ig \* 2
i="bn (ZUIM Niq tyiq) N ZUIH Vi ( Niq via ) = ZUIH N; tyiq:

Second,
L—fmi 1 Nri 1 Npi 2
Vo = En |Niy gy o g,
2 " I nrri Nip—1 ZUIU Nig Y N ZU}M Nig v
1—fmi 1 Nri 1 Npi 2
= Ny En || =2tyiq — — ——Lty;
i nrri NIIi -1 ZUIH " Niq v NIIi ZU}H Niq v

1—fr [ 1 Np;
= NZ. — E Vo[ =29y .
e N &=Umi "\ Nyg 2

_ Nz'l—flli 1 Z Oiq 2t2~
" npr | N Ui \Nig ) ¥
1 Miq 1 :uiq 2
- My __ Yy
+ N][i -1 ZUIH [Niq v N[[i ZU[U Niq v

and finally,

‘/E’»:Em

Nir; Nriq 2 .
nir; ZUIM ( N; ) V}’ (t”?ﬂQ)]
_ NII’[ ‘/;; (iﬂ'yiq) 9

B F]z ZUIU N—iqum (Nqu)

_ M Z Vo (tAwyiQ)

2 2
g T Mig) -
niy “~Ui N, (g + 1iq)

Adding Vi, V4 and V3 gives, after simplification, the stated expression for
Vom (tFﬂyi)'
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A. Proofs

A.2 Proof of Corollary 3.2.3

The variance increase due to the use of Fy instead of fy as estimator of ¢,
is immediately obtained from Corollary 3.2.1 by replacing a?q with quT2 in
Equation (3.8). In the same manner, we obtain

AV (RF) — AV, (R) = 2\
where

Ny
11 1 Nip;
N _ﬂE

;o 2
tZ mr = Pi Nri Urrs [V}’ (tﬂ’Ezq) + thq]

It remains to show that A = AV, (R) From Lemma 2.6.1, the approximate
p-variance for R is given by
Ny

N1 (1 X Mg Nrri A
MM@Z@&E?i”EéﬁﬂWM+”ELJHWMH

- nrri

where

1—fr 1 toi \”
Vierr: = N2, tpiq —
EIIi IT3 niri Nlli -1 ZUI” Eigq N]]i

_ N Z 2 N — 1 Z 2 L N~ niio
U £ Ui £ nrri Nip—1 Eir

nrri nrri Nrri — 1
Hence,
AV <R> )\ i 1 1 % |:t12Ez 1 (N[[i nrr; — 1 Z t2
! 2my < | pi  pi \nini Ny — 1 &=Urn P

Nrri —nrni )]
R A L Y
nrri (N — 1) 7

N
BTN Y
Zmp = | pi nrri (N — 1)

1 Nipg nmflz tg']
pi nrpi Nipi — 1 &=Up; P4

N,
11 " INminmi—1 g/, )
T 2m v s Noro — 1 tEi_E:UltEiq .
z I i—1 binrri INIIG IIi
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A.2. Proof of Corollary 3.2.3

Since, in practice, nry; equals one for all i, the derived expression is zero
and we are ready.
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Appendix B

ANOVA tables

B.1 Under additive error model

Source of Sum of  Degrees of Mean
Variation Squares Freedom  Square Fy  P-value
SNRA Region  416735.9 6 69456.0 0.80 0.5761
Error 5054106.6 b8 87139.8
Total 5470842.6 64
Source of Sum of  Degrees of Mean
Variation Squares Freedom  Square Fy  P-value
Size class 89074.4 2 44537.2 0.51  0.6012
Error 5381768.1 62 86802.7
Total 5470842.6 64
Source of Sum of  Degrees of Mean
Variation Squares Freedom  Square Fy  P-value
Small Area

Stratum  101240.4 3 33746.8 0.38 0.7653
Error 5369602.2 61 88026.3
Total 5470842.6 64
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B.2. Under multiplicative error model

B.2 Under multiplicative error model

Source of Sum of Degrees of Mean
Variation Squares  Freedom Square Fy  P-value
SNRA Region  0.0341 6 0.0057 0.90 0.5036
Error 0.3683 58  0.0063
Total 0.4024 64
Source of Sum of Degrees of Mean
Variation Squares  Freedom  Square Fy  P-value
Size class 0.0238 2 0.0119 1.95 0.1507
Error 0.3786 62 0.0061
Total 0.4024 64
Source of Sum of  Degrees of Mean
Variation Squares  Freedom Square Fy  P-value
Small Area

Stratum  0.0169 3 0.0056 0.89  0.4508
Error 0.3855 61 0.0063
Total 0.4024 64
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