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1 Introduction

Every summer since 1996, the Swedish National Road Administration con-
ducts a traffic survey on urban roads. The roads are thought of as partitioned
into one-meter road sites, that are the population elements. The primary
study variables are the traffic flow, y, and the travel time, z. The traffic flow
for a site equals the number of passing vehicles, and the travel time is the
total time all vehicles take to pass the site. Data are collected for a random
sample of sites (during randomly selected days) by use of a measurement
equipment installed on the road. The totals of y and z, ¢, and ¢,, are known
as total vehicle mileage and total travel time, respectively. The main survey
goal is to estimate their ratio, R = t,/t,, which is interpreted as the average
speed on the roads.

Typically, the observational data from a selected road site turn out in-
complete. If a large amount of data is missing, the site will be re-measured
at a later date. The most common situation, and the one of interest here, is
however that some data are missing but not to the extent that the measure-
ment is disqualified. Presently, data are then used in the estimation without
any special actions taken. We restrict our attention to incompleteness due
to occasional loss of vehicles, thus ignoring cases of lost time periods.

In this paper, two strategies for adjusting for missing data in the esti-
mation stage of the survey are discussed. The strategies differ mainly in the
way the flow is estimated when some data are missing. One suggestion is
to add the number of vehicles automatically imputed by the measurement
device to those properly registered; another to weight the registered number
of vehicles by use of estimated registration probabilities. In both cases, a
direct weighting type of estimator of the travel time is suggested.

2 The missing data problem

The device used to collect data consists of two pneumatic tubes stretched
across the road and connected to a traffic analyzer (a simple computer).
When a vehicle wheel crosses a tube, its air pressure changes. The times
of such events, or pulses, are registered by the traffic analyzer. From the
resulting pulse stream, the analyzer creates vehicles and assigns speeds to
them. Missing data arise when arrived pulses can not unambiguously be
translated into vehicles. The ambiguousness may be caused for instance



by vehicles simultaneously crossing the tubes (due to meetings or passings)
or dense traffic. At present, missing vehicles are ignored in the estimation
stage of the survey. This “do nothing” procedure, henceforth referred to as
Strategy 0, is bound to result in negatively biased estimators of total vehicle
mileage and total travel time. The impact on the estimator of average speed
is, on the other hand, unclear. It is possible, but far from certain, that (in
practice) the biases in the estimators of the totals ‘cancel out’ when their
ratio is taken.

We adopt the following notation. The set of vehicles passing road site
k (during a selected day) consists of y, vehicles labeled v = 1,...,y;. For
simplicity, the vth vehicle is represented by its label v. Hence, the (finite)
population of passing vehicles is denoted as Uy = {1, ...,v, ...,y }. The travel
time z;, for site k is given by zp = ZUk x, where z, 1s the time vehicle v takes
to travel the site. (In practice, the z,’s are calculated as the inverses of the

registered vehicle speeds.) The successfully observed subset of Uy, is denoted
~(0)

ry, of size n,,_. The estimators of y, and z; under Strategy 0 are 7, = n,,
and 2,&0) =>_,, Tu, Tespectively.

3 Proposals for missing data adjustments

Our suggestions for adjustments for missing data in the speed survey involve
weighting adjustment and imputation; the two standard techniques for deal-
ing with survey nonresponse. The registration model in Section 3.1 serves as
a common starting-point.

3.1 A model of the registration mechanism

The true registration distribution, that generates the set of registered vehicles
ry, for an observed road site k, is of course unknown. Our ambition here is only
to formulate some reasonable model assumptions about this distribution. If
we succeed, we still possess a useful tool for constructing (and evaluating)
estimators that adjust for unregistered vehicles.

In all essentials, our registration model coincides with the response homo-
geneity group (RHG) model formulated in [16, Eq. (8.1)] or [17, Eq. (15.6.6)].
In brief, the model states that a realized sample can be partitioned into
groups such that, conditional on the sample, the individual response proba-
bilities are the same for all group members. The conditioning is motivated



by the fact that elements of a given sample are exposed to a specific set of
survey operations. The RHG model has a quite general formulation, and
many weighting class adjustment methods rely on special cases of this model
(for an overview of adjustment methods, see [12, Ch. §]).

The special features of our model, contrasted with the RHG model, are
the following. First, in the speed survey, data are collected by observing
(registering) vehicles. Hence, instead of probability of response, our concern
is about probability of registration. Second, road sites are selected for ob-
servation by a multistage procedure (a full account of the design is given in
Section 4.1). Hence, our model is conditioned on the final-stage samples s,
of sites. Finally, we are not interested in observing a sample of the vehicles
passing the site, but rather all of them.

Our registration model, which we denote by r, is summarized below.

The registration model, r
Assume that the vehicles passing road site k € s;;, during a selected day is
partitioned into Hy, groups Uy, (h =1, ..., Hy) such that, given s,q,

e all vehicles in group Uy, have the same (unknown) probability 65, > 0
of being registered, and

e the registration of one vehicle is independent of all others.

The independent registrations assumption is made solely to simplify the
model. In reality, dependencies in the registrations of successive vehicles are
likely to occur.

The theoretical part of this paper is applicable on any groups of traffic.
In our experiment however (see Section 6), we presume partitioning of the
traffic by time intervals. The shortest time unit considered is watch-hour.
One reason for this is the common advise (see, e.g., [11]) to avoid too small
weighting classes when estimating (response) probabilities 6y, by class re-
sponse rates. The response rates (in our case: the registration rates) for
small classes tend to be unstable, and this may produce large variation in
the weights. A second reason for our choice of smallest time unit is, that
we also try to estimate 0y, by use of the auxiliary variable measurement ef-
ficiency (ME); the proportion of registered pulses that have been combined
into vehicles. The ME is only known at watch-hour level.

The set of registered vehicles in group Uy, is denoted ryy, of size n,,, , and

, . - .
the vector of all n,,,’s is denoted n,, = (nm, s Moy ...nrka). Expectation



and variance taken with respect to the registration distribution r, conditional
on s;,, is denoted E,.(-|s;,) and V(- s ), respectively. In Section 5.2.3, we
make use also of the conditional expectation and variance with respect to all
realizations n,, obeying S>7% n,,, = ny,; B, (+[siq) and Vi, (-|sig). Then,

E.(-]sig) = EnrkEr(' |Sigs Diry, )
V(- lsig) = Enrkvr(' |Sigs ) + Va,, B (- |sig, 0y, )

The conditional mean and variance of n,,, given s are denoted p, =
2 o ) .
Ey(ny,, |8iq) and o; = V,.(ny,, |siq), respectively.
For future reference, some implications of the registration model will be

stated:
1. Under model r, given s;4,
(M, |Sig) ~ binomial(ygp,, Oxn)

where yg;, is the true number of vehicles in group Uy,. Hence, Py =

YenOen and o7 = ypnbin (1 — Orp).

2. If the vector n,, is conditioned upon as well, the set r; behaves as a
stratified simple random (STSI) selection from Uy.

3.2 Strategy 1

We are now ready for our first proposal for missing data adjustments. The
idea here is to make use of the procedure for handling missing data already
built into the traffic analyzer. From excess pulses, vehicles are created or
imputed. The imputed vehicles are also assigned speeds, based on those of
previously registered vehicles. For details on the stepwise, basically non-
random, imputation procedure, see [1].

At present, the survey management chooses to discard all imputed vehi-
cles in the estimation. Why? The traffic analyzer, including its imputation
algorithm, was developed back in the 1970’s in order to meet the demands
of that time: flow measurements on State roads. Today’s speed survey is
conducted on urban roads, where the traffic situation (and hence the ‘pat-
terns’ of arriving pulses) is far more complicated. The performance of the
imputation procedure under the new conditions has not yet been completely
evaluated, and is therefore distrusted. In particular, the imputed speeds are
believed to be undependable.



The Strategy 1 estimators, now to be presented, put some trust in the
number of imputed vehicles, but none in the imputed speeds.

3.2.1 Estimator of flow

As estimator of the flow in site k, y, we propose

Hk Hk:

~(1 ~(1

= (e, +n0,) =Y Gk (1)
h=1 h=1

where ny,, is the number of imputed vehicles in homogeneity group Uy, and

Hy,
nn = Eh:l N, -
The estimator @,(Cl) is a function of the n,,,’s, whose stochastic properties
are regulated by model r, and of the ny,,’s, which in principle are fix entities.
To simplify, we will treat the latter also as random variables. A random

model for ny,, is stated in Section 3.2.3.

3.2.2 Estimator of travel time

As estimator of the travel time in site k, zx, we suggest using

Hy, Hy, Hy,
(1 E'r Ty Z Zr Ly E T
Z](g ) = § :% - ey = (n""kh + nfkh) Lryp, (2)

~(1)
h=1 O et M/ Uk

where Z,,, = > x,/n.,. In words, the registered travel times are simply
weighted by the corresponding inverse estimated registration probabilities.
If we had a choice, we would estimate 8y, by the true registration rate

,(cl) would be the census version

Ny / Yien, instead of 9,21,3 Then, the estimator 2
(the special case when the ambition is to observe all members of the popu-
lation, and thus missing data is the sole source of randomness) of the direct
weighting estimator ( [16, Eq. (4.10)], [17, Eq. 15.6.8]) of z; . Conditional
on s;4, and provided that the probability of an empty homogeneity group is
negligible, 2,(:) would then be unbiased for z; under model 7.

We do however not know the denominator y, of the registration rate,
but use Q,SL) Since the ?QISB ’s are random, the statistical properties of 2,9)

remain to be investigated.



3.2.3 A model of the imputation mechanism

In [17, Sec. 16.3], a simple measurement model is formulated, in which
measurements on elements of a sample are modeled as random variables.
An observed value is viewed as composed of the true value and a random
measurement error. The model is “simple” since the model moments do not
depend on the realized sample.

Our imputation model, denoted m, is formulated in the same spirit as
the simple measurement model. The observations considered are the im-
puted numbers ny,. An nj, is viewed as composed of the true number
of unregistered vehicles, yi, — n,,,, and a random error e,. The model
moments are assumed to be independent of the sample. The moments are
however allowed to depend on the number of registered vehicles, n,,,. This
makes sense since the imputed vehicles are created from surplus pulses.

In the frequency interpretation of the simple measurement model, the
observed value for an element varies randomly over repeated (hypothetical)
measurements performed under identical survey conditions. Our observa-
tions, the ny,,’s, do not have this random behavior. The traffic passing a site
during a given day will always, for a given n,,, , result in the same number of
imputed vehicles. Our hope is that the random model still serves as a good
approximation of the actual imputation procedure.

The imputation model, m
Given s;; and n,,,

e the number n;, of imputed vehicles in homogeneity group Uy, (h =

1, ..., Hy, k € si), has the mean .y = En(ng, |sig,nr, ) and vari-

kh
2 = ,
ance gy = Vm(nfkh ’SNP Moy, )7

e the ny,,’s are independent, and

e the model moments f ),y ~ and J%”T)kh are independent of s;q,.

The conditional expectation and variance of nj,, given s;,, with respect
jointly to model r and m, are, respectively,

i, = E”'m(ﬂ'lkh |SiQ) = ETEm(nIkh ’Simn?‘kh)

U%kh - V;‘m(nfkh |SiQ) = ETVm(nIkh |Siq7 nrkh) + V;‘Em(nfkh |Siq7n7‘kh)



In its present form, the imputation model is quite vague: it does not say
how ny,, is connected with yip, —n,,, and eg,. The model is further specified
in Section 5.2.2.

3.3 Strategy 2

Our second proposal for missing data adjustments, Strategy 2, rests on the
use of the auxiliary variable ME for estimating registration probabilities.

3.3.1 Estimator of flow

If we do not use the imputed vehicles, we have few options left for adjusting
the flow for missing data. One remaining possibility however, is to weight
the numbers of registered vehicles in a suitable manner. The (estimated)
registration rates used in Equation (2) are no longer an option, but other
estimates of the registration probabilities are needed.

The possibility to estimate (response) probabilities from auxiliary data
is quite sparsely discussed in the literature. The idea is put forward in |3,
Sec. 9]; other references include [5], [6] and [4, Sec. 3.5]. In [7], response
probabilities are modeled by logistic regression and estimated from the fitted
model. Nonparametric estimation methods are discussed for instance in [9].

We do not want to introduce model parameters into our adjusted estima-
tor (we do not know how to estimate them from sample data), and therefore
choose a very simple approach: we try to find an auxiliary variable with
roughly a one-to-one relationship with the unknown registration probability.
Within our limited supply of variables, the ME is the one we hope fits the
description best. Thus our second proposal for estimator of the flow in site &
relies on the use of (M E),,, the ME for homogeneity group Uy, as estimator
of 0 kh-

Hy, Hy, Hy,

~(2) _ Ny, o Toppy, o ~(2)
= NE) _Z(ME) _;ykh (3)

h=1 ekh h=1

In order to evaluate the statistical properties of y],(f), we need to specify

the relationship between 6y, and 9,(5,3 A model for this relationship is stated
in Section 3.3.3.



3.3.2 Estimator of travel time

As estimator of the travel time in site k, z;, we suggest using

i i
50 _ Zk: D e T _ Zk: D s T 0
£ @) (ME)y,

h=1 ékh h=1
The estimator 2,&2) is constructed according to the same principles as 2, in
(2 ~(1
Equation (2), only with 6y, estimated by 9,(6,3 instead of Q,ih) :

3.3.3 An error model for é(g)

Our error model for @,(fh) = (ME),, as estimator of 6y, has very much in
common with the imputation model in Section 3.2.3 (and thus also with the
simple measurement model in [17, Sec. 16.3]). Again, an observed value is
viewed as composed of the true value and a random measurement error, and
the model is “simple”. The observations considered here are the measure-
ment efficiencies (M E),,. In the role as estimator of Ok, the (ME),, is
viewed as random; or, more precisely, as composed of the true registration
probability, 0y,, and a random error €x,. The model moments are assumed
to be independent of the sample and of the number of registered vehicles,

Ny -

The error model for 9,22,3, q

A (2
o The estimator 0., = (ME),, of 0 (h = 1,..., Hy, k € s;,), has the
mean /i, and variance 05(2),
kh kh

~(2
e the Q,ih)’s are independent, and

e the model moments N0 and 03(2) are independent of s;; and n,,, .
kh kh

(2
The error model does not specify how 9,(6,3 is connected with 0y, and ey,.
Two possible relationships, the additive and the multiplicative, are consid-
ered in Section 5.2.3.

4 Sampling and estimation

In this section, we acquaint ourselves with the sampling design and estimation
procedure of the speed survey. The presentation is based on [10, Ch. 2].

10



4.1 Sampling design

Road sites are selected for observation by means of a multi-stage sampling
design. A brief description of the different stages will now be given. To
simplify, we ignore the stratification in each stage. We also ignore the fact
that in stage one, the three largest units define a take-all stratum.

Consider the following sets of sampling units. The primary sampling
units (PSUs) are the N; population centers in Sweden, labeled i = 1, ..., N;.
The ith PSU is represented by its label i. Thus, we denote the set of PSUs
as Ur = {1,...,4,..., N;}. Population center i € U; is partitioned into Nyy;
small areas, labeled ¢ = 1,..., N;j;, that represent the secondary sampling
units (SSUs). The set of SSUs formed by the subdivision of ¢ is denoted
Ui = {1,...,¢,..., Nij;}. Finally, the roads in small area ¢ in population
center ¢ are viewed as partitioned into NN;; one-meter road sites. This set of
sites is denoted Uj,.

The sample s of road sites is selected from the population U of urban
roads in the following way.

Stage I A probability-proportional-to-size sample of PSUs is drawn with
probability proportional to the number of inhabitants. At every draw,
p; is the probability of selecting the ith PSU. Let i, denote the PSU
selected in the vth draw, v = 1,...,m;, where m; is the number of
draws. The probability of selecting i, is denoted p;,. If the ith PSU is
selected in the vth draw, then p;, = p;. The vector of selected PSUs,
(1 +ovy Gyy -vy Iy ), 1S the resulting ordered sample os;.

Stage II For every i, that is a component of os;, a simple random (SI)
sample s;p;, of SSUs of size nyy;, is selected.

Stage III An SI sample s;, , of sites of size n;, 4 is drawn for every small area
q <€ Srri,-

In practice, the sample sizes (within stratum) in each stage are m; = 10,
nrr, = 1 and n;,, = 1.

4.2 Estimation with complete data

We here treat the general problem of estimating a population total t, =
> i @k, where ay, is the true value of study variable a (which may be y or z)

11



for site k € U, in the speed survey. We also consider estimation of a ratio
R=t,/t..

Define the population totals t,;, = ZUiq ap and t,; = ZUm taig- Further,
define Ej = yr — Rz, and the corresponding totals tg;y = tyq — Rt.iq and
tpi =ty — Rt,;. Estimators of the totals are denoted by a hat. In addition,
7 estimators (Horvitz-Thompson estimators) are denoted by a .

In the ideal situation, in which a, are known for all k& € s, the parameter
t, would be estimated by

1 <&t

tmu'
fo=— Y T 5
w2 "

where trqi, = (Nipi, /n11s,) ZSU t,muq and tmu,,q = (Niyq/Mirq) ZSM ay. If

1 € U; was selected in the vth draw, then tmz = {...; and f,m,,q = traiq- The
estimator of R would be

R=1,/t.. (6)

The randomness in t, and R stems solely from the sample selection. Let
E, and V), denote expectation and variance with respect to the sampling de-
sign. For nonlinear estimators, such as the ratio of two estimated population
totals, it is the practice to use the variance of a linearized statistic as an
approximation to the exact variance. Let AV, denote such an approximative
variance, again with respect to the sampling design.

From [17, Result 4.5.1], #, is design-unbiased for ¢, (that is, E,(f,) = ta).
The variance of , is

Vp(t})ziim (@—ta>2+iim (7)

where




and the sampling fractions fr;; = nrr /N and fig = nig/Nig.
From [15, Sec. 6.8.2.], R is approximately design-unbiased for R. The
approximate variance of R is

~ 1 1 N t2i 1 NIVi:ﬂ'i
w() - (TR e e

— i pi

where V(¢ ( sz) is obtained from V(¢ ( mz) by replacing a; with Fj.

5 Estimation with missing data

A more realistic situation than the one dealt with in Section 4.2 is, that
some observational data are missing. Then, the true a;’s are unknown. Let
d,(:), k € siy, be the estimator of a; under Strategy c¢ (¢ =0,1,2). The
joint probability distribution (conditional on s;;) of the random variables
d,(f) is called model &. The estimator obtained by replacing a by al© in
t, is denoted fa(c>. Expectations and variances taken with respect to the
model £ are indicated by subscript £&. In order to shorten the formulas, we
denote E (ak) |szq) and Vg(ak |szq) by ~(a® ) and (5(@(0) , respectively
The population entities t”y(&(c))iq’ ty(a@)w ty(a@), S? (at )Uz and W(a(c)) .

7(&@)) are defined in the same manner as the corresponding entities for a in
Section 4.2.

5.1 General results

The statistical properties of %, are investigated in the following theorem.

Theorem 5.1 Jointly under the sampling design p in Section 4.1 and the
model €, the expected value of tye is given by

Ny

Epe(taw) = Z byae)i = tyae) (9)

The variance of tye is given by

Ny t /. . 2 Ny »
A~ 1 ale))s 1 V tﬁdci
fo(ta(c)):—E:p"<W( )‘%(w)) ey el

mp = i mr ] Di

13



where

- 1— frri an — fi
2 2 L= Jig o2
Vp§ (tmc)i) - NIIz' N1 Stw( U; nlh ZUHZ ] S (a(c))Ulq
Niri Niq n
2 §5(al©
+TI/HZ' ZUII-L Niq ZUiq (a )k

The proof of Theorem 5.1 is given in Appendix A.
From Theorem 5.1, the bias of .. as estimator of ¢, is

Epe a(c) — 1, = Z ZUID, Z d c) — ak) . (11)

In general, the sign of the bias is unknown. This is also true of the sign of

the variance change due to the use of fd(c> instead of £,, Ve (f&(c)) — Vp(fm).

If the estimators &,(:) are unbiased for ay, the following corollary applies.

Corollary 5.1 Assume that 7(&(‘3))k equals ay, (k € s). Then, the estimator

~

to is unbiased for t,. The use of tyw instead of t, as estimator of t,
increases the variance by

Ny
) . 1 1 Nrpi N; e
Vcllaw) = Vp(la) = =30y 0 My 6(@9), (12)

my <= Pi NI Urri Myg iq

If data are missing, the estimator of R under Strategy ¢ (¢ =0,1,2) is
R = fg(c) /ts. Its statistical properties are investigated in Theorem 5.2.

Theorem 5.2 Jointly under the sampling design p in Section 4.1 and the
model &, the estimator R is approximately unbiased for

Bty by
R(c): Pﬁ(Ay(>) — ’Y(y ) (13)

By (f5) ty(z)

The approximate variance of RO s gen by

Nt

Avpg (R(C)) — l Z 'Y(E(C>) L Z Vp§(£7rE(C)i) (14)

| mi = b mI Py pi
where tW(E@). and Ve (th(c)z) correspond to t’y(d(c))i and Ve (fﬁd(c)i), respec-
tively; v and & are however functions of E© = §© — ROz instead of

a®.

14



The proof of Theorem 5.2 follows by a slight generalization of the results
in [15, Sec. 6.8.2.].

From Theorem 5.2, the sign of the bias of R© ag estimator of R, as well as
the sign of the variance change due to using R instead of the complete-data
estimator R, is in general unknown.

The following corollary applies if y],(f) and ,%,(cc) are unbiased for vy and z,
respectively.

Corollary 5.2 Assume that 7@(0))/@ =y and 7(2(‘3))k =z (k € s). Then,
the estimator R is approzimately unbiased for R. The approximate vari-
ance increase due to the use of R instead of R as estimator of R is given

by
AV (R9) = av, (R)
Ny

11 1 Nip; N; .
S N 5(E<c>) 15
S, s e(5), o

T2
tzmy = pi N

where B© = ) — Rz,

5.2 Results for present and proposed estimators

In Section 5.1, the general statistical properties of f@(c), ts and R© were de-
rived. Here, specific results for the estimators under Strategy 0-2 are derived.
This implies presenting the explicit v and 6 expressions.

When dealing with the Strategy 1 and 2 estimators, only the special case
with a single homogeneity group is considered. Subscript h is then no longer
needed. The sole reason for this demarcation is to keep the notation simple;
expansion of the results to the case Hy > 1 is straightforward.

5.2.1 Strategy 0

Model £ in Section 5.1 is here interpreted as the registration model ». When
applying Theorem 5.1 on the estimators fg(o) and fé(o), we use

(ak,d,(go)) = (yk,?];(go)) = (Y, Nory,)

for fy(o) ) and

(Cbk,dl(go)) = (Z]C,ZA!,(CO)) = (Zk,n,«kfrk)

15



for 0.
2
TE?

For ¢50), Ehe model moments are simply v(5”), = p,, and §(5V), =0
whereas for t;), they are

50y Zk
5 — &, 16
v(29), e (16)
£(0) o L=10, [Yk 2 2\
0(F0), = Bo(nd sz s, )+ (2) o2 (17)
Tk yk

where

1 Zk 2
82 = v - .
zUy, Yp — 1 ZUk (m yk)

The first term on the right-hand side of Equation (17) simplifies to
L —n. Yk 1
B (2, st sy ) = [ = o 4 02) | S2 19
e

Equations (16)-(17) are derived by use of Proposition B.1 in Appendix B

with (A4, B) = (n,, Zr, ). We also use the fact that
_ 2k
Bl Imgy5ig) = 2 (19
Yk

_ 1 —n /yk
Vi@ [Ny, i) = — E= S (20)
N

which follows from implication number 2 of the registration model in Sec-
tion 3.1. (The moments in Equations (19)-(20) are in fact conditional also
on the event that n,, > 1. For details, see [17, Section 7.10.1].)

When applying Theorem 5.2 on the estimator }A%(O), we use

Elio) = n'f‘k — R(O)Tl/rkfrk - n"'k (1 - R(O)i"f'k)

where R =3 u,. /> (2k/yk) 1, - The model moments are

2(0) _ _ p)2k
1(B©) (1 R )u,«k (21)

Yk
A 1
S(EY), = (R [~ L2, +02)] s

2
+ (1 - R(O)%> o2 (22)

16



Equations (21)-(22) are derived by use of Proposition B.1 with (A, B) =
(nrk, 1— R(O):Erk) and by applying Equation (18).

We now make an attempt to simplify the results for the Strategy 0 esti-
mators. From implication number 1 of the registration model in Section 3.1,
oy, = Yxbr and azk = Yk (1 — 0y). It follows that for fg(o), the model mo-
ments are 7(@(0));@ = ypbr and 5(@(0))1@ = yx0y (1 — 0y); for t.), they are

N>

©) = %0 (23)
2
§(29), = 0 (1—06y) {@ + (e — 1) SgUk}

ol

Yk

= 0, (1—6,) ZU z’ (24)

k

and for R, they are

V(E(O))k — Ok (o — ROz) (25)
2
5(];(0)) — 0, (1—6) | (RO) (ye — 1) S%, + (1 - R<°>@> yk]
k Yk
= 0c(1=00) [(RO)" D] 22— 2ROz + i (26)

where R(O) = ZU y;ﬁk/ ZU Zkek.
Assume that the registration probabilities 6, = 6 for all £k € U. Then,

R© coincides with R, and fy(E (0)) = 0E,. It follows that

k
ti(E(O))i = 0ty (27)
Viellopo) = N llShy + Y N Tagsy,
Nis N, .
+nIIIIi ZUm Nig ZUi 6(E(0))1g
= 0V, (temi) + ]XIIII > ]:q > 5(E<°>)k (28)

By insertion of Equations (27) and (28) into Equation (14), and comparison

17



of the resulting variance expression with the one in Equation (8), we see that
AV, ( fgw))
— 024V, ()

Ny

I L lNHiZ Ni >

2 )
tz mr 1 Pi Nrr1; Urri Niq i

(R2 ZUk :1;12} — QRZk + yk)

(29)

5.2.2 Strategy 1

Expectations and variances with respect to model £ in Section 5.1 are here
interpreted as taken with respect jointly to the registration model » and the
imputation model m. When applying Theorem 5.1 on fﬂ(g and f2(1>, we use

((I]g,d](gl)) - (ylmﬁl(gl)) == (yk,n'r'k +nfk)

for f@u) , and

for i,0). When applying Theorem 5.2 on R, we use
Elgl) = (n""k + nfk) - R(l) (nrk + nfk) Ty, = (n""k + nIk) (1 - R(l)jrk) :

The v and 6 expressions will first be presented for the general imputation
model m in Section 3.2.3 (“general” in the sense that it does not say how nj,
is connected with y, — n,, and ¢;); then for a more specified model.

Under general imputation model assumptions The model moments
for f@(l) are

5(@(”)16 = Jgk + Ji + 2Cov, (Ter, H(1iry, |Siq) (31)
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where Cov, (n,.k, (1lr ), |siq) is the conditional covariance of n,, and H(riry,»

given s;,, with respect to model r. For t;1), the moments are

1Y), = ), (32)

5(,2(1>),c — Erm{(n/rk+n/1k)2

2
Zk N
+{ =) s(g™
(?M) (y )k

2 L=y, /yk
N E{ [(”k + ”mr)k) * ”?w«)k} S, |Siq}

Ny,

+ (@)25(g<l>)k. (33)

Yk

1—n /yk
— = SiUk |5iq]
o,

Equations (32)-(33) are derived by use of Proposition B.1 with (A, B) =
(N, + 11, T, ), and the equalities

Erm(irk |n7"k + N, SiQ) EnE (irk |n7"k + N, Ny SiQ)
B Er(Tr,, |1,y 8iq) = Ep(Zy, [, Siq)
Wm(i‘m |n7“k +ng, Sil]) = LB,V (_Tk |n"'k + N, Ny, Sil])

_'_VmE'r' (jrk |n'r'k + Ny Ny Siq)
= EnVi(Tr, [y i) + Vin B (T |1y, 5iq)

= ‘/7"('@7"19 |n7“k? Sifl)

which hold since Z,, and n;,_ are independent.
Finally, the model moments for R are

(89), = (1-r92) G, 34

Yk
R 2 1 — Ny /yk
(S(E(l))’C — (R(l)) E.. {(n,ﬂ,c + nlk)2 n—ksiUk |Siq}

.
2
4 (1 _ R(l)ﬁ) 8(5V),

Yk
2 2 1—n. /yk
= (BY) E{ [(m + e, ) +”?I|«>J — S, |Siq}
-
2
1) %k (1
+ (1—R< i) s(5"), - (35)
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Equations (34)-(35) are obtained by use of Proposition B.1 with (A, B) =
(1, + 1y, 1 — R(l)irk).

Consider the desirable case where, given n,,, the number of imputed
vehicles ‘on the average’ equals the number of unregistered vehicles (that is,
ey, = Yk — Nr,..) Then, p = yr — p,,, and consequently, V(Q(l))k = Yk
and 7(2(1))k = 2. From Corollary 5.1, fﬂ(g and 52(1) are unbiased for ¢, and
t., respectively, and from Corollary 5.2, RW ig approximately unbiased for
R.

Under a multiplicative imputation error model The size of the error
associated with ny, is likely to depend on the number of unregistered vehicles.
The more vehicles that are not registered, the more complicated the impu-
tation task apparently is, and the higher the risk of large errors arising. For
this reason, let us assume that the number of imputed vehicles n;, consists
of the number of unregistered vehicle times a random error:

nr, = (Yx — Ny ) E- (36)

Let the conditional mean and variance of ¢ given s;, and n,, be denoted
te = Em(ek |Sigynr, ) and 02 = Vy, (e |Sig, 1y, ), respectively. As the notation
suggests, the conditional moments . and o2 are assumed to depend nei-
ther on s;; or n,, nor on the road site k. This makes sense since the same
imputation software is used throughout the survey.

Under the multiplicative error model,

Py, = (e =1 e (37)
U%m«)k = (ye — nrk)2 Uz (38)
and
pr, = Ellyr —ne) pelsig] = (ye — py,) 1 (39)
or = E[(yk — nn)? 02 [8iq] + Vil(y — 1) e |Sig]
— [(yk — )+ afk} o2+ ooyl (40)

We now modify the v and § expressions presented earlier (Equations (30)-
(35)) in compliance with Equations (37)-(40). The resulting model moments

~

for £, are

Y(GD)e =, (U ) + e (41)
5(37(1))1@ - ng [(1 - NE)Z + U.Z] + (yk - 'uTk)Z 0‘? (42)
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In the derivation of Equation (42), we use the fact that

Covenpy, (Yr — Nny) 1 [Sig] = — Ve (0 [8ig) = _Maagk-

For t:), the moments are

1, = Za), &
6(2(1))k = E'r‘{ [(nTk (1 - ME) + ykus)Q + (yk - n"'k)2 0'?] )

1 —n., /yk AR

Aomig V(3

and for R,

7(E(l))k _ (1 _ R(l)ﬁ) v, (45)

Yk
6(E(1))k - (R(l))Z Er{ [(nTk (1—p)+ ?/k,ug)2 + (yr — n"'k)2 Ug] '

1—n./y 2\’ N
. —k/’“SgUk |siq} + (1 — R(l)_k> (S(y(l))lC (46)

,n/'f‘k, ylﬁ

_ Yol ) tyen] (=) Yy e, + pty
2v {y—’; [, (1= 112 + ] } (= pe) 2oy b, + et

Let us now revisit the favorable case of yi;),y = yx—ns,. We have already

concluded that in this case, the estimators f@u), f2(1> and RD) are unbiased,
or approximately unbiased, for their true counterparts. But how about the
variance increases due to not using the complete-data estimators? For the
multiplicative imputation error model, this case corresponds to a conditional
error mean equal to unity (u, = 1). The associated 6 expressions for f@u) and
t.a) (to be inserted in Equation (12)) are

6D, = [ — p)* + 2] 02 (47)

and

1—n
sz, = Er{[yﬁﬂL(?/k—"m)ZU?] MSﬁUk |5i4}

+ (%)26(Q(1))k (48)



respectively. The & expression for R (to be inserted in Equation (15)) is

R 1—n./y
6(E(1))k; = R2Er{ [Zl/% + (ykz - nm)2 0‘?] 7k/l€S§Uk |Siq}

Ny,

+ (1 - R@>2 5(51Y), . (49)

Yk

The expectation occurring in Equations (48) and (49) can of course be worked
out. Some straight-forward algebra gives:

- Ny [ Yk
E{ W2+ (g — ) 0?] L el Y g |}

N,
1 o2 + p?
= {’yk (1+0?) [%Er (— !%) - 1] +0? (3M,«k — 2y, — '“7”'“) } S0,
Ny Yk
o2 4+ 2
~ {yk (1 + Uz) (ﬁ — 1) + O'g (?er — 2y — T’“TMT’“> } SgUk (50)
Tk k

where the approximate equality arises from the (first order) Taylor approxi-
mation E,.(1/n,, |si) = 1/E.(n., |siq)-

Can Equations (47) and (50) be additionally simplified? From implication
number 1 of the registration model in Section 3.1, u,, = yxfx and Uzk =
yrbr (1 — 0x). Insertion in Equation (47) gives

5™, =y (1= 0k) [0 (1 — yi) + yi] 02 (51)

and in Equation (50)

L —ny, /yk
E{ 2+ (g — )P 0?] Ll Vg |}

Ny,

1 1
~ {yk |:<9_k; — 1) + o2 (e—k — 3+ 36, —0%)] — 020, (1 — ek)}ngk. (52)

5.2.3 Strategy 2

Model € in Section 5.1 is here interpreted as taken with respect jointly to the
registration model r and the error model q. When applying Theorem 5.1 on
the estimators fﬂ(g) and 52(2), we use

N . Ny
(ak,a,(f)) = (yk,y;(f)) = <yk,TQk))
Oy

22



for fg@) , and

) = (5) = (s 5.
0

k

for £,. Finally, when applying Theorem 5.2 on R(Q), we use

A(2) T 2) Ty Ny 2) =
B = oo — RO g = 2oy (1= RY2)
k k k

The v and 6 expressions will first be presented by use of the general error

~(2

model ¢ in Section 3.3.3 (“general” in the sense that it does not say how 9,& )
is connected with 05 and €;), then two special cases will be treated.

1@ is theoret-

Under general error model assumptions The estimator g,
ically complicated, it being a ratio of random variables. By use of Taylor’s
theorem (see, e.g., [2, Theorem 7.4.1]), we are however able to approximate
its moments. The first-order Taylor approximations of the model moments

for f@@) are given by

A(Q) ~ ILLT‘k,

v(9 ~oe 53
I~ (53)
2/ 5 2

A /’LT O-'f' é(Q)
8(5%), ~ |- R (54)
'ué;(f) Mo, Mé;(f)

The model moments for fg(g) are obtained by also using Proposition B.1 with
(A,B) = ( Tk/@,c ,xrk), and the equalities

En(

mk/é,(f ,szq) = E,E, (wrk 71,«,6/0,g ,@,(f),szq)
= EqET(:E‘Tk |n7“k? Sifl) =E, (iﬁc |n"'k’ Sif])

ol 0® 4@
i 0) = (o)
Vo (T, [, /9,&2),9,22),32q)

= Eqv?“(iﬁe ’n?“m SiQ) + ‘/(JET(EW |n7“k7 SiQ)

= V(@ [y 5iq)
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~ (2
which hold since z,, and 9,& ) are independent. The resulting moments are

22 o 2k
y(2 R %)
( )k Yk 'uéx(f) ( )
2 1 /
A Ny — Ny [ Yk
(S(z@))]g ~ B, <A(2’“)> TkSiUk |Siq
by
Zk 2
+(=) 6(3®
(%) (y )k
1 1 2 2 2
= Eq ~(2) 9 |:/1’rk - y_ (ILLT'k + O-rk):| SzUk
(6") ’“
Zk 2
+(=) 6(y?
(%) ( )k
1 1 2 2 :| 2
X o5 My, — +0r Sz
U;(z) +M;(2) |: & mn ( & k) Uk
k k

+ (@)25 (%), (56)

Yk

(2
The second equality for ¢ is derived using the independency of n,, and 9,2 ),
and Equation (18). The final equality arises from the (first-order) Taylor
approximation
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The model moments for R® are

E<2>) ~ [1- RO\ ~(® 58
7( ) m 7(5%), (58)
21 /
(2 _ 2 2 Ny — N [ Yk 2
(6, ~ | () e

(R(Z))Z { Ly 2 ] 2
% o 9 /”LT - ILLT‘ + O-’I" SI
0.?(2) + ,u?@) k mn ( k k) Ug
O 0y
2
+ (1 - R@)ﬁ) 5(5), (59)
Yk

Equations (58)-(59) are derived by use of Proposition B.1 with (A4, B) =
(nrk / 9,&2), 1-— R(Z)a’zrk), and (for 0) the independency of n,, and 9,(5), Equa-
tion (18), and the approximation in Equation (57).

Under the registration model, p, = yrfy and o2, = ypfp (1 — ;). It
follows that Equations (53)-(54) simplify to

O

j2) = 60
107) = we P (60)
2 2
0 1—6, 5@
8(9®), = o> k + == 1; 61
59), = w e )\l T2 (61)
k
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Equations (55)-(56) to

o
2(2) ~ k
z Nz 62
7( )k k”é? (62)
. 1
522~ P Or (1 —0k) (ye — 1) S2y,
p@ T e
k k
2
Rk N
+( =) (@
1 22
= 0, (1—06 mZ——k>
02(2) —l—u;@) g 2 (ZUk Yk
k k
2
2k .
+( =) §(59), ; 63
() 562, )
and Equations (58)-(59) to
. 0
7(E@)) ~ (1_R<2>ﬁ> Tk (64)
k Yk ) Hye
) R®)? 2
5(E<2>) ~ %eku—ek) Yoo
k Tt e U Yk
by by
2
+<1—R<2>ﬁ> 5(5), (65)
Yk

where R =37,y (Qk/ua§f>) DX (ek//‘éf))'
Assume that é,f is an unbiased estimator of the true registration prob-
ability (u, = 6k). Then, from Equations (60) and (62), v(5?), = yr and
k
7(2(2)) L = %k It follows from Corollary 5.1 that ty and f;2 then are un-

biased for t, and t,, respectively. Furthermore, from Corollary 5.2, R® is
approximately unbiased for R.

~(2
Under some special cases of the error model for Q,i) Consider the
~(2
error model ¢ for Q,i) stated in Section 3.3.3. Two possible functional rela-

~(2
tionships between 9,(€) and 0, are the additive error model,

~(2
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and the multiplicative error model,

~

9,2) = lek. (67)

Let the mean and variance of ¢, be denoted . and o2, respectively. Ac-
cording to model ¢, these moments are independent of s;, and n,, . In ad-
dition, we now assume that the error moments are independent of the site
k as well. In Equations (66)-(67), by letting u, ¢ = Oy + pic and o? oo = = o2,
results are obtained for the additive model. In the same manner, by letting
Hae) = Ok, and O'é@) = 0702, we get results for the multiplicative model.

k
Consider in particular the latter model. For this, Equations (60)-(61) modify
to

N Y
7(y@))k - (68)

He

2
1-6 o?
S(0@ — (%) ( i +_€>; 69
), [he Yelp 2 (69)
Equations (62)-(63) to
7(2(2))1@ ~ (70)
He

1 1-90 z
5(2) ~ k 2k
§(2%), o2+ 2 O (ZU x,, yk>
2
%k N
+( =) 6(5® 71
(Z) o), )
and Equations (64)-(65) to

7(E(2)) ~ (1 — Rﬁ> (72)
k He Yk
k o2+ u2 0O Ue * g
2
2%k (2
+ (1 - R —) 5(5™), (73)

Yk

For the multiplicative model, the propitious case [ = 0, for which fﬂ(m
k

and t.2 are unbiased and R® approximately unbiased, corresponds to an
error mean equal to unity (u, = 1).
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5.3 Summary of theoretical findings

We investigated the statistical properties of various estimators of the param-
eters t,, t, and R. The estimators are all based on estimates, rather than
the true values, of y and z for sampled sites. In general, for each estimator,
the sign of its possible bias (as estimator of the true population entity) is un-
known. Further, the sign of the difference between the estimator’s variance
and the one of the corresponding complete-data estimator (the estimator
based on the true variable values) is unknown. A key issue is whether the
estimators of the values of y and z are unbiased or not. If they are, the
estimators of ¢, and ¢, are unbiased as well, and the estimator of R approx-
imately unbiased. The variances of the estimators of ¢,, ¢, and R are then
surely larger than those of the corresponding complete-data estimators.

The statistical properties of the Strategy 0 estimators are determined
jointly by the sampling design and the registration model. Under this strat-
egy, the values of both y and z are underestimated, and so are ¢, and ¢,.
In what direction (if any) missing data bias the estimator of R remains un-
known. If, by chance, the registration probabilities 6, are equal for all sites,
the Strategy 0 estimator of R is however not biased by missing data.

Evaluation of the statistical properties of the Strategy 1 estimators re-
quires not only that the sampling design and the registration model are
taken into consideration, but also the imputation model. The estimators
of the y and z values are unbiased if the (conditional) expected number of
imputed vehicles, and the number of missing vehicles, coincide. If the error
in the number of imputed vehicles is multiplicative, the variance expressions
slightly simplify. Still, they contain a number of unknown model parameters:
the registration probabilities 6}, as well as the error variance.

Finally consider the results for Strategy 2. Under this strategy, estimates
of the registration probabilities 6, are used to adjust for missing data. Fx-
pectations and variances of the Strategy 2 estimators are taken with respect
jointly to the sampling design, the registration model and the error model
for the estimator of ;. Due to the fact that the y values are estimated by
ratios of random variables, our results are not exact, but rely on Taylor ap-
proximations. The estimators of y and z are unbiased if the estimator of 6
is. If the error in the estimator of 8y is multiplicative, like under Strategy 1,
this allows us to simplify the variance expressions somewhat.
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6 Empirical study

6.1 Study objectives

In Section 5, the statistical properties of the various estimators are investi-
gated. The results however rely on model assumptions whose realism remains
to be checked. Also, the results do not allow us to draw general conclusions
on which strategy that is preferable. The need for model evaluations and
further guidance in the choice of estimation strategy motivates the collection
of some empirical data.

The main objectives of our study are to investigate:

e The forming of registration homogeneity groups. For reasons
stated in Section 3.1, the smallest groups considered are watch-hours.
We would however like to evaluate the option to join several hours into
larger groups. Can unnecessarily large variation in group registration
rates this way be avoided?

e The assumptions of the multiplicative imputation error model. Is
the error in the number of imputed vehicles multiplicative (as suggested
in Section 5.2.2)?7 Is the number of imputed vehicles conditionally
unbiased for the true number of missing vehicles (conditional on the
number of registered vehicles)?

(2
e The assumptions of the error model for 9( ). Is the functional rela-
~(2
tionship between 9,(6) and 0 additive or multiplicative (or neither of

A (2
them)? Is the estimator 9,(6) unbiased for the true registration proba-
bility?

Finally, we are interested in the

e empirical behavior of the proposed estimators of flow and travel time
for a road site.

6.2 Design of the study

Data were collected for five road sites in the city of Linkoping, Sweden. The
sites were purposively chosen to represent different types of traffic environ-
ments. However, to simplify, the study was limited to two-way, two-lane
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Site no. Street name Street characteristics

1 Nygardsvigen Feeding lane for suburban area

2 G:a Tanneforsvigen Part of major route encircling the city

3 Drottninggatan Inner city street

4 Kaserngatan Part of major route encircling central city
5 Bergsviigen Throughfare

Table 1: Selected road sites in the city of Linkdping, Sweden.

streets with a speed limit of 50 kilometers per hour: a typical road design
and speed limit for Swedish urban roads. For details on selected sites, see
Table 1.

In each site, data collection went on for 24 successive hours by use of
two pairs of pneumatic tubes and three traffic analyzers. The installation of
the equipment is outlined in Figure 1. One pair of tubes (Ag, By) connected
to a traffic analyzer M, was used for simultaneous observation of vehicles
on both street lanes. The second pair of tubes (A;, B;) was installed in
parallel with the first, only with a slight lateral displacement. The length
of the displacement, about 30 centimeters, was chosen to satisfy the criteria
(1) sufficiently long to prevent the tubes from disturbing each other, yet
(2) sufficiently short to ensure that passing vehicles keep the same speed as
while passing (Ag, By). By use of valves, the tubes (A, By) were plugged
at the center line marking of the street. This procedure enables separate
measurement of the traffic on each lane. The tube ends on each side of the
valves were connected to a traffic analyzer. In Figure 1, lane 1 is measured
by the tube parts (A1, Bi1) connected to traffic analyzer Mj; lane 2 by
(Aia, Bio) connected to traffic analyzer Ms.

The plugging method has been developed at the SNRA as a means of
improving data quality. The registration task facing M; and M, is much
easier (and hence less subject to measurement errors) than that of My: ve-
hicles do not meet while passing the tubes, fewer vehicles pass and their
direction is known beforehand. Despite this, the method is rarely used in
the speed survey. The main reason is, that it is more time-consuming to use
than the unplugged alternative: the valves need to be mounted in the tubes,
and the laying out of the tubes demands greater care. Another drawback of
the method is the vulnerability of the valves. If a valve for instance becomes
filled with rain water, or squeezed by a vehicle wheel, it may quit working.
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Figure 1: Installation of the measurement equipment.

According to plan, all experimental data were to be collected August 21-22,
2001. Due to valve malfunctioning, site 1, 3 and 4 were however re-measured
September 24-25, 2001.

In the experiment, the data set produced by M, is intended to represent
the output one would expect from a measurement performed within the reg-
ular survey. The data set produced jointly by M; and M,, on the other hand,
is intended to represent the ‘truth’.

6.3 Data processing

We start by introducing some notation. Consider site k during hour h
as measured by traffic analyzer My k = 1,...,5;h = 1,...,24;d = 0,1,2.
For (k,h, M), let Ny and np, - denote the number of registered and
imputed vehicles, respectively, and (M E)kh(d) the measurement efficiency.
The corresponding measures for a 24-hour period are Ny = i4=1 Nrnay
24 24

Niyay = 22h=1 "Tuna and (ME)k;(d) = Z2uh=1 (ME)kh(d) /24'

The observational data from M is to be compared with the joint data
from M; and M. To simplify, let Nrnirzy = Mreny T M) and Moyt =
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M, M, M,
Site no. . ng ME Ty ng MEFE Ty ny ME
1 5690 69 98.9 2976 13 995 2763 13 99.5
14314 747 96.5 7924 249 97.9 6989 58 96.9
10850 2856 87.3 772 2038 84.8 6546 527 94.3
10948 181 984 5363 47 98.6 5730 80 98.5
11259 338 97.9 5660 8 99.8 5907 66 98.4

U W N

Table 2: The number of registered vehicles (n,) and imputed vehicles (ny),
and the measurement efficiency (M E) in per cent, by site and traffic analyzer.

24
h=1 n’"kh(1+2) ’

ingly. For the set 7y5(142) of size ny,, , , of vehicles registered during hour 1
by M; or Ms, the total travel time is Zrkh(1+2>

- 24
a 24-hour period is E"'k(Hz) Ty =Y 14 Zrkh(1+z) Ty

A summary of the outcome of the measurements is given in Table 2. If
the data collection had turned out perfectly, the table had contained noth-

and let the entities n Lingi42) and n Li(142) be defined correspond-

x,. The total travel time for

ing but zeroes in the n; columns for analyzer M; and M, (the measurement
efficiencies for M; and M, had then also been 100 per cent.) Table 2 exposes
however, that even though the use of valves reduced the need for imputa-
tions, it did not succeed in eliminating it. Site 3 is our real ‘problem child’:
on this busy inner city street, all three analyzers encountered difficulties. In
particular, on lane 1, the traffic is approaching a traffic signal. The signal
causes the vehicles to either move slowly with short time gaps or to stand in
line — an especially difficult measurement situation. We judge that the re-
sulting large number of imputations, and low measurement efficiency, makes
the M; data useless for our purposes. For this reason, only the lane 2 part
of the My data, and the M, data, is used in the coming analysis of site 3.
In certain cases, imputations in the M; or M, data can be matched with
vehicles properly registered by M. These situations are most likely to oc-
cur when passing vehicles straddle the valves. For each site, we compared
the data files from My, M; and My, looking for imputations in M; and Mo
which with reasonable certainty could be matched with registered vehicles
in My. These imputations were then substituted by the registered vehicles.
Table 3 shows the number of imputed vehicles that were substituted, how
many registered vehicles they were substituted by, and how many unsubsti-
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M, M;

Siteno. n} ng ny—nj ny ng ny—nj
1 4 3 9 2 1 11
2 46 30 203 23 20 35
3 - - - 62 50 465
4 34 23 13 47 29 33
5 0 0 8 42 33 24

Table 3: The number of imputed vehicles that were substituted (nj), how
many registered vehicles they were substituted by (ng), and the remaining
number of imputations (n; — n}), by site and analyzer. For site 3, only data
from M, were examined.

tuted vehicles there are left in the adjusted data files. We see that the number
of substituted vehicles is consistently larger than the number of substitutes.
This makes sense since a vehicle straddling the valves typically produces two
ore more imputed vehicles, distributed among M; and M.

6.4 Estimation

In the estimation, for M; and Ms, the number of registered vehicles M1 42y
and their associated total travel time Zrkh(1+2) Z,, 1s calculated from the
adjusted data set 7p(119) (see Section 6.3) with no distinction made between
‘truly registered” and ‘substitute’ vehicles. From Table 3, after adjustments,
the sets rpp(142) still contain imputed vehicles. Some of these imputations
are probably correct, whereas others ought to be removed. For each selected
site and each measured hour, to form a basis of later analysis, we calculate
a number of estimates. Since there is no way for us of knowing how to treat
each imputation case, our estimates are calculated both with the imputations
in rpp142) retained and removed. Estimates for which the imputations are
retained are indexed by ‘wi’; estimates for which they are removed by ‘woi’.
For site k£ and hour h, the following estimates are calculated.

Estimates of registration probability The registration probability 6,
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for (k,h) is estimated by

h nTkh(o)
Okhvoi = —— (74)
n’"kh(1+2)

~ n
ekh,wi = iy (75)

Nor 142 + N 42

In both Equation (74) and (75), the denominator is intended to repre-
sent the true flow.

Estimates of multiplicative imputation error Consider the multiplica-
tive imputation error model in Section 5.2.2. For (k, h), the multiplica-
tive error £y, is estimated by

Lo/

2 (0)

Ekh,woi — (76)
Nrpnisay — Mrenco

ny
Ekhwi — L (77)
Nrpnig2) + Nhnatre) — Mringo)

In both Equation (76) and (77), the denominator is intended to repre-
sent the number of vehicles missing in the M, data.

Estimates of error in 9(2) Consider the additive error model for 9(2) in
Equation (66). For (k, h), the error e, is estimated by

ernwoi = (ME)y,q) — ékh,woi (78)
€khwi = (ME)kh(O) - ékh,wi (79)

A (2
Further consider the multiplicative model for 0( : in Equation (67).
Under this model, the error e, is estimated by

. (ME)
€kh,woi Aikh([)) (80)
ekh,woi
(ME)
Ekh,wi A—kh(O) (81)
ekh,wi

The resulting estimates are presented in Appendix C. Throughout the
appendix, one graph refers to one site, and one data point to one hour.
Estimates for which the imputations are retained are indexed by plus signs;
estimates for which they are removed by dots.
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In Appendix C.1, the estimated registration probabilities O, are plotted
against the ‘true’ flows. The estimates @kh,woi are plotted against M1 42y
the estimates 9kh,wi against Nrencigey T Mnis)-

The estimated imputation errors are presented in Appendix C.2-C.3. In
C.2, the errors are plotted against the ‘true’ number of missing vehicles.

Then, the estimates £xp, woi are plotted against M2y ; the estimates

Mo
Ekhywi AGANSE Ny o+ MLy o) = T In C.3 however, both &xpwei and

Eknwi are plotted against the registered flows Mrn o) -

The observed errors in @,(fh) under the additive error model are presented
in Appendix C.4 and C.6. The graphs include a horizontal reference line
at level zero: the desired expected value of these errors. Correspondingly,
the errors under the multiplicative model are presented in Appendix C.5
and C.7 with a horizontal reference line at level one. In Appendix C.4 and
C.5, the errors are plotted against the estimated registration probabilities
@kh,woi and ékh’wi. The diagonal patterns in the observations are a result
of the measurement efficiencies (used in the calculations of the errors) only
being available as integers. Note the occurrence of considerable errors for
registration probabilities equal to one. Even after thorough examination of
the raw data, we have not been able to come up with an explanation for this.
In Appendix C.6 and C.7, the errors are plotted against the registered flows

nﬁch(o) :
For each selected site, we also calculate the following estimates.

Estimates of flow and travel time For site k, the traffic flow y; and travel
time zj are estimated by use of the formulas in Section 3. The resulting
estimates under Strategy ¢ (¢ = 0, 1,2) are denoted @1(;3)) and 2,&0(2)), re-
spectively, where subscript (0) indicates that only M, data are used for
the calculations. For easy evaluation of the estimates, we continue by
standardizing them. For site k and Strategy c, the standardized flow
estimates without and with imputations are

~(c)

(¢ Yk(0)
i = (82)
Th(1+2)
~(c)
(¢ Yx(0
o = < (83)

Nrg149) + N 142
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whereas the standardized estimate of travel time is

© &
gkfwoi = (84)
Z"'k(l+2) Ly

We choose to standardize the travel time estimates only by the sum of
travel times for vehicles registered in the valve measurements (that is, the
imputations in the latter are ignored). The reason is that we do not trust
the travel times of imputed vehicles.

Estimates of average speed For site k, define the average speed (also
known as the space mean speed or harmonic mean speed [8, Sec. 2.2.2])

1 Yk
Uk =T—p T = (85)

1 Yk
Yr v=1 Uy Zk

where u,, is the speed at which vehicle v passes the site. Under Strat-
egy ¢ (¢ =0,1,2), uy is estimated by the ratio

@(C)
iy = = (86)

“k(0)
Again for easy evaluation, the estimates are standardized. For site k
and Strategy c, the standardized average speed estimates without and

with imputations are

~(c)
() U
k,woi = (87)
n’“k(1+2)/ Z"'k(l+2) Lo
- (c)
U = = (88)

(nTk(1+2) + nlkh(1+2)) /Zrk(HQ) Ly

In both Equation (87) and (88), the denominator is intended to repre-
sent the true average speed.

The standardized estimates of 3, and z; are presented in Table 6 and 7,
respectively, whereas the standardized estimates of uy are given in Table 8.
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6.5 Analysis
6.5.1 The forming of registration homogeneity groups

Consider the estimated registration probabilities within any site in Appendix C.1.
The probability estimates are often fairly constant for adjacent hours, which
speaks in favor of merging hours into larger homogeneity groups by flow.
Since the relationship between registration probability and flow typically is
quite smooth over the 24 hours, it seems however as unnecessary work.

6.5.2 Evaluation of the multiplicative imputation error model

If the multiplicative imputation error model is correct, the estimated errors
Ekhwoi and Egpwi should not reveal any obvious patterns if plotted against
other variables. When we plot the errors against the number of missing
vehicles (Appendix C.2), for some sites, we discern however a tendency of
the error variance to decrease as the number of missing vehicles increases.
Due to the scarcity of observations for large numbers of missing vehicles, it
is hard though to draw any certain conclusions. When the errors are plotted
against the number of registered vehicles (Appendix C.3), on the other hand,
no unusual structures are apparent.

To investigate whether the variance of the errors is independent of the
site (as the model states), we formulate an analysis of variance (ANOVA)
model:

k=1,2,..b

h=1,2..c (89)

ékh:a+ﬁk+€kh{
where £;;, may be either Exp, woi OF Exnwi, b is the number of experiment sites,
and ¢ the number of observed hours within site. In practice, b = 5 and ¢ = 24.
The parameter « is an overall mean, [, is the random effect of the kth site,
and e, is a random error. We assume that the 3,’s are NID (O,a%), the
exn’s NID (0,0%), and that 3, and ey, are independent. This random effects
model (see, for instance, [13, Sec. 3-7], [14, Ch. 24]) actually presupposes
that our experiment sites were selected randomly from all possible sites (all
urban road meters in Sweden). Then, inference could be made about all
sites. In our case, since the sites were chosen purposively, we must interpret
our results with caution.
We start by testing the hypothesis Hy : 03 = 0 versus Hy : 03 > 0.
The ANOVA'’s for our data are shown in Appendix C.8.1. We see that our
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Imputation 95 % confidence

error interval for p.
E kh,woi 1.10398 + 0.22136
Ekh,wi 0.80832 £ 0.16808

Table 4: Confidence intervals for p., calculated with the imputations in the
valve measurements removed and retained, respectively.

conclusions differ for different treatments of the imputations in the valve
measurements. If the imputations are removed, the null hypothesis is not
rejected at the 0.05 level of significance. If, on the other hand, the imputa-
tions are retained, the null hypothesis is rejected. Hence, we do not get a
clear indication if there is a variability between sites or not.

We are further interested in estimating the mean p. = « of &x;,. From [14,
Eq. (24.15)], a 100(1 — «) percent confidence interval on pu. is given by

MSsite
be

Bt app (90)
where & = EZ=1 EZ=1 Exn and M St is the mean square due to sites. By use
of Equation (90) and the ANOVA’s in Appendix C.8.1, the interval estimates
of p; in Table 4 are obtained. Again, our conclusions differ for different treat-
ments of the imputations in the valve measurements. If the imputations are
removed, the hypothesis of . = 1 is not rejected at the 0.05 level of signifi-
cance. If, on the other hand, the imputations are retained, the hypothesis is
rejected. Whether the number of imputed vehicles is conditionally unbiased
for the true number of missing vehicles or not thus remains an open question.

6.5.3 Evaluation of the error model for 9(2)

~(2
No matter if the additive or the multiplicative error model for Q,ih) is con-

(2
sidered: if the model is correct, the observed errors in 9,(6,3 should not reveal
any obvious patterns if plotted against 0y, or the registered flows n,,, . For

the estimator 9,(62,3 to be unbiased for A4, (and thus, hopefully, for the true
registration probability €p) the errors, when plotted against ékh, ought to
scatter around the relevant reference line (placed at level zero for the additive
errors; one for the multiplicative errors).

We start by the observed errors under the additive model (Equations (78)-
(79)). In the graphs in Appendix C.4, we see a tendency for the plus signs
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to scatter above the reference line, and for the dots to scatter below the
line. These point swarms represent the two extremes in terms of treatment
of imputations in the valve measurements — the location of the ‘true’ swarm
ought to be somewhere in between. We do not see a strong tendency of the
error variance to change with the size of ékh. The scarcity of observations
for small values of 6, makes it hard though to draw any certain conclu-
sions. When the errors are plotted against the number of registered vehicles
(Appendix C.6), no unusual structures are apparent.

Now consider the observed errors under the multiplicative model (Equa-
tions (80)- (81)). In the graphs in Appendix C.5, we see again the tendency
of the two point swarms to lie above and below the reference line. And
again, as far as we can tell, the error variance seems to be independent of
04n. When the errors are plotted against the number of registered vehicles
(Appendix C.7), we see no clear signs of dependency between the variables.

In summary, so far, both models seem to fit our data quite well. In neither
case have we found strong evidence against assuming constant error variance

within site. Possible bias in 9,(5,3 as estimator of Ay, is hard to evaluate, since
our results are sensitive to the choice of treatment of the imputations in the
valve measurements.

Both the additive and the multiplicative error model states that the vari-
ance of the errors is independent of the site. To investigate this, we use
the same ANOVA model as in Equation (89) — only with &, replaced by
€k, (which may represent either €, woi in Equation (78) or (80), or € wi in
Equation (79) or (81)). Again, the aim is to test the hypothesis Ho : 05 =0
versus Hy : 03 > 0. The corresponding ANOVA tables are given in Appen-
dices C.8.2-C.8.3. We see that throughout, the null hypothesis is rejected at
0.05 level of significance. In other words, contrary to what our models state,
there seems to be a variability due to site in the error in @,(fh)

We proceed by estimating the mean p, = a of €. By use of Equation (90)
with &g, replaced by éxn, and the ANOVA’s in Appendices C.8.2 and C.8.3,
the interval estimates of p, in Table 5 are obtained. At the 0.05 level of
significance, for the additive error model, the hypothesis of u, = 0 is not
rejected. Also, for the multiplicative model, the hypothesis of p, = 1 is not
rejected. These results stand no matter how the imputations in the valve
measurements are treated.
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Error model  Imputation 95 % confidence
2

for 0 error interval for p,
Additive €k, woi —0.00743 £ 0.00911
Additive Ekh, wi 0.00796 £ 0.01706
Multiplicative  €gp, woi 0.99103 £ 0.01301
Multiplicative — €gp wi 1.00963 + 0.02105

Table 5: Confidence intervals for p, by error model, calculated with the
imputations in the valve measurements removed and retained, respectively.

Site no. S B e

1 0.99077 1.00279 1.00783 | 0.98733 0.99931 1.00429
2 0.95656 1.00648 1.01129 | 0.94165 0.99079 0.99550
3 (one dir.) 0.82990 1.05230 1.04836 | 0.77524 0.98301 0.97928
4 0.98232 0.99856 1.00476 | 0.97846 0.99464 1.00079
5% 0.97052 0.99966 1.00440 | 0.96793 0.99699 1.00171
Mean 0.94601 1.01196 1.01530 | 0.93012 0.99295 0.99631

Table 6: Standardized estimates of flow, by site. (For site 3, only data from
M, are used.)

6.5.4 Empirical behavior of proposed estimators

Obviously, our limited data material does not allow us to study the long run
performances of the estimators of flow and travel time, but can only give
some indication of the same. In Tables 6 and 7, as expected, the Strategy 0
estimates all fall below one. The missing data adjusted estimates under
Strategy 1 and 2, on the other hand, look quite well. Depending on what
entity is used to standardize the flow estimates, for both strategies, their
averages land slightly below or above one (with the true average expected to
be somewhere in between). The averages of the standardized travel estimates
under Strategy 1 and 2 land slightly above one. However, most likely, the
travel time estimates are standardized with a too small figure (since the
imputations are ignored). In all, from Tables 6 and 7, it is far from obvious
which adjustment strategy (1 or 2) that ought to be recommended.

Now consider the standardized estimates of average speed in Table 8. For-
mally, we can not use these estimates to evaluate the performances of present
or proposed estimators of R. Still, the average speed u; is the counterpart
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Site no. 2‘(\% 2‘(\,10)1 2&,20)1

1 0.98854 1.00051 1.00550
2 0.94958 1.00097 1.00570
3 (one dir.) 0.81594 1.04619 1.04157
4 0.98234 0.99864 1.00483
5 0.96555 0.99475 0.99947
Mean 0.94039 1.00821 1.01142

Table 7: Standardized estimates of travel time, by site. (For site 3, only data
from M; are used.)

Site no. N/(cox)voi a/(cl\)ROl ~1(g2,\)voi ~l(g(,)\)vi ﬂl(gl\)vi al(clx)vi

1 1.00226 1.00227 1.00227 | 0.99878 0.99879 0.99879
2 1.00735 1.00551 1.00554 | 0.99165 0.98983 0.98986
3 (one dir.) 1.01711 1.00584 1.00647 | 0.95013 0.93960 0.94019
4 0.99999 0.99992 0.99991 | 0.99605 0.99599 0.99598
) 1.00515 1.00493 1.00492 | 1.00247 1.00225 1.00224
Mean 1.01308 1.00146 1.00199 | 0.99720 0.98576 0.98629

Table 8: Standardized estimates of average speed, by site. (For site 3, only
data from M, are used.)
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on “element-level” to the average speed R for all roads. The estimates in
Table 8, including the Strategy 0 estimates, are very close to one. We take
this as a small hint that missing data adjustments are not a necessity when
estimating R.

6.6 Summary of empirical findings

Since we could not calculate registration probabilities for individual vehicles,
but only by hour, we were not really able to check the assumptions of the
registration model. We seized however the opportunity to see if data spoke
in favor of merging hours into larger homogeneity groups. In our opinion,
this was not the case.

Under the multiplicative imputation error model, the conditional expec-
tation and variance of the errors are independent of the number of registered
vehicles and of the site. Our data gave us no obvious reason to reject in-
dependency between the errors and the number of registered vehicles. We
were not able to establish whether the errors are site independent or not,
since the result of our (approximative) ANOVA test proved to be sensitive
to how imputations in the valve measurements were treated. For the same
reason, we did not get a clear-cut answer on whether the error expectation
is equal to one (and hence are not able to say if the Strategy 1 estimators
are unbiased or not.)

Under both the additive and the multiplicative error model for the esti-
mator of the registration probability, the errors seemed independent of the
‘true’ probability. Both error models state that the errors are site indepen-
dent. In our ANOVA tests however, throughout, the null hypothesis of zero
variance due to site was rejected. This objection to the models requires fur-
ther investigation. The Strategy 2 estimators are unbiased if the estimated
registration probabilities are unbiased for their true counterparts. We tested
for this too, and got results that suggest that unbiasedness is in fact attained,
no matter if the errors are additive or multiplicative.

For our five experimental sites, we estimated the flow, the travel time and
their ratio average speed, and compared the estimates with the ‘true’ values.
Under Strategy 0, as expected, the flow and travel time were clearly under-
estimated. Under both Strategy 1 and 2, on the other hand, the estimates
of flow and travel time ended up reasonably close to the ‘truth’. Under all
strategies, the estimates of average speed came quite close to the ‘truth’. The
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last result is far from concluding evidence. Still, we take it as a small hint
that the present estimator of average speed is not overly sensitive to missing
data.

7 Summary

We have put forward two possible strategies for missing data adjustments in
the speed survey. Both strategies are designed for easy implementation. They
do not require simulations, or collection of new auxiliary data, but only minor
modifications of the computer programs presently used for the estimation.
Still, the implementation is only worth it, if the adjustment estimators are
likely to remove bias due to missing data. Whether they really get the job
done, is not that easy to establish. In fact, it is not even a matter of course,
that adjustments are at all necessary. Some of our empirical findings hint
that the present, unadjusted, estimator of average speed may be surprisingly
resistant against bias due to missing data.

In our investigation of the estimators’ theoretical properties, we made
use of several models. We did not build complicated models, trying to get as
close to reality as possible, but strived instead for simplicity. Despite this,
the expressions for the estimators’ expectations and variances turned out a
bit messy. We were privileged enough to be able to supplement the theoret-
ical analysis by use of some empirical data. Most of our model assumptions
seemed to agree reasonably well with these data. Also, the adjustment esti-
mators seemed to produce better (less biased) estimates of the totals ¢, and
t, than today’s unadjusted estimators. We were not able to tell how their
variances stand in comparison. None of the adjustment strategies showed
its clear superiority to the other. Also, as already mentioned, it remains an
open question if the estimator of average speed really needs any missing data
adjustments.

43



A  Proof of Theorem 5.1

By a slight generalization of [17, Result 4.5.1], the expected value of 4. is

a(c> Z Tra(c)

and the pé-variance of £, is

Ny 2 Ny )
) 1 Epe (a0, ) LYV
Ve (faw) = — > s (M —Epg(ta<c))) 4 _ZM-

mr = Di mr = bi

Hence, it suffices to show the stated expressions for F. 5( m(c)z) and Vpg( M(C)z) .

Let subscript /1 indicate conditional expected value or conditional vari-
ance with respect to the design used in stage two, given osy, and subscript
111 indicate conditional expected value or conditional variance with respect
to the design used in stage three, given os; and s;;;,. Then we can write

Epe (f,ra(c)i) = Enlin [Eg (fﬂ'd(c)i |3iq)] =FE
Ve (fwd(c)i) = EunEmn [Vﬁ (frrd(c)i |5iqn + ErVinr [Eﬁ (tATrd(C)i |5iq)}
+ViiErrr [Eg (frra@)z' |Sig )}

= Vi+Va+ Vi

The expectation is given by

Nrri N; .
E = EHEHI{ 1 Z qz W(G(C))k}

nrr; 5118 Mg Siq
o NII@ qu ~(c)
- ey, o (5 Z )|
o NIIz
- Bl zUM ]

= D 2, (@
Urri Uiq
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Now we turn to the variance. First,

Niri\° Niq 2 . (@
(nfli> ZSI”(”iq Zsiqé(a )k:

[ N i 2 N@ 2
- EU (nIIII> ZSU'E1H<< .q> ZS 6(&(6))k>]
= En (NHZ> Z Nig c) ]

Vi = Enli

nIri s11i Mg
_ an Niq ()
o ZUm Niq ZUM 5(@ )k;
Second,
Nrri :
R T SN SRLEN
big
= EII NIIz Z ‘/[[[ Z '7(&(0))
Nrri SIri Siq k
— Niri 91— fiq 1 .
- b (”Hi) Zsm Ny Nig Nig—1
L 1 2
. ZUiq (7 (&(c))]g — N, ZUM 7(&(0))k> ]
_ N J1—fig 1
B nrr ZUIH Niq Niq qu —1
~(c 1 e 2
2, (7(a< e 7 2, 1 >)k>
and finally,
NIIz
V= VHLH Do }
— NI2[z fIIz 1

nr Np—1

S (D 6 =3, P, 46, )
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B A useful proposition

Derivations of v and 6 for various cases are facilitated by the following propo-
sition (which is easily proven).

Proposition B.1 For any random variables A and B such that the expected
value of B given A is constant; E(B|A) = «, the expected value of AB is
given by

E(AB) = aFE(A),
and the variance of AB by
V(AB) = E[A*V (B |A)] + o’V (A).

where E(A) and V(A) is the expectation and variance of A, respectively, and
V(B |A) is the variance of B given A.
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C Experimental data

C.1 Registration probability vs. Flow
Site 1
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Site 5
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probability
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C.2 Imputation error vs. Number of missing vehicles
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C.3 Imputation error vs. Registered flow
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Site 3 (one direction)
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Imputation
error

Site 5
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Additive
error
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C.5 Observed errors under multiplicative error model

for @(2)
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Multiplicative
error

Site 3 (one direction)
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error
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Multiplicative
error

1.035
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1.000
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1.00

C.6

Error in (9(
istered flow

A2)

under additive error model vs. Reg-
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Site 2

Additive
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Site 4

Additive
error
0.015 N

0.0101 N
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0.000 mw — ——————————————— e
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—0.015-

—00204 & . —
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Site 5
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error
0.030] »
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(2
C.7 Error in 9( ) under multiplicative error model vs.
Registered flow

Site 1

Multiplicative
error
1.006 "
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Site 3 (one direction)

Multiplicative
error
1.30

125
1.20:
115/
110:
1057 . . . +
1.m'_.“_____"__T___'__.__.____'_k ____________
0.95 K .
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0 100 200 300 400 500 600
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0 100 200 300 400 500 600 700 800 900 1000
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Multiplicative
error

Site 5

10351
1030/
1.025:
1020
1.015
1.010;
1.005'
1.000'

0.995°

0.990
09854

0

100 200 300 400 500 600 700 800 9S00 1000 1100
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C.8 ANOVA tables

C.8.1 Under the multiplicative imputation error model

With imputations in valve measurements removed (Egp, = Expwoi):

Source of Sum of Degrees of Mean

Variation Squares  Freedom  Square Fy  P-value
Site 3.04343 4 0.76086 2.33  0.0603
Error 37.58069 115 0.32679

Total 40.62412 119

With imputations in valve measurements retained (Exn = Exhwi):

Source of Sum of  Degrees of Mean

Variation Squares Freedom Square  Fj P-value
Site 1.75452 4 0.43863 4.30  0.0028
Error 11.74024 115 0.10209

Total 13.49476 119
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C.8.2 Under the additive error model for ¢

2)

With imputations in valve measurements removed (€gp = €gxp,woi):

Source of Sum of Degrees of Mean

Variation Squares Freedom  Square Fy  P-value
Site 0.00518 4 0.00129 9.38 < 0.0001
Error 0.01587 115 0.00014

Total 0.02104 119

With imputations in valve measurements retained (€xp, = €gxhwi):

Source of Sum of Degrees of Mean

Variation Squares Freedom Square  Fj P-value
Site 0.01809 4 0.00452 8.52 < 0.0001
Error 0.06107 115 0.00053

Total 0.07916 119

C.8.3 Under the multiplicative error model for 9(2)

With imputations in valve measurements removed (€xn = €ghwoi):

Source of Sum of Degrees of Mean

Variation Squares Freedom  Square Fy  P-value
Site 0.01050 4 0.00263 9.45 < 0.0001
Error 0.03198 115 0.00028

Total 0.04248 119

With imputations in valve measurements retained (€xn, = €xpwi):

Source of Sum of

Variation Squares

Degrees of
Freedom

Mean
Square  Fj P-value

Site
Error
Total

0.02750
0.09933
0.12683

4
115
119

0.00688 7.96 < 0.0001
0.00086
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