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Variance reduction for trend analysis of hydrochemical data
from brackish waters

Claudia Libiseller1 and Anders Nordgaard1

Abstract

We propose one parametric and one non-parametric method for detection of monotone
trends in nutrient concentrations in brackish waters. Both methods take into account
that temporal variation in the quality of such waters can be strongly influenced by
mixing of salt and fresh water, thus salinity is used as a classification variable in the
trend analysis. With the non-parametric approach, Mann-Kendall statistics are
calculated for each salinity level, and the parametric method involves the use of
bootstrap estimates of the trend slope in a time series regression model. In both cases,
tests for each salinity level are combined in an overall trend test.

1 Introduction

Cultural eutrophication of coastal and marine ecosystems has become a
widespread problem over the past decades. The most severe effects can be found
in semi-enclosed waters such as the Baltic Sea (Richardson and Jørgensen, 1996;
Wulff et al., 2001) and estuaries, in which there is a limited exchange of water.
Considerable efforts have been made to reduce this eutrophication, and both the
Helsinki Commission (HELCOM) and the Oslo-Paris Commission (OSPAR)
have recommended a 50% reduction of nutrient inputs to the sea. However, the
impact of implemented measures can be difficult to verify for two reasons. First,
there can be considerable time lags between measures and effects (Grimvall et
al., 2000). Second, the mixing of salt and fresh water can introduce natural
fluctuations in water quality that can result in prolonged concealment of
important anthropogenic trends.

In the present study, we examined whether the human impact on phosphorus
concentrations in brackish waters can be elucidated by taking into account
variation in the salinity of the collected water samples. In particular, we
investigated how information about salinity classes can be incorporated into
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parametric and nonparametric test for trends in phosphorus. Splitting collected
data into two or more subsets is widely practised in the environmental sciences.
For example, Fryer and Nicholson (2002) used the body length of fish to divide
data on mercury concentrations in muscle tissue from these animals into two
groups, and they subsequently applied smoothers to examine temporal changes in
the two time series. Simmonds et al. (1997) split tropospheric data into samples
representing “background” and “polluted” air masses and thereafter assessed
temporal trends by computing moving averages. In the current study, we
combined trend tests for different subsets of data into an overall test using one
non-parametric and one parametric method. The nonparametric approach we used
is based on multivariate Mann-Kendall tests for monotone trends (Hirsch and
Slack, 1984; Lettenmaier, 1988; Libiseller and Grimvall, 2002), and the
parametric approach involves bootstrap confidence intervals for the trend slope in
linear regression models (Efron and Tibshirani, 1993).

2 Natural variation in the Baltic Sea

At the surface of the Baltic Sea, the water is well mixed by the action of the wind,
and the concentrations of nutrients exhibit pronounced seasonal variation. There
is a strong halocline below the surface layer. Ocean water from the North Sea
(Kattegat) can enter the Baltic proper through the Straits, but the salinity of the
upper layer of the sea only occasionally reaches a level high enough to enable
mixing with the much saltier bottom water. On average, the major inflows of
ocean water that are required to allow such mixing occur only about nine times a
century, and, between those events, conditions are often hypoxic or anoxic in the
stagnant bottom water (Stigebrandt, 2001).

3 Data

The data set we analysed included monthly measurements of nutrient
concentrations and other hydrochemical parameters collected at a large number
of sampling sites in the Baltic Sea during the period 1989–1998. At each site,
information was gathered at different depths, with a resolution of 5–10 m. We
chose to use data from a sampling site in the Western Gotland Basin (57°07'N;
17°40'E) to illustrate the statistical procedures.
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4 Trend testing of total phosphorus in the Baltic Sea

As indicated in Figure 1, the major inflows of sea water can render conventional
univariate trend tests inappropriate. The temporal variation in phosphorus has a
long-wave component, and there is a striking coincidence between the medium-
and long-term variation in phosphorus and salinity. The close relationship
between levels of phosphorus and salinity is further illustrated in Figure 2, which
shows that there was a considerable reduction in variance when the phosphorus
concentrations were plotted against salinity instead of depth.

Together, the results presented in Figures 1 and 2 suggest that salinity should
be regarded as a covariate in the tests for nutrient trends. The work described
below demonstrates how this can be achieved by using nonparametric and
parametric approaches.

Figure 1. Time series of total phosphorus concentrations and salinity in the Western
Gotland Basin. The graph shows data recorded at a depth of more than 80 m.
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Figure 2. Total phosphorus concentrations in the Western Gotland Basin plotted
against depth (left) and salinity (right).

4.1 A non-parametric trend test

The classical univariate Mann-Kendall test (Mann, 1945; Kendall, 1975) is a
non-parametric test for randomness against trend, and the test statistic for a time
series nkyk ,...,1, = , is computed as follows:

( )∑
<

−=
ij

ji yysignT nij ≤<≤1       (4.1.1)

Under the null hypothesis of no trend, and if there are no ties or missing values,
the test statistic is asymptotically normally distributed, with mean 0 and variance

( )( ) 18521 +− nnn . Over the past decades, several other versions of Mann-
Kendall tests have been developed to accommodate ties, seasonality, and missing
values (Hirsch and Slack, 1984). In addition, a simple estimator of the covariance
between two Mann-Kendall statistics (Dietz and Killeen, 1981) paved the way for
combined trend tests using several Mann-Kendall statistics.

To perform an overall trend test for all seasons and salinity levels, we used
what is known as the covariance sum test that was developed by Lettenmaier
(1988)  to detect trends at a network of stations. For this test, the test statistic can
be written

��1T1 TTZ = (4.1.2)
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where T is the vector of all univariate Mann-Kendall statistics, � is the variance-
covariance matrix of that vector, and 1 is a vector with all elements equal to 1.
Under the null hypothesis of no trend, Z converges weakly to a standard normal
distribution as ∞→n .

4.2 A parametric approach

Let us assume that, within each salinity class l (l=1,…,K), the time series of
nutrient concentrations has a linear trend and a deterministic seasonal pattern.
Then we formulate a time series regression model
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where S is the number of seasons, x1,…,xS-1 denote dummy variables for the
seasons, u1,…,uK-1 are salinity class dummies (= 1 for salinity class l+1, 0
otherwise), and �t are random errors that may be correlated. The indicated model
may have several observations ( tm ) for each time point, and we propose the
following overall trend parameter:
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where w(1),…,w(K) are weights proportional to the number of observations in the K
salinity classes. An unbiased estimator of � is
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where ( )2
1

ˆ,ˆ
clββ  are the ordinary least squares (OLS) estimates (stacked in the

vector �̂ ), and w  is the row vector ),,,0,,0,1,0( 2 Kww �� . A studentised
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where 2s  is the mean square error, and 1' )( −XX  is the information matrix of the
regression model.

The statistic t can be used to construct a confidence interval for �, provided
we have some information about the underlying probability distribution of the
data. However, to avoid making any assumptions about this distribution, we can
compute confidence intervals for � using a bootstrap approach.

The bootstrap in its original form (Efron, 1979) does not allow for any
dependencies between the observations. Nevertheless, several investigators have
proposed different ways of applying the bootstrap approach to such cases. We
elected to use what is designated the ARMA bootstrap method (Kreiss and
Franke 1992).

Applying OLS to the regression model (4.2.1) gives a set of residuals

Nee ,...,1 , where N is the total number of observations. Because several
observations are taken for each time point, the ARMA model can not be applied
directly to these residuals. Instead, the median residual for each time point is
calculated and is denoted te . Based on descriptive studies of such residuals, the
following auto-regressive model of order 2 is proposed:

ttitit aeee ++= −− 22,11,
~~~ ϕϕ                 (4.2.5)

 In this model, the ϕ-coefficients are estimated by OLS, and residuals are
subsequently calculated as

2,~ˆ~ˆ~ˆ 2211 ≥+−= −− teeea tttt ϕϕ (4.2.6

These residuals are standardised to zero mean and then resampled by ordinary
bootstrap. From the resampled residuals **

1 ˆ,...,ˆ naa , resampled versions

tit mie ,,1,~*
, �= , of te~  are calculated using equation (4.2.5) and suitable initial

values. Finally, resampled versions of yt are calculated according to
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and resampled OLS estimates of the β-parameters can be obtained.
It is now possible to calculate a resampling distribution for the statistic t, that

is, we compute resampled versions of t
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 by repeating the bootstrap procedure a large number of times. The quantities
*̂
Tβ and 2

*s  are the counterparts of Tβ̂ and 2s  from the OLS estimation on { }*
,ity .

To determine whether trends are similar in different salinity classes, we can

simply apply the corresponding bootstrap procedure to assess the estimates of

{ })2(
clβ  .

5 Results

To illustrate the proposed tests, we divided the above-mentioned total phosphorus
data for the Western Baltic Basin and into three salinity classes (6.2–7.4, 7.4–8.5,
and 8.5–9.6 psu) and four seasons (Dec–Feb, Mar–May, Jun–Aug, and Sep–
Nov). We chose to use a small number of classes to ensure that there would be a
representative number of observations for each combination of salinity class and
season. Two-sided tests and confidence intervals were applied to identify trends.

5.1 Non-parametric trend test

The Mann-Kendall test statistics were summed over the four seasons to obtain
such statistics for each salinity level (Table 1). Also, the sum of all trend test
statistics is given to represent a test statistic for the whole water column
(designated all levels combined in Table 1). This overall test statistic did not
suggest a significant trend. However, a significant downward trend in total
phosphorus did appear for the group with low salinity levels. Figure 3 shows the
analysed series of monthly median phosphorus and salinity levels divided into
four seasons and three salinity classes.
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Table 1. Trends in total phosphorus determined by Mann-Kendall tests performed
using salinity-stratified data and summation over seasons

Salinity level Z

Low −2.5*
Medium −0.17

High 1.52
All levels combined −1.68

*Test statistic significant at the 5% level

(a)

(b)

Figure 3. Time series of total phosphorus concentrations (a) and salinity (b) in the
Western Gotland Basin divided into three salinity levels and four seasons.
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5.2 Parametric trend test

We applied the parametric trend test to the same number of seasons as in the non-
parametric approach (i.e., four). Figure 4 shows a histogram of 1,000 values of *t
for trends in total phosphorus in the Western Gotland Basin.

According to the bootstrap principle, this distribution is a good estimate of the
true distribution of t. Therefore, we computed the 2.5 and 97.5 percentiles and
used these to construct 95% confidence intervals for Tβ  through equation  (4.2.4)
and correspondingly for the three )2(

clβ , and the results are given in Table 2.

Figure 4. Histogram of 1,000 values of *t  for trends in total phosphorus in the
Western Gotland Basin.

Table 2. Confidence intervals for the trend slope at different salinity levels and for the
combined slope representing all levels

Confidence interval

Salinity level Lower 95% Upper 95%

Low –0.0081 –0.0061

Medium –0.0022 –0.00062

High 0.0213 0.0227

All levels combined –0.0023 –0.00081
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6 Conclusions and discussion

Variation in total phosphorus concentrations in the Baltic Sea is highly dependent
on the mixing of waters of different origin. In particular, time series of such data
is influenced by a large undulating fluctuation caused by inflowing salt- and
phosphorus-rich water from the North Sea. The objective of our study was to
reduce this natural variation by dividing the time series into subgroups according
to levels of salinity. We examined trends for each of the series, and then
combined the results to obtain an overall statistic for the entire water column.

Fryer and Nicholson (2002) used a similar approach when they divided
mercury concentrations in muscle tissue into two categories on the basis of the
body length of the fish and subsequently applied smoothers to examine trends.
These investigators found it difficult to compute joint inference for both subseries
due to the correlation between the two groups, but they proposed a way to
circumvent this problem. In contrast, with the approaches we used, it was not
difficult to combine the different test statistics into a test statistic for the entire
water column, because it was possible to compute the covariances between the
test statistics or trend estimates for the different layers, and the combined
statistics were corrected for such dependencies.

Simmonds et al. (1997) have also split data into two series to examine trends
in "background" and "polluted" air masses. By comparison, the series of data
used in our study represented samples of Baltic Sea water, which exhibited
different salinities due to varying amounts of mixing of waters of divergent
origin (primarily fresh water from rivers and ocean water from the North Sea).
Accordingly, our results of the individual trend statistics indicate a negative trend
in total phosphorus in fresh waters.

The method we have proposed here is comparable to generally accepted
strategies that take seasonal variation into account, and that use time series
divided into different seasons (months) and compute a trend test statistic for each
group. The success of such a procedure depends on the availability of several
years of observations. However, the cycle under consideration in our study (i.e.,
fluctuation in phosphorus concentration caused by the mixing of salt and fresh
waters) was much longer, more precisely about nine years, thus the available
observations covered only one cycle. Accordingly, it was difficult to assess
changes in the time series that were not due to this smooth fluctuation.
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Consequently, we also suspect that the dependence of total phosphorus
concentration on the level of salinity would persist after the separation into three
salinity levels. A possibility to improve the proposed method is to include salinity
as a numerical covariate, instead of solely for the purpose of classification. This
can be easily achieved with a multivariate non-parametric trend test, such as the
partial Mann-Kendall test (Libiseller and Grimvall, 2002), or by including
salinity not only as dummy variable in the regression procedure.

The two different approaches we applied yielded comparable results. More
precisely, both methods suggest that phosphorus concentrations are decreasing in
waters with low salinity levels. The findings for the series with high salinity
(representing the bottom layer of the Baltic Sea) indicate an increase in
phosphorus, which might be explained by hypoxic conditions prevailing in recent
years.
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