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1 Introduction

Every summer since 1996, the Swedish National Road Administration (SNRA)
conducts a traffic survey on urban roads. The roads are thought of as par-
titioned into one-meter road sites, that are the population elements. Data
are collected for a random sample of sites (selected by a multi-stage sam-
pling design) by use of a measurement equipment installed on the road. The
principal aim of the survey is to estimate the average speed on the roads.

In earlier work by the author ([3], [4], [5]), the isolated impact of some
different sources of error on the speed survey estimators is investigated. Here,
we adopt a comprehensive view towards those errors, by formulating survey
models for the two types of estimators in use: an estimator of a population
total and of a ratio of totals. More precisely, we derive the estimators’ ex-
pectations and variances with respect jointly to the sampling design and to
models for errors due to frame imperfections and missing data.

Generally speaking, a survey model (mixed error model, total error model)
is a model that accommodates several sources of error and possible interre-
lationships among them. Knowledge of the relative importance of different
sources of errors can be used as an aid in making decisions on how available
survey resources should be allocated. Since attempts to reduce or control
errors of one type may have adverse effects on some other component of the
total error, knowledge of interrelationships among different sources of error is
important. Research on survey models date from the 1940s, and was initially
dominated by work performed at the US Census Bureau. A review on the
model development before 1970 is given in [1]; for later development, see |2,

Paper II]. For examples of some quite general models, see [6, Ch. 12] and [8,

Ch. 16].



2 Variables and parameters

The main study variables are the traffic flow, y, and the travel time, z. For
a given road site and time period, the traffic flow is the number of passing
vehicles, and the travel time is the total time the vehicles take to pass the site.
Let U denote the target population “in space” — the set of one-meter road
sites that make up the urban roads — and Uy the target population “in time”
— the set of twentyfour-hour periods that make up the time period of study.
The population total of y is given by ZUT > v Ui, where y} equals the traffic
flow in site k € U during twentyfour-hour period v € Uy. Correspondingly,
the z total is given by >, >, 2. Since the total vehicle mileage is a
measure of distance, and the total travel time a measure of time, their ratio
is a measure of speed.

In this report, we ignore possible time variability in y and z. That is, we
consider only the special case when y; =y, and z;; = z, forallv € Uy, k € U.
Hence, we will hereafter drop the time index and refer to t, = ) ,; yx as total
vehicle mileage, t, = ZU 2, as total travel time, and R = ¢, /t, as the average
speed on the roads. Instead of treating population totals for various study
variables as separate cases, we will often simply talk about ¢,: the population

total for an arbitrary study variable a.

3 Sampling design

Road sites are selected for observation by means of a three-stage sampling
design. A brief description, based on [3, Ch. 2|, of the different stages, will
now be given.

The primary sampling units (PSUs) are the N; population centers in
Sweden, labeled ¢ = 1,..., N;. The ith PSU is represented by its label i.
Thus, we denote the set of PSUs as U; = {1, ..., 4, ..., N; }. Population center
1 € U; is partitioned into N;;; small areas, labeled ¢ = 1,..., Ny, that
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represent the secondary sampling units (SSUs). The set of SSUs formed by
the subdivision of i is denoted U;p; = {1, ..., q, ..., N;p;}. Finally, the roads in
small area ¢ in population center ¢ are viewed as partitioned into [V;, one-
meter road sites (representing the tertiary sampling units — the T'SUs). This
set of sites is denoted Uy,.

The sample s of road sites is selected from the population U of urban

roads in the following way.

Stage I A probability-proportional-to-size (pps) sample of PSUs is drawn
with probability proportional to the number of inhabitants. At every
draw, p; is the probability of selecting the ¢th PSU. Let i, denote the
PSU selected in the vth draw, v = 1, ..., m;, where m; is the number
of draws. The probability of selecting i, is denoted p;,. If the ith PSU
is selected in the vth draw, then p;, = p;. The vector of selected PSUs,

(15 -y Byy ovy Gy ), 18 the resulting ordered sample os;.

Stage II For every i, that is a component of osy, a simple random (SI)

sample s;p;, of SSUs of size nyy;, is selected.

Stage IIT An SI sample s;, , of sites of size n;,, is drawn for every small area

q € Srri,-

To simplify, both in the above description and further, we basically ignore
some features of the design. In particular, we ignore that stratified sampling
is used in each stage. Moreover, we ignore that the three largest PSUs define
a take-all stratum in stage I; and finally, that SSUs are selected with pps
within one stratum (Residential Areas) in stage II.

In practice, within stratum, the sample sizes in each stage are m; = 10,

Nrri, = 1 and Ni,q = 1.



4 The prototype estimators of ¢, and R

In this section, we present the ‘prototype’ estimators of ¢, and R; that is,
the estimators designed for the ideal situation of no nonsampling errors.
Estimators of population entities are denoted by a hat; 7 estimators (Horvitz-
Thompson estimators) are also indicated by subscript 7.

Define the totals t,;, = ZUM ap and t,; = ZUM taiq, and note that

Ny Ny
ty = E tai = § § Urr, taz’q-
i=1 i=1 e

The prototype estimator of ¢, is given by

n 1 - 7€7rai 1 o 1 N[U ~

ta = —= = — - Lrai, 1

“ mr ; Di, mr — Di, Nili, Zslliu Tawgq ( )
where trq;, = (Nr1i, /n11i,) Zs[u,, tAmiuq and fm”-yq = (Ni,q/Mivq) ZSM ag. (If
1 € U; was selected in the vth draw, then fmn',, = {0 = (Niri/nrms) Zsm traiq
and friyg = traig = (Nig/1ig) 3, ar-)

The prototype estimator of R is
R=1,/t.. 2)

Let E, and V, denote the expectation and variance operators with respect
to the sampling design p. For nonlinear estimators, such as the ratio of
two estimated population totals, it is the practice to use the variance of a
linearized statistic as an approximation to the exact variance (for details on
this technique, see for instance [8, Section 5.5]). Let AV, denote such an
approximative variance, again with respect to p.

From [8, Result 4.5.1], #, is design-unbiased for t, (that is, £, (fa) = tg).



The variance of £, is given by

Ny 2
A 1 tai
Vilta) = —> i <— - ta)

mIzl i

fIIz 2
§ NIIz Tirrs Stan

111

1 1 Nip; o1l = fig oo
o 2= ZUm Nig Nig Sty )

myp = Pi I

where
f Nz S2 3t 2
i = ni/Nin; TN, — 1 @ /
II IT II taU; NIIZ —_ ]_ UIIi G NIIZ

1 taig \
iq = MNig/Nig; SZy. = E - -
fq n q/ q aUsq Niq 1 Uiy (ak N, )

iq

From [7, Sec. 6.8.2.], R is approximately design-unbiased for R. The

approximate variance of R is given by

avy(7) = o) (W

t2

where Vp(f E) 1s obtained from Vp(fa) by replacing a; with the new variable
Ei =y, — Rz. Since tg = 0, the first term of AV, (R) can be simplified as

follows:

_Z (th ) :_ZtQEz

5 Problems of frame errors and missing data

In practice, various nonsampling errors prevent the use of the prototype
estimators. Estimation with frame errors is treated in [3], estimation with
missing data in [5]. In this section, we recapitulate the nature of the errors,
how they manifest themselves in the estimators, and how we choose to model

them.



5.1 The errors in brief

Frame errors In the third sampling stage, a frame of the small area road
network, constructed by manual measurements of road lengths from a
map, is employed to select road sites for observation. Let Ugy, (of size
Nriq) denote the set of road sites according to the frame. If Ug;, differs
from Ujq, the actual sampling procedure differs from the one described
in Section 3: in reality an SI sample sg;, 4 of sites of size n, 4 is then

drawn from Upq.

Missing data If the measurement instrument fails to observe all vehicles
passing a selected road site, the value on study variable a for the site is
unknown. Let a,?ﬁ denote an estimator of a; under estimation strategy
c. The present approach, to simply ignore the missing data, corresponds
to ¢ = 0. Two alternative procedures intended for adjusting for missing

data, corresponding to ¢ = 1 and ¢ = 2, are discussed in [5].

5.2 The error-prone estimators

Due to the errors discussed in Section 5.1, instead of the prototype estimator

~

tq, we can only observe

my

- 1 1 N, -
tpate) = — — E tFﬂd(C)i,,q (5)
mr — Pi, Niri, SIIiy
v=1
where
tA - NFil,q ~(c)
Fra©i,qg — ag "
ivg SFivg

Also, we do not have access to R but only to

RY =ty [ipse. (6)



5.3 Models for specific errors

The following frame error model is drawn from [3, Chapter 3.

A frame error model, m;

For small area q € sy,

e the sample sp;, is an SI sample from U,

e the frame road length Np, is a function of the true length and a random

error, and

e the Np;,’s are independent random variables.

In mathematical terms, the first statement of m; means that sp;, is as-
sumed to equal s;,. Then, the error-prone estimators are subjected to frame
errors only through the weighting by Np;, instead of NN;,.

The joint probability distribution (conditional on s;,) of the independent
random variables &]gc) (¢ =0,1,2) for site k € s;4, is called model my. This
missing data model, taken from [5, Section 5], is very general. In the cited
source, special cases of my are however formulated for different estimation
strategies.

We have no reason to believe that the two types of error are somehow
related. Therefore, to keep things simple, we assume that the mechanism

that generates a(® is unconfounded with the one that generates Ny. That

is, the probability of a certain outcome of d,(f) is assumed to be unaffected

by NFz'q-

Remark 5.1 The notations for the models differ from those originally used.
The frame error model is denoted ‘m’ in [3, Chapter 3/; the missing data

model €’ in [5, Section 5]



6 Survey models for the error-prone estima-

tors

(F?) are now derived. In this,

The expectations and variances of ¢z, and R
we need to take several sources of randomness into account: three stages of
sampling as well as the procedures that generate Np;, and d,(:). Thus not
very surprisingly, we are caught in some quite intricate variance expressions.
By assuming Np;, and EL,(:) to be unbiased for their true counterparts, we are
able to simplify the formulas to some extent. We finish off with a note on the
relation between our work and a customary decomposition of mean square

error (MSE) by error source.

6.1 Notation

Let expectations and variances with respect to the error models m; and ms,
be indicated, respectively, by subscript m; and my. Let us also refine the no-
tation regarding the sampling design p described in Section 3. Expectations
and variances are indicated by subscript [ if taken with respect to the design
used in stage one; I if taken with respect to the design used in stage two,
given osy; and I11 if taken with respect to the design used in stage three,
given os; and sjy;, .

In the following, we make diligent use of conditioning. Conditional expec-
tations and variances are then indicated by ‘|’ (for instance, E\ym, denote
expectation with respect to model my, conditional on model m;). In order to
shorten the formulas, we use special notation for the conditional expectations

and variances of Np;, and d,(f): for q € sy,

E1111|p (Nqu) = Eml(NFiq ’3112‘) = Hiq (7)
‘/1111|p (NFZq) = le(NFiq |811i) = O-?q (8)



and for k € s,

B (47) = Fua(af 1) = (@), ©)
‘/le|p (&]&C)) = ‘/;112 (&]&C) |87,q) - 6(&(C)>k (10)

The population entities ¢ A(a©)ig and S> for v(al?) are defined as in

al))Uyg
Section 4, only with a = y(d(c)).

6.2 Expectations and variances

Consider first the estimator 4. of t,. By use of conditioning, the expected

value of t ;4. can be written as

Epmlmg (fFa(C)) = EpEml\pEmg\pml (fFa(C)) (11)

and 1ts total variance as

‘/pmlmg (I?F&(C)) == VpEmﬂpEmQ\pml (tAFa(C)) + Ep‘/1111|pE1112|p1111 (I?F&(C))
+EPE1111|p‘/1112|p1111 (EF&(C)>
=W (fFa@)) + Vs (fFa@)) + V3 (fFa@) . (12)

The V4 (f F&(c)) term is due to the sample selection: in a total enumeration of
all road sites, V1 = 0. The V; (f Fate) term arises from variability in ty A(a©)ivg
due to different realisations of Np; ,: if all o-?q = 0, then Vo, = 0. The
Vs (f Fa(c)) term, finally, arises from variability in a; for individual road sites:
if all 6(&@) , = 0, then V3 = 0. If the speed survey did not suffer from any
frame errors, V3 would correspond to the “measurement variance” in [6, Eq.
(12.9)] or the “simple measurement variance” in [8, Eq. (16.4.5)].

By additional use of conditioning, the %(fF&<C)) term can be written as

the sum of three components, representing the variation contribution due to

10



each sampling stage:
Vi(tpaw) = ViEuEmFnmslp (trae) + EViEEnwop (trae)
+ BBV 11wyl (trae)
= Vipsu(traw) + Vissu (tpae) + Vairsu (Epae) (13)
where V; psy (fFa(c)) is due to the initial sampling of PSUs, V; gy (fFé(c))
to the second-stage sampling of SSUs, and Vj 1su (fFa(c)) to the final-stage

sampling of TSUs.

We are now ready for the following theorem.

Theorem 6.1 Jointly under the sampling design p in Section 3 and the error

models my and my in Section 5.3, the expected value of tye is given by

Epmlmg tFa(C) ZZUH N 'y(a(c) (14)

The variance of tpae is given by

Vimms (tra@) = Viltrae) + Va(tpaeo) + Va(trae)
= Vipsu(tpae) + Vissu(trae) + Virsv(trae)

+Vs (tAFa@) + V3 (fFa@)) (15)
where
2
Hi ;
Vi psu(trae) sz (p ZUU‘ N,q t(a©)iq — Epmims (tFa(C))) (16)
=1 ' ‘ "

nrri N — 1

2
Iuiq 1 Iuiq
—t (o)), — —1t (o, | (17
8 ZUIH (Nz-q ’Y(a( ))Zq Nrpi ZUIH Niq 7((1( ))Zq>( )

Ny
. 1 1 1-— i 1
Vissu(tpaw) = EZZTNIQM Jir
i=1

Pi Nri

1 NIIz 2 1— fiq 2
Vi rsu(tpace) Z ZUm Fig Teq SW(MC))UW (18)

11



Ny 2
. 1 1 Ny T ol — fig 2 2
‘/Q(tF&(C)> = . ZUIH m (Niq n Sfy(é(c))Uiq + tfy(é(C))iq

myp = PiNiri iq

(19)

and

Ny 2 2
~ 1 1N1 IL[/’L +O_2 ~(c
MOFBEEE SR S ) N

my = Pi NI Nz’qniq
The proof of Theorem 6.1 is given in Appendix A.
Having come this far, it is an easy matter to derive the statistical prop-

erties of }A%Evc) The following theorem is proven by a slight generalization of

the results in [7, Sec. 6.8.2.].

Theorem 6.2 Jointly under the sampling design p in Section 3 and the er-
ror models my and my in Section 5.3, the estimator R;f) 18 approrimately

unbiased for

(@ _ Lpmym, (ng(c))

R 1) (21)
r Epml me (th“(C))
The approximate variance of R%C) s given by
_ Vitprpo) N Va(tprpo) N Va(tpnpo) (22)

2 2 2
tZ tZ tZ
where the variances of t,._p.) are obtained from the corresponding variances

of Lpae) in Theorem 6.1 by replacing a'© with El(f) =g — R%C),%(C).

For both £, and R;f), it is tempting to call V; the sampling variance,
V5 the frame errors variance, and V3 the variance due to missing data. These
interpretations are however somewhat misleading. The errors due to missing
data and frame imperfections are entwined closely together, and both have
the potential to influence all components of the model. This follows since

()

Vi includes expected values of both Np;, and a;”; Va expected values of d,(:);

and V3 both expected values and variances of Np;q.

12



6.3 Simplifications

The expectations and variances of fp4. and }A%(F?), as presented in Theo-

rems 6.1 and 6.2, are quite complicated and thus hard to evaluate. We now

try to simplify the expressions by making a few assumptions:

i. The frame road lengths are unbiased for the true road lengths

ii. The missing data adjusted estimators &,(Cl) and &,22) are unbiased for ay

Assumption i, which is confirmed by our frame errors investigation in [3],
implies that we can replace p,;, by Ni. Our results in [5] give some support
for the second assumption, which means that we can substitute ’y(d(c)) . by
apif c=1 or 2.

Under assumptions i-ii, if estimation strategy ¢ = 1 or 2 is employed to
adjust for missing data, the following holds.

The estimator ¢ Fale) 18 unbiased for £, R;f) is approximately unbiased for
R, and V; equals the sampling variance of the estimator in question (that

is, the variance of the corresponding prototype estimator). Furthermore, for

tAFa(c)a
. 1 1 Ny o1 — fig co 2
%(th(C)> = Z Di i ZUIPL N2 ( iq Nig Sanq + taiq) (23)
» o 1 NIIz O-zzq A(c)
Vi) - Z e D CLRE ol D BRI CNEY

(The terms V5 and V3 for }A%(F?) are simplified correspondingly.) We see that
all errors no longer affect all components. Besides V; being equal to the
sampling variance, V5 does not include expected values of d,(f) (which may
differ from the true values) but the a;’s themselves. Hence, the V5 term now
truly deserves to be called the frame errors variance. The V3 term, however,

is still not a pure missing data variance.

13



6.4 Decompositions of MSE

In the literature, a survey model for an estimator is often formulated as a
decomposition of its MSE — see for instance [6, Sec. 12.2] or [8, Ch. 16].
Consider again the estimator ¢4 of t,. By definition, the MSE of # ),
with respect jointly to the sampling design p in Section 3 and the error models

m; and my in Section 5.3, is given by

MSEpmlmg (EFa(C)> = Ep11111112 (fFa(C) - ta) ?
‘/2011111112 (tAFa(C)) + (B (I?F&(C) ) ) ’ (25)

where B(fFa<c)) = Epmims (de@) — t, 1s the bias of fFa@ as estimator of
tpa@. The total variance is, in turn, composed of variances arising from
different sources. The relevant components are derived in Theorem 6.1, as is
the expectation of ¢,,. Hence, in this theorem, all the tools for making an
MSE decomposition for ;) is provided. Likewise, an MSE decomposition

for R%C) can be made by use of Theorem 6.2.

7 Discussion and final remarks

In this report, we have tried to take a complete grip of the impact of some
error sources on the speed survey estimators. Thus, in some respects, it
summarizes earlier work presented in [3], [4] and [5]. In the cited sources,
however, experimental data are utilized to evaluate model assumptions and
estimate model expectations and variances. Most of those results have not
been mentioned yet. The main reason for this is that they are produced not
taking the entwinement of various errors properly into account. Estimation
of the expectations and variances stated in Theorems 6.1 and 6.2 would,
in general, require additional data collection, conducted in such a way that
the various errors are simultaneously controlled for. Assume however, as in

Section 6.3, that u,, = N;; and 7(&(0))k = ag. Then,

14



e since the components Vj psu, Vi gsu and Vj rsuy now solely represent the
variation contribution due to each sampling stage, our investigation
n [4] of their relative sizes applies. The investigation suggests that, for

}A%%c), the Vi rsy component prevails among the three.

Assume further, as in the multiplicative error model for Ng;, in [3], that

o7, = 72N}, (where 72 is constant as function of Nj,). Then,

e from [3, Corollary 3.2.3|, the V4 term for }A%(F?) can be written as
Vs (R;C)) = 124V, (R) . (26)

In the same source, from some experimental data, a 95 percent upper

bounded confidence interval for 72 is worked out to equal [0,0.00848].

e the V3 term for }A%(F(f) is given by

50\ 11 1 Ny
%(RF) - ( _QM_Z ZUIIz Nig

bi Nrri
X ZUM 6(E(C )k (27)

where E(© = (9 — Rz In [5], the variance & (Efvc)) is derived for
k

the adjustment strategies ¢ = 1 and 2 and various special cases of
those. Unfortunately, the resulting expressions are quite complicated

and involve several unknown population entities.

The survey models presented in this report are quite complex and hard
to grasp. Still, they support only the impact of a few, selected, sources of

error. Among the possible errors that are not accounted for, we note

e the effect of the person installing the equipment on the road (the ana-

logue to the ‘interviewer effect’ known from interviewer surveys),

15



e the effects of present procedures for handling the complete loss of ob-
servational data from a road site (including hot-deck imputation and

field substitution in space or time or both), and

e the effect of incomplete data from a road site for connected time peri-

ods.

We do however entertain hopes that we have taken the most influential

errors into account.
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A Proof of Theorem 6.1

We start with the expectation Epum, (f Fa(c)) . It is derived exactly as the

expected value of fa, only with ¢,; replaced by

A NII' NF ~
EIIEIIIEml\pE1112|p1111 (th(C)i) == EIIEIIIEml\pEmg\pml (n_l Z — Z a]gC)

LI Ti 5114y, Tig Siq

Nrri Nri NE
= B (i g %ZS, ’Y(a( ))k)
biq iq

nrri SIIiy
v (&(C)) k)

= Bl (]:m Z Hig Z

LI Ti S11iy Mg

Ni i
:EH< iy My )

nrri SIIiy Nz ’y(d(c))iq

Usri Nz ,Y(a/(c) )’iq'

Sigq

We now turn to the variances.

Vi(tpaw) =

my

1 1 Nip, Nr, (¢
VpEml\pEmQ\pml (E - Z —q Zsi , CL/(~C )>

1= Pi, Niri, 811iy - Tli,q
a(©)
(@),
my

1 1 Nip i (e
ViliiErn <H — A Z Piva Z V(G( ))k>

19— Pi, Nir, S1riy My,q Siyq

my

vpamp(mi L Mot - Vg 5

19— Pi, Niri, S1riy, Ny,q Siyq

1 T 1 NIIz',, Hi,q 5(0)
+EViiE (E -~ Em Zsmy qu ZSM V(G )k
1 <& 1 Ny, Fiyq ~(c)
- Z ZSM 7(‘1 )k

myp o — Pi, Niri,

Vipsu (trae ) + Vissu (frae) + Virsu (Erae)

SIIiy niuq

+EiE Vi (

The V1 psu (f Fd(c)) term is derived as the first term in Equation (3), only with
N
tqi replaced by ZUm (/‘Liq/NiQ) tfy(&(c))iq and t, by ;) ZU,H (Nz‘q/Niq) tfy(d(c))iq'

The Vi gsu (f F&@) term is derived as the second term in Equation (3), only

with Z4iq replaced by (p,,/Nig) t'y(d(c))z'q and t4; (again) by >, (1iq/Nig) t’y(&(c))z'q'
The Vi rsu (f Fé(c)) term, finally, is derived as the third term in Equation (3),

18



only with a; replaced by (a\?), and taiq (again) by (siq/Nig) by(a@)ig:

Va (EFa(c) )

and

Vs (EFa(c) )

mr

EVipE b 1 N, NFiyq .~ (c)
pVm1|pmg|pm; _— Wy ay)
mr ¢— Di, NIri, 511iy,  Ni,q Sivg
mr
ZE ‘/- 1 1 j\f[[iy
pYmj|p - _— E
mr ) ; ;

— Pi, N, $1Tiy M,q Sivg k

1 <& 1 (N \° Ufuq o )2
m2 Z—g ( H‘ ) Zsmu n2 (Z%q 7(a( ))k> ]

1, Pi, \Tur, i

1 el 1 N[] 2 0'_2 . 1 — f
v 1 N2 — Jivg SQ
; p’tu ( i ) ZSIHV Nf . wq  n (a(c))

1” wq

EIEIIEIII

EIEII

ivg

1 N 91— fig oo )
_Z ZU[u N2 ( 4 n, SW(&(C))UM +ty(a<c>)iq )

DPi g

1 = 1 Npg,, Npi, (e
EpEml\p‘/;nﬂpml <E e Z _rwa Z alg)

— Pi, N, $T1iy Mg Siyq

1 <~ 1 (N, )
Uzzlpzu (TL : ) Z

EpE1111 lp

113,

1m]1Niu2 ?+/‘iu
Y () Y Tas ey

v=1 pz” n/IIZV SITiy ivq Sivg

1 2 N1, 2 wq‘f‘,uz,,q (@
Zp( - ) Zsm,mz%é(a )

EIEIIEIII

EIEII

Ii,

my

1 1 Nin, L + p, e
R S TR D o) SN

1 Pi, M,

I N i ,UZ +0' (e
_Z - ZUIM N nzq ZUiqé(a())k‘

Di g
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