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Abstract 

Natural fluctuations in the state of the environment can long conceal or 
distort important trends in the human impact on our ecosystems. 
Accordingly, there is increasing interest in statistical normalisation 
techniques that can clarify the anthropogenic effects by removing 
meteorologically driven fluctuations and other natural variation in time 
series of environmental quality data. This thesis shows that semi- and 
nonparametric regression methods can provide effective tools for applying 
such normalisation to collected data. In particular, it is demonstrated how 
monotonic regression can be utilised in this context. A new numerical 
algorithm for this type of regression can accommodate two or more discrete 
or continuous explanatory variables, which enables simultaneous 
estimation of a monotonic temporal trend and correction for one or more 
covariates that have a monotonic relationship with the response variable 
under consideration. To illustrate the method, a case study of mercury 
levels in fish is presented, using body length and weight as covariates. 
Semiparametric regression techniques enable trend analyses in which a 
nonparametric representation of temporal trends is combined with 
parametrically modelled corrections for covariates. Here, it is described 
how such models can be employed to extract trends from data collected 
over several seasons, and this procedure is exemplified by discussing how 
temporal trends in the load of nutrients carried by the Elbe River can be 
detected while adjusting for water discharge and other factors. In addition, 
it is shown how semiparametric models can be used for joint normalisation 
of several time series of data. 
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Introduction 

1 Introduction  

All data concerning the state of the environment are more or less uncertain. 

Observational errors can be substantial, measurements can be sparse or 

based on improper sampling, and the recorded values can be strongly 

influenced by the weather conditions that prevail before and on sampling 

occasions. This can make it difficult to determine the causes of observed 

changes in the environment. In particular, it can be problematic to 

distinguish between natural variability and the combined effect of a large 

number of interventions. This thesis is devoted to statistical methods that 

can be used to reduce irrelevant variation in the collected data and thereby 

help clarify the impact we humans have on our natural surroundings. 

The problems encountered when evaluating trends in time series of 

environmental quality data can be illustrated by a simple example. Figure 

1.1 shows a data set representing observed concentrations of mercury in 

Atlantic cod caught in the middle of the North Sea (53o 10' N, 2o 5' E).  

Visual inspection of the collected data gives the impression of a weak 

downward trend, but the observed concentrations vary considerably.  

Closer examination of collected data and other available information 

revealed that the analysed fish samples represented a wide range of body 

lengths, and the scatter chart in Figure 1.2 shows that the mercury content 

usually increased in relation to body length. Consequently, it should be 

feasible to make more precise statements about mercury trends, if we first 

remove the variation in measured concentrations that can be attributed to 

variation in body length. 

The key to the mentioned problem is a thorough statistical analysis of the 

joint distribution of sampling year, body length and mercury content. 

Figure 1.3 presents a three-dimensional scatter chart of the observed values, 
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and Figure 1.4 depicts a response surface fitted to observed data. Without 

going into details, it is obvious that the impact of differing body length can 

be removed or suppressed by investigating how the expected mercury 

content varies with a fixed body length or a given probability distribution 

of body lengths. Two questions that must be considered are how response 

surfaces can best be fitted to observed data and how such surfaces can best 

be utilised to explain temporal trends in the collected data. 
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Figure 1.1. Observed concentrations of mercury in muscle tissue from 

Atlantic cod (Gadu morhua) caught in the North Sea (53o 10' N, 2o 5' E). 
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Figure 1.2. Observed concentrations of mercury in muscle tissue from 

Atlantic cod (Gadu morhua) caught in the North Sea (53o 10' N, 2o 5' E) in 
relation to body length (cm). 
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Figure 1.3. Observed concentrations of mercury in muscle tissue from 

Atlantic cod (Gadu morhua) caught in the North Sea (53o 10' N, 2o 5' E). 
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1.1 Study objectives  

The general goal of the research underlying this thesis was to develop new 

statistical tools for detecting trends in time series of environmental quality 

data. Within this frame, we focused on nonparametric and semiparametric 

regression methods that can be used to clarify the impact of humans on the 

environment when a substantial fraction of the changes in the collected data 

over time can be attributed to one or more variables (covariates) 

representing natural variability. The temporal trends were modelled 

nonparametrically to enable extraction of nonlinear trends, whereas the 

adjustment for covariates was based on parametric or nonparametric 

models.  

More specifically, the present studies had the following objectives: 

• To examine the performance of algorithms for monotonic regression 

(MR) that can accommodate two or more explanatory variables 

(paper I).  

• To develop MR-based normalisation techniques for adjustment and 

trend assessment of environmental quality data that have a monotonic 

relationship with one or more covariates (paper II). 

• To construct regression-based normalisation techniques for time 

series of environmental quality data collected over several seasons 

(paper IV). 

• To demonstrate the usefulness of the cited methods for assessing 

trends in substance flows and levels of contaminants in the 

environment (papers III & IV). 
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1.2 Outline of the thesis 

The rest of this thesis comprises five chapters. In Chapter 2, the concept of 
normalisation of environmental quality data is introduced, the probabilistic 
basis for normalisation is explained, and some examples of normalisation 
formulae are given. In addition, it is shown how semiparametric models can 
be used for joint normalisation of several time series of data. Chapter 3 is 
devoted to MR and included examination of the performance of the GPAV 
(generalised pool adjacent violators) algorithm and the use of MR for 
environmental applications. Chapter 4 addresses simultaneous 
normalisation of several time series of data that can be expected to have 
similar but not necessarily identical trends, and the focus is on how 
semiparametric (SPR) models can be used to normalise data collected over 
several seasons. Chapter 5, compares monotonic and semiparametric 
methods, and also discusses the advantages and disadvantages of the 
techniques we used. Finally, Chapter 6 lists the major conclusions of the 
work, along with some issues that require further research. 
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2 Normalisation of environmental quality data  

Various types of statistical adjustments or standardisation methods are 

widely used to suppress irrelevant variation in collected data. For example, 

data gathered during several parts of the year are often seasonally adjusted 

to facilitate comparisons over time. Similarly, incidence rates of diseases 

are frequently standardised to a given age and sex distribution to facilitate 

comparison of populations. In environmental science and management, the 

use of standardisation techniques has long been nearly synonymous with 

the formation of ratios that are less variable than the original data. 

However, in the past decade, a number of new methods have been proposed 

to remove or lessen the effect of irrelevant fluctuations. In this thesis, the 

term normalisation refers to such techniques, and special attention is given 

to regression-based procedures that aim to clarify the human impact on the 

environment by removing and suppressing meteorologically driven 

fluctuations and other natural variation in time series of environmental 

quality data. 

The basic idea of normalisation is simple. If observations of meteorological 

or other naturally fluctuating variables make us believe that the studied 

response variable takes a value that is c units higher than the mean 

response, then normalisation implies that we subtract this expected increase 

c from the observed response. A general probabilistic framework for this 

type of adjustment of collected data has been presented by Grimvall and 

co-workers (2001), and numerous articles have been published that 

describe specific normalisation techniques. In particular, several 

investigators have used regression methods, or related statistical learning 

techniques such as neural networks, to normalise air quality data 

(Bloomfield et al., 1996; Holland et al., 1999; Huang & Smith, 1999; 
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Shively et al., 1999; Gardner & Dorling, 2000a,b; Thompson et al., 2001). 

A few authors have considered flow-normalisation of riverine loads of 

substances (Stålnacke et al., 1999; Stålnacke and Grimvall, 2001; Uhlig & 

Kuhbier, 2001), and concentrations of pollutants in sediments are often 

normalised with respect to grain size or amount of organic matter in the 

analysed samples (e.g., Koelmans et al., 1997; Clark et al., 2000). 

Additional examples of statistical methods that are used to reduce the 

variability of observed data include normalisation regarding the fat content 

in biota or the salinity of water samples collected in estuaries. 

 

2.1 Notation and basic definitions 

Here, we discuss normalisation of time series yBtB, t = 1, …, n, of 

environmental data quality data that are influenced by random vectors xBt B = 

(xB1tB, …, xBpt B),  t = 1, …, n,  representing the natural forcing of the ecosystem 

under consideration or other forms of natural variability in the collected 

data. First, we use the concept of conditional expectation to make a formal 

definition. 

Definition. Let 

nttfy ttt ...,,1,),( =+= εx  (2.1) 

where x Bt B,  t = 1, …, n, are identically distributed random vectors and εBtB, t = 

1, …, n, are independent, identically distributed error terms with mean 

zero. Further, assume that the error terms are independent of the x vectors. 

Then, the vector of xBtB-normalised y values is defined by the equation 

( ) ntyEyEyy tttt ...,,1,)()|(~ =−−= tx  (2.2) 
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where )( tt x⎜yE  depicts the conditional expectation of yBt B given x BtB. 

Moreover, we say that 

( ) ntyEyEyy ...,,1,)()()(~ ==⎜−⎜−= cxxc tttttt  (2.3) 

is a vector of y values normalised to x = c. 

The definition of x-normalised y values is taken from the above-mentioned 

report by Grimvall and co-workers (2001), in which the term global 

normalisation was also introduced. The use of y values normalised to x = c 

is presented in papers II, where the mercury content of fish muscle from 

Atlantic cod is normalised to a body length of 49.6 cm. Conceptually, the 

latter type of normalisation is related to the variance reduction that may be 

achieved by sifting sediments or performing other physical or chemical 

fractionations of the analysed samples. In contrast to global normalisation 

we shall call it local normalisation. 

 

2.2 Normalisation using additive models 

The simplest form of normalisation is based on models that have a linear 

temporal trend and a linear relationship between the observed state of the 

environment and a set of meteorological covariates or other variables 

representing natural variability. Let us assume that  

ntxty t

p

i
itit ,...,1,

1
10 =+++= ∑

=
εβγγ  (2.4) 

where iβ , i=1, …, p are regression parameters, and t10 γγ +  is a linear 

trend function. Then, it follows directly from the definition in the previous 
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section that the vector of x-normalised y values can be obtained by 

computing 

ntxExyy
p

i
itititt ,...,1,))((~

1
=−−= ∑

=
β  (2.5) 

Figures 2.1 and 2.2 illustrate the results obtained when this formula was 

used to normalise annual loads of phosphorus with respect to annual water 

discharge values, and the model parameters were estimated using ordinary 

least squares regression.  
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 Figure 2.1. Annual loads of total phosphorus (Tot-P) in the Elbe River at 
Brunsbüttel. The two graphs show the following: time series plots of tot-P 

loads and water discharge values (a); a scatter chart of tot-P load vs. 
water discharge (b). 
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Figure 2.2. Annual loads of total phosphorus (Tot-P) in the Elbe River at 
Brunsbüttel normalised with respect to water discharge. 

 

 

The normalisation formulae 2.2 and 2.3 remain unchanged if the linear 

temporal trend γB0B + γB1 Bt is replaced with an arbitrary trend function h(t). 

b) 
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Furthermore, it can easily be shown that, for this type of model, global 

normalisation is identical to local normalisation of yBtB to xBt B = E(xBt B).  

The general additive model 

ntgthy ttt ,...,1,)()( =++= εx  (2.6) 

where both h and g may be nonlinear, calls for more thorough examination. 

First, we note that 

( ) ntgEgyy tttt ,...,1,))(()(~ =−−= xx  (2.7) 

and 

( )
ntggy

gEgyy

tt

ttttt

,...,1),()(
)|)(()()(~

=+−=
=−−=

cx
cxxxc

 (2.8) 

Moreover, it is simple to show that, for all additive models, local and global 

normalisation give rise to the same trend slope. This follows directly from 

the fact that 

ntgdFgyy ...,,1),()()()(~~ =−=− ∫ cccc
txtt  (2.9) 

is constant, if x BtB has the same probability distribution for all values of t. 

Finally, it can be noted that the global normalisation preserves the mean, in 

other words 

ntyEyE tt ...,,1),()~( ==  (2.10) 
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2.3 Normalisation using non-additive models 

Varying parameter models form an important class of models that are non-

additive in t and x. Let us specifically consider models of the form 

t

p

i
ititt xthy εβ ++= ∑

=1
)(   

ntth tt ,...,1,)( =++= εβxt  (2.11) 

where T
pt t

)...,,( 1 ββ=tβ are time-dependent regression parameters. In this 

case, 

ntEyy tttt ,...,1,))((~ =−−= βxx  (2.12) 

and 

ntyy tttt ,...,1,)()(~ =−−= βcxc  (2.13) 

which implies that global normalisation is identical to local normalisation 

to x = E(x). If c ≠ E(x), the two normalisation methods can give rise to 

different trends. 

In papers II and III we utilise MR models that are both non-additive and 

non-linear. Then it is convenient to use the notation  

,,...,1,),( nttfy ttt =+= εx  (2.14) 

( )
ntdFtftfy

yEyEyy

tX ...,,1,)(),(),(

)()(~

=+−=

−⎜−=

∫ ccx

x

tt

ttttt  (2.15) 
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( )
nttftfy

yEyEyy
...,,1,),(),(

)()()(~

=+−=
−=⎜−=
cx

cxc

tt

ttttt  (2.16) 

and it can be noted that the difference between global and local 

normalisation 

nttfdFtfyy ...,,1),,()(),()(~~ =−=− ∫ cccc
txtt  (2.17) 

may vary over time, regardless of how c  is selected. 

 

2.4 Simultaneous normalisation of several time series of 
data 

In paper IV, we normalised time series of riverine loads of nitrogen and 

phosphorus. The model used is a generalisation from one to several 

explanatory variables of the SPR model proposed by Stålnacke and 

Grimvall (2001). To be more precise, we assume that the relationship 

between the riverine load yBtjB for the jth month of the tth year and the 

contemporaneous values of p explanatory variables )()(
1 ...,, j

pt
j

t xx  has the 

form 

mjntxβ y j
t

j
it

p

1i

j
i

j
t

j
t ,...,1,,...,1,)()()()()( ==++= ∑

=
εα  (2.18) 

where )( j
tα , t = 1, …, n,  j = 1, …, m, represent deterministic trends, and 

the error terms are independent of each other and of the explanatory 

variables. Recently, Libiseller and Grimvall (2005) and Giannitrapani et al. 

(2005) addressed similar normalisation problems when they examined air 

quality and deposition data representing several wind sectors. Here, we 
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emphasise that both the riverine loads by season and the deposition by wind 

sector can be regarded as multivariate time series of data. Similarly, data 

representing several sampling sites along a gradient or several congeners of 

an organic pollutant can be regarded as multivariate data for which a joint 

analysis would be desirable. 

In principle, there is no relationship between the different time series of 

data in formula 2.18, because all error terms are assumed to be statistically 

independent and each series has its own set of intercept and slope 

parameters. However, when the model parameters are estimated, it is 

natural to introduce constraints on the variability of )( j
tα  and ,)( j

iβ  

j=1,…,m across the different time series of data. This is discussed further in 

the next section. 

 

2.5 Estimation of normalisation models 

We have already noticed that the simple linear normalisation model can be 

estimated using ordinary least squares regression. Estimation of 

semiparametric normalisation models such as 2.18 is, however, a more 

intricate task. First, we note that the number of parameters is larger than the 

number of observations. In a non- or semiparametric setting, this requires 

that smoothness conditions be introduced to decrease the degrees of 

freedom and render the model estimable. Second, we see that smoothness 

conditions for the intercept parameters are introduced in a more natural 

manner, if we reformulate the model so that the intercept represents the 

expected response when the covariates are equal to their expectations, as 

follows: 
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mjntxExβ y j
t

j
it

j
it

p

1i

j
i

j
t

j
t ,...,1,,...,1,))(( )()()()()()( ==+−+= ∑

=
εα  (2.19) 

In the calculations described in paper IV, a roughness penalty approach is 

used to SPR, that is, the parameters are estimated by minimising an 

objective function that has two components: the residual sum of squares, 

and a measure of the roughness of )( )( j
tYE  regarded as a function of t and 

j (Green and Silverman, 1994). 

 Compared to other smoothing methods, such as kernel smoothing and 

splines (Härdle, 1997; Hastie et al., 2001; Schimek, 2001), an advantage of 

the roughness penalty approach is that the smoothness conditions can easily 

be adapted to the type of data analysed. For example, when data are 

collected over several seasons, it would be natural to introduce constraints 

that force the intercept to vary smoothly with both year and season. 

Furthermore, it is natural to claim that the trend levels for the last season in 

one year and the first season in the following year are close to each other. 

We use the term spiral smoothing for this type of constraints on the 

intercept parameters (see Figure 2.3a). For annual data representing 

different wind sectors it is more appropriate to employ some form of 

circular smoothing (Figure 2.3b), whereas data collected along a gradient 

may require smoothing in two directions: over time and along the sampled 

gradient (Figure 2.3c). Paper IV and Chapter 4 give further details about 

roughness penalty approaches to the estimation of SPR models.  
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Season 1 Season 1 Season 1 Season 1    Season 1 
Season 2 Season 2 Season 2 Season 2    Season 2 

        
        
        

Season m Season m Season m Season m    Season m
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Sector 1 Sector 1 Sector 1 Sector 1    Sector 1 
Sector 2 Sector 2 Sector 2 Sector 2    Sector 2 
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Site 1 Site 1 Site 1 Site 1    Site 1 
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Figure 2.3. Different types of smoothing patterns for the intercept of the 
SPR model 2.4. The three graphs show spiral smoothing for data collected 
over several season (a), circular smoothing for data representing several 

sectors (b), and gradient smoothing for data collected along a gradient (c). 

 

 

Estimation of MR models for normalisation requires a two-step procedure. 

Algorithms for such regression provide fitted values 

nttfy tt ...,,1),,(ˆˆ == x  (2.20) 

 
c) 

b) 

a) 
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for those x vectors that are linked to an observed response value. However, 

the normalisation may require estimates of the expected response at 

additional points. For instance, in the case of local normalisation, we might 

want to estimate )(~ cty  by computing 

nttftfy ...,,1),,(ˆ),(ˆ =+− cxtt  (2.21) 

where c is not necessarily identical to any of the x BtB values. Likewise, in 

global normalisation, it must be possible to compute 

ntdFtftfy
tX ...,,1,)(),(ˆ),(ˆ =+− ∫ ccxtt  (2.22) 

or 

nttf
n

tfy
n

j
...,,1,),(ˆ1),(ˆ

1
=+− ∑

=
jtt xx  (2.23) 

The specific algorithms that are needed to obtain the fitted values 

nttfy tt ...,,1),,(ˆˆ == x  (2.24) 

are discussed extensively in paper I and Chapter 3, whereas the 

extrapolation of f̂  to new x values is briefly addressed in papers II and III. 

 

2.6 Further notes on normalisation 

The theoretical definition of normalisation that was given in section 2.1 can 

easily be extended to accommodate serially dependent error terms. Whether 

or not it is feasible to estimate such models is determined by the function 

f(t, xBtB). Many semiparametric normalisation models are estimated using 
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back-fitting algorithms in which parametric and nonparametric subroutines 

alternate. In such cases, it may be sufficient to replace an ordinary least 

squares estimator with a maximum-likelihood estimator that can 

accommodate serially dependent error terms. In contrast, the MR 

algorithms can only be applied to models that have independent error 

terms. 

The stationarity of the sequence xt, t = 1, …, n, is crucial for global 

normalisation. The idea of using that type of normalisation to remove 

natural fluctuations in the collected data without distorting the 

anthropogenic trend is based on the assumption that the probability 

distribution of xt is constant in time. Local normalisation is less demanding 

in this respect, because x is kept fixed. However, any normalisation with 

respect to a variable that has a time-dependent distribution will raise 

questions regarding spurious trends and the risk of concealing the effect 

that humans have on the environment. 

Finally, it should be emphasised that none of the normalisation models 

discussed in this thesis include explicit information about the 

anthropogenic forcing of the ecosystem under consideration. Nevertheless, 

such models can be constructed. The basic definitions needed have been 

given by Grimvall et al. (2001). Examples illustrating this approach have 

been published by Forsman and Grimvall (2003) and Wahlin et al. (2004) 

who used physics-based hydrological models to examine meteorologically 

normalised model outputs. 

 18



 
Monotonic regression (MR) models 

 19

3 Monotonic regression (MR) models  

Monotonic relationships occur in a great variety of contexts. For example, 

dose-response curves in toxicological or medical experiments are very 

often monotonic and S-shaped. In environmental systems, the intensity or 

magnitude of the investigated phenomena is commonly a monotonic 

function of both the anthropogenic forcing and naturally varying factors, 

such as temperature, wind speed, and rainfall. Moreover, it is well known 

that contaminant levels in environmental samples can increase with the age 

or size of the analysed organism or the content of fat or organic matter in 

the analysed sample. This necessitates statistical methods that can estimate 

models in which the expected response increases or decreases in relation to 

one or more explanatory variables. 

MR is a nonparametric method for estimation of models that can be written 

njxxfy jpjjj ...,,1,)...,,( 1 =+= ε  (3.1) 

where y is the response variable, f is increasing or decreasing in each of the 

p explanatory x-variables, and the error terms {εBj B} are independent of each 

other and of the x-variables. These models have been investigated since the 

1950s (Ayer et al., 1955; Robertson and Waltman, 1968; Barlow et al., 

1972; De Simone et al., 2001), and they retain the monotonicity of linear 

models, but relax the strong assumption of linearity (Schell and Singh, 

1997). In particular, they are able to capture both nonlinear and non-

additive responses to an arbitrary set of covariates. The special case when 

the expected response is increasing in all explanatory variables is referred 

to as the isotonic regression (IR). Unless otherwise stated, we shall restrict 

ourselves to IR, because a simple change of sign of some of the explanatory 

variables can transform any MR to an IR. 
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3.1 MR regarded as an optimisation problem 

The estimation of MR/IR models can be formulated as an optimisation 

problem in which a loss function is minimised under a set of simple 

constraints (Ayer et al., 1955; Robertson and Waltman, 1968; Barlow et al., 

1972; De Simone et al., 2001).  

Let  

npnn

p

p

yx...x
......
......
......

yx...x
yx...x

1

2212

1111

 (3.2) 

denote n observations of p explanatory variables xB1 B, …, xBpB and one response 

variable y. Then, we can estimate the isotonic relationship between the 

expected response E(y) and the covariates xB1 B, …, xBpB by computing fitted 

values )...,,(ˆ
1 piii xxfz =  that minimise 

∑
=

−
n

i
ii zy

1

2)(  (3.3) 

under the constraints 

pkxxzz kjkiji ...,,1allfor if, =≤≤ ,  (3.4) 

By introducing the partial order 

ji xx p  if and only if ,kjki xx ≤  for all k=1, ..., p  
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on the set of vectors {x BiB = (x B1iB, …, xBpiB), i = 1, …, n}, we can also write the 

constraints in (3.4) as 

jiji zz xx pif<  (3.5) 

In other words, IR transfers the partial order on the set of x vectors to the 

fitted response values. 

 

3.2 The PAV and GPAV algorithms 

When p = 1, it is easy to compute the least squares solution to the IR 

problem. The best known algorithm to handle this problem is the PAV 

(Pool Adjacent Violators) algorithm (Ayer et al., 1955; Barlow et al., 1972; 

De Simone et al., 2001), for which the point of departure is a data set MBn B = 

{(xBi B, yBi B), i = 1,…, n} that is sorted so that xB1 B, …, xBn B form a non-decreasing 

sequence. If n = 1, it is obvious that the optimal solution is zB1B = yB1 B. If n = 2, 

it is evident that we should set zB1 B = yB1 B and zB2 B = yB2 B if yB1 B ≤ yB2 B, or otherwise 

pool the two observed values and set zB1 B = zB2 B = (yB1 B + yB2 B)/2. The optimal 

solution for an arbitrary data set MBn B can be obtained by recursively solving 

the IR problem for the data sets MBkB, k = 1, …, n. To be more precise, we 

extend the optimal solution for MBkB to a preliminary solution for MBk+1 Bby 

setting zBk+1B = yBk+1 B, and then we remove possible violations of the 

monotonicity by pooling adjacent z values in a backward movement from 

right to left. Figure 3.1 shows a scatter plot of observed values y and the 

clusters of fitted values that form the solution produced by the PAV 

algorithm. 
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Figure 3.1. Observed and fitted response values using the PAV algorithm. 

The final solution consists of six clusters of identical values. 

 

If p > 1, it is less obvious how the IR problem should be solved. A simple 

back-fitting procedure based on the PAV algorithm can handle relatively 

small data sets in which the explanatory variables vary over only a few 

levels (Dykstra and Robertson, 1982; Bril et al., 1984; Salanti and Ulm, 

2001). Moreover, there are adequate algorithms for partial orders that have 

specific structures, for instance, tree or star structures (Pardalos and Xue, 

1999). Other methods, such as simple averaging techniques, are more 

generally applicable (Mukarjee, 1988; Mukarjee and Stern, 1994; Strand, 

2003), but the solutions obtained can be rather far from optimal in the sense 

of least squares. There are also other techniques that provide accurate 

solutions but are computationally very expensive for large data sets (Best 

and Chakravarti, 1990). 

This thesis examines the performance of a recently published generalisation 

of the PAV algorithm from completely to partially ordered data (Burdakov 

et al., 2004; 2005). This generalisation is referred to as the GPAV 

(Generalised Pool Adjacent Violators) algorithm, and it resembles the 
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ordinary PAV algorithm in several respects. First, it is recursive in that a 

solution for the data set }...,,1),,...,,{( 1 niyxxM ipiin ==  is obtained 

by starting from a solution for MB1 B, which is then modified into a solution 

for MB2B, and so on. Second, the data are presorted so that the case (x BiB, yBiB) is 

entered into the calculations before (xBjB, yBjB), if the two x vectors are distinct 

and ji xx p . Third, monotonicity violators are removed by forming 

clusters of adjacent cases, and letting the fitted values in each cluster be 

identical and equal to the observed mean response in that cluster. However, 

there is also an important difference between the GPAV solutions for p > 1 

and the PAV/GPAV solutions for p = 1. When p > 1, the solutions may 

depend on the order in which the x vectors are entered into the calculations, 

and many different orderings may be consistent with the given partial 

order. 

The cited articles by Burdakov and co-workers show that the GPAV 

algorithm normally produces optimal or close to optimal solutions. 

Furthermore, it is demonstrated that this algorithm has complexity O(n P

2
P), 

where n is the number of observations. The following discussion is focused 

on presorting of the data and on some statistical aspects of obtained 

solutions. 

 

3.3 Hasse diagrams and MR  

Figure 3.2 shows an example of a partially ordered set of elements in the 

Euclidean space RP

2
P along with a Hasse diagram (Davey and Priestly, 2002) 

describing this partial order. To make the diagram as simple as possible, 

edges that are implied by transitivity have been omitted. Furthermore, it can 

be seen that the vertical positions of the elements define a grouping that is 
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consistent with the given partial order, i.e. x BjB is assigned a higher level than 

x BiB if ji xx < . We used this grouping into levels to topologically sort the 

elements entered into the GPAV algorithm. More specifically, we used the 

levels defined by two slightly different Hasse diagrams obtained by 

ordering all elements from the bottom and top, respectively (see paper I).  

x1
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x6

x3

x6 x2 x7

x1x5

x4

x1
x2

x3

x4
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x3

x6 x2 x7

x1x5

x4

 

Figure 3.2. Example of a partially ordered set of elements in the Euclidean 
space R P

2
P and a Hasse diagram of the partial order. 

 

We conducted a simulation study to examine how the performance of the 

GPAV algorithm was influenced when data were ordered according to their 

level in a Hasse diagram (paper I). This was achieved by comparing the 

following presorting methods: 

GPAV-R. The original, randomly ordered data were sorted using a quick-

sort algorithm. 

GPAV-H1. The output of the quick-sort algorithm was sorted according to 

the levels of a Hasse diagram drawn from bottom to top. 

GPAV-H2. The output of the quick-sort algorithm was sorted according to 

the levels of a Hasse diagram drawn from top to bottom. 

Data sets were generated using the equation 

nixxy iiii ...,,1,2211 =++= εββ  (3.6) 
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where the values of the explanatory variables were drawn from a bivariate 

normal distribution with mean zero and covariance matrix 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1
1
ρ

ρ
C  (3.7) 

and the error terms {εBj B} were independent and identically distributed. 

Light- or heavy-tailed distributions of the error terms were generated 

according to normal and double exponential distributions with mean zero 

and variance one.  

Table 3.1 shows the goodness-of-fit defined as 

∑ −
i

ii nyy /)ˆ( 2  (3.8) 

and the accuracy defined as 

∑ −
i

iii nyEy /))|(ˆ( 2x  (3.9) 

when the regression parameters βB1 B and βB2B were set to one. Apparently, the 

presorting with a Hasse diagram significantly improved both the goodness-

of-fit and the accuracy of the obtained solutions, especially for the largest 

samples (n = 10,000). Also, the results indicate that the GPAV-H 

algorithms, in contrast to GPAV-R, produce consistent estimates of the 

expected response.  

Table 3.2 shows the computational burden involved in MR when the 

GPAV algorithm was implemented in Visual Basic for Excel and the code 

was written to minimise the need for memory capacity (paper I). It can be 

seen that data sets comprising 10,000 observations are easy to handle. 

Furthermore, it is obvious that, computationally, the most expensive part of 
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the proposed algorithms is the listing of non-redundant constraints. Also, it 

is worth noting that additional explanatory variables can be handled 

without any problems, because they enter the calculations only through the 

partial order of the x vectors.  

 
Table 3.1. Goodness-of-fit and accuracy of the GPAV solutions obtained 
when the regression parameters βB1 B and βB2 B were set to one, and different 
methods were used to presort the data entered into the GPAV algorithm. 
The number of simulated data sets was 1000 for the two smaller sample 
sizes (n = 100 and 1000) and 100 for the largest sample size (n = 10000). 
The values given within parentheses represent standard errors of the 
estimated means. 

Goodness-of-fit Accuracy 
Model n 

GPAV-R GPAV-H1 GPAV-H2 GPAV-R GPAV-H1 GPAV-H2 

100 0.434 
(0.003) 

0.412 
(0.003) 

0.411 
(0.003) 

0.360 
(0.002)

0.344 
(0.002) 

0.343 
(0.002) 

1000 0.952 
(0.002) 

0.724 
(0.001) 

0.722 
(0.001) 

0.280 
(0.001)

0.109 
(0.0003) 

0.108 
(0.0003) 

ρ = 0 
 

Normal 
errors 10000 1.526 

(0.003) 
0.906 

(0.001) 
0.906 

(0.001) 
0.600 

(0.002)
0.039 

(0.0003) 
0.040 

(0.0003) 

100 0.456 
(0.005) 

0.432 
(0.005) 

0.431 
(0.005) 

0.344 
(0.003) 

0.327 
(0.003) 

0.325 
(0.003) 

1000 0.973 
(0.003) 

0.739 
(0.002) 

0.736 
(0.002) 

0.283 
(0.001) 

0.104 
(0.0004) 

0.103 
(0.0004) 

ρ = 0 
 

Double 
exp. 

errors 10000 1.565 
(0.039) 

0.905 
(0.021) 

0.905 
(0.021) 

0.636 
(0.029) 

0.037 
(0.003) 

0.037 
(0.003) 

100 0.542 
(0.003) 

0.531 
(0.003) 

0.529 
(0.003) 

0.236 
(0.002) 

0.230 
(0.002) 

0.229 
(0.002) 

1000 0.874 
(0.001) 

0.797 
(0.001) 

0.795 
(0.001) 

0.110 
(0.0003)

0.064 
(0.0002) 

0.064 
(0.0002) 

 
ρ = 0.9 

 
Normal 
errors 10000 1.090 

(0.001) 
0.929 

(0.001) 
0.929 

(0.001) 
0.145 

(0.0003)
0.020 

(0.0001) 
0.020 

(0.0001) 

100 0.556 
(0.005) 

0.547 
(0.005) 

0.546 
(0.005) 

0.224 
(0.002) 

0.218 
(0.002) 

0.217 
(0.002) 

1000 0.875 
(0.002) 

0.807 
(0.002) 

0.806 
(0.002) 

0.101 
(0.0003)

0.062 
(0.0003) 

0.061 
(0.0003) 

 
ρ = 0.9 

 
Double 

exp. 
errors 

10000 1.082 
(0.002) 

0.927 
(0.002) 

0.928 
(0.002) 

0.140 
(0.0004)

0.020 
(0.0001) 

0.020 
(0.0002) 
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Table 3.2. Average CPU-time for different parts of the GPAV approach to 
IR when a memory-conserving algorithm was implemented in Visual Basic 
for Excel. The calculations were performed on a PC (1.5 GHz) running 
under Windows XP. 

Average CPU time (s) No. of 
observations

Quicksorting 
observed data 

Listing non-
redundant 
constraints 

Running 
GPAV-R 

Running 
GPAV-H1 

and H2 

Total time 

100 0.001 0.013 0.005 0.013 ≈ 0.03 

1000 0.012 1.61 0.41 0.76 ≈ 3 

10000 0.15 198 36 76 ≈ 300 

 

 

In conclusion, the use of Hasse diagrams to presort observed data greatly 

improves the performance of the GPAV algorithm, and the current 

implementations of GPAV enable convenient analysis of fairly large data 

sets. Also, the very general form of the model makes it an attractive choice 

in many applications. However, this flexibility has a price. Closer 

examination of the results in Table 3.1 reveals that the mean square residual 

can be substantially smaller than the true variance of the error terms, that is, 

the good fit to observed data can be partly attributed to over-fitting. It has 

been suggested that the number of clusters in the obtained solution can be 

interpreted as the degrees of freedom of the model (Mallows, 1973; 

Mallows, 1995; Shell and Singh, 1997; Meyer and Woodroofe, 2000), and, 

in principle, this could provide a suitable adjustment of the mean square 

residual. However, our simulations reported in paper I demonstrated that, 

even after the indicated adjustment, the true error variance is still 

underestimated. 
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3.4 Estimation of monotonic response surfaces for 
environmental data 

The use of MR to estimate monotonic response surfaces can be illustrated 

with two examples. First, we can consider a study of temporal trends in the 

concentration of total nitrogen in the Stockholm archipelago (Libiseller et. 

al., 2005). Due to the random mixing of fresh water and sea water, there 

was a substantial variability in the collected water quality data. 

Furthermore, it was difficult to get an overview of all data because they 

represented several different depths at several stations. However, MR of the 

total nitrogen concentration on both time and salinity provided a useful 

summary of all data, and, after extrapolating the fitted response values to a 

(monotonic) response surface (papers II and III) we obtained the graphs 

shown in Figures 3.3 and 3.4. It is particularly noticeable that, in less saline 

waters, there was a clear response to the introduction of improved 

wastewater treatment in 1995. The trend at higher salinity levels was much 

weaker, possibly nonexistent. 

Figure 3.5 illustrates a set of monthly flow-weighted concentrations of total 

nitrogen in the Elbe River at Brunsbüttel (downstream of Hamburg) in 

Germany. Upon initial inspection of the diagram, it may seem impossible 

to apply MR for such data. However, the seasonal pattern could be 

decomposed into one non-decreasing and one non-increasing phase (see 

paper II), which enabled a joint analysis of the trend and seasonal 

components. Figure 3.6 shows the results obtained when the seasonal 

component was assumed to have a maximum in March and a minimum in 

August. 
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Figure 3.3. Fitted response surface for 
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Figure 3.4. Fitted response surface for 
collected in September at the stations in

archipelago
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Figure 3.6. Response surface obtained by applying MR to monthly mean 
concentrations of total nitrogen (Tot-N) in the Elbe River at Brunsbüttel. 
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.5 Normalisation using MR 

o illustrate the MR-based normalisation methods discussed in Chapter 2, 

he GPAV algorithm is employed to compute fitted response values 

ssociated with the observed x vectors. Thereafter, an extrapolation method 

hat preserves monotonicity is used to extrapolate (or interpolate) these 

itted values to a response surface. Finally, the obtained response surface is 

sed to normalise all observed values with respect to the covariates under 

onsideration. 

hen this procedure was employed to normalise the data in Figure 1.1 with 

espect to body length, we obtained the results illustrated in Figure 3.7. 
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Apparently, the normalisation removed a substantial part of the variability 

of the collected data. In addition, it can be noted that the downward 

tendency that may be discerned in the original data is absent in the 

normalised data.  
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Figure 3.7. Concentrations of mercury in muscle tissue from Atlantic cod 
(Gadu morhua) caught in the North Sea (53o 10' N, 2o 5' E). The illustrated 

results represent observed concentrations (a), and data normalised to a 
body length of 49.6 cm (b). 
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4 Semiparametric regression (SPR) models 

The deterioration of an ecosystem is usually a slow process and the change 

from one year to the next can be difficult to discern even if the long-term 

trend is severe. This situation requires statistical models in which the 

anthropogenic impact is modelled as a smooth function of time. In Chapter 

2, we introduced two types of SPR models that facilitate simultaneous 

extraction of smooth, possibly nonlinear, trends and adjustment for 

covariates. The first of these models (2.11) was intended for assessment of 

trends in a single response variable, whereas the second (2.18) was 

designed to enable joint assessment of trends in several time series of data. 

Models in which the trend function is specified in a nonparametric fashion 

can be justified by a desire to make unprejudiced inference about the shape 

of the trend curve. Theoretically, similar arguments could rationalise the 

use of models in which both the trend and the influence of covariates are 

specified nonparametrically. However, models with very few structural 

constraints may lead to problems with over-fitting, unless the roughness of 

the estimated response surfaces is penalised when the model is estimated. 

This calls for statistical procedures in which the degree of smoothness is 

selected just as carefully as other model features. This chapter will show 

that the advantage of the above-mentioned semiparametric models is that 

cross-validation can be applied to combine a roughness penalty approach 

with a flexible selection of smoothing parameters. 

 

4.1 Estimation of SPR models 

Let us now consider semiparametric models of the form 
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where )( j
ty  is the observed response for the jth season of the tth year, )( j

itx , 

i = 1, …, p represent contemporaneous values of p explanatory variables 

standardised to mean zero and variance one, and )( j
tε  are independent 

identically distributed random error terms that have mean zero and are 

independent of the explanatory variables. As can be seen, the slope 

parameters ( )( j
iβ , i = 1, …, p) in this model are allowed to vary with the 

season under consideration, whereas the intercept ,..,,1,( )( ntj
t =α  

)...,,1 mj =  is permitted to vary nonparametrically with both the year and 

the season. 

Following a general procedure outlined by Green and Silverman (1994), 

and implemented by Stålnacke and Grimvall (2001) for models with a 

single covariate (p = 1), we introduced the penalised sum of squared 

residuals 
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where the first roughness penalty factor (λB1 B) controls the interannual 

variation of the intercept parameters, and the second such factor (λB2 B) 

controls the variation over seasons for these parameters. For fixed penalty 

factors, the model parameters were estimated using a back-fitting algorithm 

in which nonparametric estimation of the intercept is alternated with 

ordinary least squares estimation of the slope parameters (paper IV). 
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Schimek (2001) has advocated that back-fitting is less reliable than joint 

estimation of all model parameters. However, extensive application of our 

back-fitting algorithm to time series of environmental data has not been 

associated with any convergence problems, and the computational burden 

is moderate. 

The roughness penalty factors (λB1 B and λB2 B) were determined by k-fold cross-

validation (Shao, 1993; Hjorth, 1994). More specifically, we used one-year-

long blocks of observations to form pairs of evaluation and estimation sets, 

and then we computed the PRESS (prediction error sum of squares) 

statistic 

∑ ∑
∉
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xxy
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2)()()(
1
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)()( )ˆ...ˆˆ( ββα  (4.3) 

where EBt B depicts the tth evaluation set, and the model parameters were 

estimated using all observations belonging to the complement of the 

evaluation set. Finally, λB1 B and λB2B were selected in such a way that the 

PRESS value was minimised. In a recently published comparison of k-fold 

and leave-one-out cross-validation (Libiseller and Grimvall, 2003), the 

former method was found to entail less risk for over-fitting when the 

residuals were serially correlated. 

In Chapter 2, it was noted that the semiparametric model (4.1) for data 

collected over several seasons can be regarded as a special case of a more 

general model for trend assessment of multivariate time series. In fact, only 

the second roughness penalty term in 4.2 must be modified to achieve the 

circular and gradient smoothings discussed in Chapter 2. Moreover, if we 

let s = (t – 1) m + j and introduce the notation )()( j
ts αα = , that term can 

be written in the general form 
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where s = (sB1 B, sB2 B, sB3B) is a triplet of distinct integer and S is a set of such 

triplets. 

 

4.2 Normalisation of environmental data using SPR 
models 

Paper IV describes a study of nutrient loads in the Elbe River in Germany, 

and how such loads can be normalised with respect to water discharge and 

other factors. Figure 4.1 shows the estimated annual loads of total nitrogen 

and total phosphorus at one sampling site (Schnackenburg) upstream of 

Hamburg city, and three sampling sites (Grauerort, Brunsbüttel, and 

Cuxhaven) downstream of that city, along with annual water discharge 

values from the sampling site NeuDarchau, which is located downstream of 

Schnackenburg. A downward tendency can be observed in most of the time 

series of nutrient loads. However, the interannual variation is large, and the 

annual loads vary markedly with the annual water discharge values. 
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Figure 4.1. Estimated annual loads of nitrogen (a) and  phosphorus (b) for 
different sampling sites shown together with water discharge values from 

NeuDarchau on the Elbe River. 

 

Figure 4.2 illustrates the same data as in Figure 4.1 after normalisation. The 

downward trends now emerge much more clearly, and the normalisation 

was successful in that the interannual variation in the normalised loads is 

much smaller than in the time series of observed loads. The nitrogen loads 

were influenced primarily by the amount of water discharge, whereas the 

phosphorus loads were related not only to the water discharge, but also 

largely to the load of suspended particulate matter. Figure 4.2 illustrates the 

results obtained using normalisation models that were found to be optimal 

(see paper IV). 
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Figure 4.2. Normalised annual loads of total nitrogen at four investigated 
sampling sites on the Elbe River. 
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5 Comparison of different regression methods 

The regression-based methods that have been developed and utilised in this 

thesis can be regarded as complements to existing parametric, 

semiparametric, and nonparametric methods. This raises the question of 

under what circumstances our techniques will be more suitable than other 

methods. The following discussion is divided into two parts, which 

consider annual data and seasonal data, respectively. 

 

5.1  Methods for annual data 

One of the main reasons for using MR and other nonparametric approaches 

is that they do not involve strong assumptions about the relationship that is 

implicit in standard parametric regression. That property is also seen in the 

generalised additive models (GAMs), which have the form 

( ) )(...)()...,,|( 111 ppp xhxhxxyEg +++=α  (5.1) 

where g is what is known as a link function, and the functions h BkB are 

estimated using some kind of scatter plot smoother (Hastie et al., 2001). 

Some models that are even more general are usually also referred to as 

GAMs, for example, those of the form 

( ) ),()...,,|( 211 xxhxxyEg p += α  (5.2) 

which allow interaction effects between two predictors. 

Let us now consider a data set from a monitoring programme that studied 

flounder (Platichthys flesus) caught in the North Sea (51P

o
P 19′ 59″ N, 2 P

o
P 10′ 
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0″ E) with regard to the concentration of mercury in muscle tissue. Figure 

5.1 illustrates how the mercury level is associated with body length and 

sampling year. The diagram clearly shows that the mercury levels increased 

with increasing body length, and they also tended to decrease over time. 

 

 

Figure 5.1. Observed concentrations of mercury in muscle tissue from 
flounder (Platichthys flesus) caught in the North Sea  

(51P

o
P 19′ 59″ N, 2 P

o
P 10′ 0″ E). 

 

Figure 5.2 illustrates the response surfaces obtained when the mercury data 

were analysed using MR (a), a general additive model (b), and a thin plate 

spline model allowing for interaction effects of sampling year and body 

length (c). The additive model produced the least credible response surface, 

because the analysed data exhibited a strongly nonlinear pattern. The 

Body length (cm) Year 

Mercury concentration 
(ng Hg/g ww) 
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response surfaces generated by monotonic regression and thin plate spline, 

respectively, appeared to differ mainly in regard to the smoothness of the 

fitted surface. However, closer examination of the two surfaces revealed 

that there was also a substantial difference in the estimated mercury trends, 

particularly for small body sizes. This can be attributed to the fact that thin 

plate splines tend to smooth out non-additive features in observed data, 

whereas MR leaves such features unchanged unless they violate the 

monotonicity. 

 

 

a) 
Mercury concentration 
(ng Hg/g ww) 

Year 
Body length (cm) 
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Figure 5.2. Estimated response surfaces for the concentration of mercury 
in muscle tissue from flounder (Platichthys flesus) caught in the North Sea 

(51P

o
P 19′ 59″ N, 2 P

o
P 10′ 0″ E). Three different estimation were used: 

monotonic regression (a), general additive model (b), and thin plate  
spline (c). 

Body length (cm) Year 

Body length (cm) Year 

b) 

c) 

Mercury concentration 
(ng Hg/g ww) 

Mercury concentration 
(ng Hg/g ww) 



 
Comparison of different regression methods 

 43

When the three models were used to normalise the mercury concentrations 

with respect to body length, the results obtained were fairly similar (Figure 

5.3). This observation could be attributed to the large random variation in 

collected data that remained even after the normalisation. Further details on 

this subject are given in paper IV. 
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5.3. Normalised mercury concentrations in muscle tissue from flounder 
(Platichthys flesus) caught in the North Sea (51P

o
P 19′ 59″ N, 2P

o
P 10′ 0″ E). 

The normalisation to a body length of 31.5 cm was based on monotonic 
regression, a general additive model, and thin plate spline. 

 

 

5.2 Methods for data collected over several seasons 

The SPR method presented in this thesis was developed specifically for the 

analysis of data collected over several seasons, and as shown in Chapter 3, 

MR methods can also be applied to such data. Generalised additive models 

can easily handle additive seasonal effects, although, when the response to 

covariates varies between seasons, it can be difficult to introduce proper 

smoothing over seasons for the trend function.  



 
Chapter 5 

Therefore, let us focus on a comparison of MR and our roughness penalty 

approach to SPR. 

Figure 5.4 shows the monthly loads of nitrogen and water discharge values 

recorded in the Rhine River at Lobith during the period 1989-2002. A 

downward trend in the nitrogen loads can be discerned, but the large 

interannual variation calls for a thorough analysis. 
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Figure 5.4. Time series plot of monthly riverine loads of total nitrogen in 
the Rhine River at Lobith. 

 

 

The scatter plot in Figure 5.5 indicates two things. First, the load seems to 

increase almost linearly in relation to water discharge. Second, the load for 

a given level of the water discharge appears to decrease over time. 

Accordingly, both MR and SPR seem to be applicable. Closer examination 

of the seasonal pattern indicated that, in the case of MR, it could be 

assumed that the maximum and minimum occurred in February and 

August, respectively. 
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Figure 5.5. Scatter chart of monthly loads of total nitrogen in relation to 
monthly runoff in the Rhine River at Lobith for different time periods. 

 

The time series plots of flow-normalised nitrogen loads depicted in Figures 

5.6 and 5.7 show that both MR and SPR successfully removed most of the 

interannual variation, and the estimated temporal trends were similar. 

However, a more comperhensive analysis of the normalised annual loads 

showed that the normalisation based on MR was slightly more efficient. 

This was expected, because the scatter plot in Figure 5.5 indicated that the 

effect of water discharge on nitrogen loads changed over time. Once again 

it can be emphasised that the occurrence of non-additive patterns in 

collected data is crucial for the choice of normalisation model. 
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Figure 5.6. Normalised monthly loads of total nitrogen in the Rhine River 

at Lobith. 
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Figure 5.7.  Normalised annual loads of total nitrogen in the Rhine River at 

Lobith. 

 

 46



 
Conclusions and final remarks 

6 Conclusions and final remarks 

The results presented in this thesis show that regression-based 

normalisation can greatly facilitate the assessment of temporal trends in 

time series of environmental quality data. To enable flexible modelling of 

the temporal dynamics of collected data we focused on semiparametric and 

nonparametric methods. In either case, the trend was modelled in a 

nonparametric fashion, which rendered the proposed methods particularly 

suitable for the detection of nonlinear trends. 

Normalisation based on MR may appear to be the method of choice when 

the response variable increases or decreases in relation to time and to one or 

more variables representing natural variability. There are two main reasons 

for this. First, it is easy to communicate MR models to non-statisticians, 

because the basic assumptions usually have simple biogeochemical 

explanations. Second, our research group at Linköping University has 

developed computationally efficient methods to undertake MR-based 

normalisation and trend assessment. The simulation studies reported in this 

thesis provided additional support for such normalisation. In particular, we 

found that the performance of the generalised pool adjacent violators 

(GPAV) algorithm was greatly enhanced when a Hasse diagram was 

employed to presort the data entered into the calculations. We also found 

that a Visual Basic implementation of this algorithm could conveniently 

handle data sets comprising up to 10,000 observations.  

Notwithstanding, MR has some weaknesses that call for further 

investigation. Our simulations demonstrated that the unadjusted mean 

square residual can strongly underestimate the variance of the error terms, 

and that the current methods to compensate for the degrees of freedom of 
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the fitted model are inadequate for MR models. Another important aspect is 

that the techniques for model selection are still in their infancy. We propose 

that additional work be done to clarify how the degrees of freedom of MR 

models can be more accurately assessed by taking into account relevant 

characteristics of a Hasse diagram of the x vectors. Also, it would be very 

interesting to determine how the present algorithms for monotonic 

regression can be further developed to facilitate model selection by cross-

validation. 

The semiparametric methods proposed in this thesis were originally 

developed to handle data collected over several seasons. We generalised an 

existing algorithm so that it could accommodate several explanatory 

variables and proposed a block cross-validation procedure for the model 

selection. However, it is essential to note that these methods have a much 

wider field of applications. As outlined in Chapter 2, the model for seasonal 

data can be regarded as a special case of a general model for joint 

normalisation of multivariate time series of data. 

The formal definition of the normalisation concept and the subsequent 

discussion of various regression models related in Chapter 2 represent an 

attempt to provide a unified theory for all regression-based normalisation 

methods. In particular, it should be pointed out that the results described in 

this thesis make the concepts of global and local normalisation more 

precise.  

However, further work is needed to fully integrate the statistical 

normalisation techniques discussed here with models that involve explicit 

information about the anthropogenic forcing of the system under 

consideration. Above all, efforts should be made to diminish the gap 
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between statistical and process-based deterministic modelling for trend 

assessment of environmental quality data. 

The case studies of mercury in North Atlantic cod and nutrient loads 

carried by the Elbe River illustrate the applicability of the proposed 

normalisation techniques. The Elbe investigation was particularly 

successful in the sense that normalisation almost completely removed the 

irregular year-to-year variation and the models obtained by cross-validation 

were consistent with the knowledge gained from process-based studies of 

riverine nutrient loads. The results of the mercury study were less clear, 

probably because such data can be strongly influenced by measurement 

errors. The example of MR of total nitrogen on time and salinity (Chapter 

3) indicates that data on water quality in estuaries and archipelagos are 

particularly suitable for normalisation, and further work in this context is in 

progress. 

 

 49



 
References 

References 

Ayer M., Brunk H. D., Ewing G. M., Reid W. T. and Silverman E. (1955). 
An empirical distribution function for sampling with incomplete 
information. The Annals of Mathematical Statistics, 26, 641-647. 

Barlow R. E., Bartholomew D. J., Bremner J. M. and Brunk H. D. (1972). 
Statistical inference under order restrictions. New York, Wiley. 

Best M. J. and Chakravarti N. (1990). Active set algorithms for isotonic 
regression: a unifying framework. Mathematical Programming, 47, 
425-439. 

Bloomfield P., Royle J. A., Steinberg L. J. and Yang Q. (1996). Accounting 
for meteorological effects in measuring urban ozone levels and trends. 
Atmospheric Environment,  30, 3067-3077. 

Bril G., Dykstra R., Pillers C. and Robertson T. (1984). Algorithm AS 206, 
isotonic regression in two independent variables. Applied Statistics, 33, 
352-357. 

Burdakov O., Grimvall A. and Hussian M. (2004). A generalised PAV 
algorithm for monotonic regression in several variables. In: Antoch, J. 
(ed.) COMPSTAT, Proceedings of the 16th Symposium in 
Computational Statistics held in Prague. Heidelberg, New York, 
Physica-Verlag (Springer), 761-767. 

Burdakov O., Sysoev O., Grimvall A. and Hussian M. (2005). An O(n2) 
algorithm for isotonic regression. In: G. Di Pillo and M. Roma (Eds.) 
Large Scale Nonlinear Optimization. Heidelberg, Springer-Verlag, 25-
33. 

Clark M. W., Davies F., McConchie M. D. and Birch G. F. (2000). 
Selective chemical extraction and grainsize normalisation for 
environmental assessment of anoxic sediments: validation of an 
integrated procedure. The Science of the Total Environment, 258, 149-
170. 

Davey B. A. and Priestly H. A. (2002). Introduction to Lattices and Order. 
Cambridge, Cambridge University Press, 2nd edition. 

De Simone V., Marino M. and Toraldo G. (2001). In: Floudas, C. A. and 
Pardalos, P. M. (Eds.) Encyclopedia of optimization. Dordrecht, 
Kluwer Academic Publishers. 

 50

http://www.amazon.com/exec/obidos/ASIN/0521367662/ref=nosim/weisstein-20


 
References 

Dykstra R. and Robertson T. (1982). An algorithm for isotonic regression 
for two or more independent variables. The Annals of Statistics, 10, 
708-716. 

Forsman Å. and Grimvall A. (2003). Reduced models for efficient 
simulation of spatially integrated outputs of one-dimensional substance 
transport models. Environmental Modelling and Software, 18, 319-327. 

Gardner M. W. and Dorling S. R. (2000a). Statistical surface ozone models: 
an improved methodology to account for non-linear behaviour. 
Atmospheric Environment, 34, 21-34. 

Gardner M. W. and Dorling S. R. (2000b). Meteorologically adjusted 
trends in UK daily maximum surface ozone concentrations. 
Atmospheric Environment, 34, 171-176. 

Giannitrapani M., Bowman A. W. and Scott E. M. (2005). Additive models 
for correlated data with applications to air pollution monitoring. 
Submitted to Biometrics. 

Green P. J. and Silverman B. W. (1994). Nonparametric regression and 
generalised linear models - a roughness penalty approach. London, 
Chapman and Hill. 

Grimvall A., Wackernagel H. and Lajaunie C. (2001). Normalisation of 
environmental quality data. In: L.M. Hilty and P.W. Gilgen (Eds.) 
Sustainability in the Information Society. Marburg, Metropolis-Verlag, 
581-590. 

Hanson D. L., Pledger G. and Wright F. T. (1973). On consistency in 
monotonic regression. The Annals of Statistics, 1, 401-421. 

Härdle W. (1997). Applied non-parametric regression. Cambridge, 
Cambridge University. 

Hastie T., Tibshirani R. and Friedman J. (2001). The elements of statistical 
learning. New York, Springer. 

Hirsch R. M., Slack J. R. and Smith R. A. (1982). Techniques of trend 
analysis for monthly water quality data. Water Resources Research, 18, 
107-121. 

Hjorth U. (1994). Computer intensive statistical methods. London, 
Chapman & Hall. 

Holland D. M., Principe P. P. and Vorburger L. (1999). Rural ozone: trends 
and exceedances at CASTNet sites. Environmental Science & 
Technology, 33, 43-48. 

 51



 
References 

Huang L. S. and Smith R. L. (1999). Meteorologically-dependent trends in 
urban ozone. Environmetrics, 10, 103-118. 

Koelmans A., Gillissen F., Makatita W. and Van Den Berg M. (1997). 
Organic carbon normalisation of PCB, PAH and pesticide 
concentrations in suspended solids. Water Research, 31, 461-470. 

Libiseller C. and Grimvall A. (2003). Model selection for local and 
regional meteorological normalisation of background concentrations of 
tropospheric ozone. Atmospheric Environment, 37, 3923-3931. 

Libiseller C., Grimvall A. and Hussian M. (2005). Impact of improved 
wastewater treatment on the concentration of total nitrogen in the 
Stockholm archipelago. Research Report LIU-MAI-R-2005-07, 
Department of Mathematics, Linköping University, Linköping, Sweden. 

Libiseller C., Grimvall A. and Hallberg L. (2005). Meteorological 
normalisation of time series of wet deposition. Manuscript. 

Mallows C. L. (1973). Some comments on Cp. Technometrics, 15, 661-675. 

Mallows C. L. (1995). More comments on Cp. Technometrics, 37, 362-372. 

Mayer M. and Woodroofe M. (2000). On the degrees of freedom in sharp-
restricted regression. The Annals of Statistics, 28, 1083-1104. 

Mukarjee H. (1988). Monotone nonparametric regression. The Annals of 
Statistics, 16, 741-750. 

Mukarjee H. and Stern H. (1994). Feasible nonparametric estimation of 
multiargument monotone functions. Journal of the American Statistical 
Association, 425, 77-80. 

Pardalos P. M. and Xue G. (1999). Algorithms for a class of isotonic 
regression problems. Algorithmica, 23, 211-222. 

Robertson T. and Waltman P. (1968). On estimating monotone parameters. 
The Annals of Mathematical Statistics, 39, 1030-1039. 

Salanti G. and Ulm K. (2001). The multidimensional isotonic regression. 
Proceedings of the International Society of Clinical Biostatistics, 19-23 
Aug 2001, Stockholm, p. 162. 

Schell M. J. and Singh B. (1997). The reduced monotonic regression 
method. Journal of the American Statistical Association, 92, 128-135. 

Schimek M. G. (2001). Smoothing and Regression: Approaches, 
Computation, and Application. New York, Wiley-Interscience. 

Shao J. (1993). Linear model selection by cross-validation. Journal of the 
American Statistical Association, 88, 486-494. 

 52



 
References 

Shively T. S. and Sager T. W. (1999). Semiparametric regression approach 
to adjusting for meteorological variables in air pollution trends. 
Environmental Science & Technology, 33, 3873-3880. 

Stålnacke P. and Grimvall A. (2001). Semiparametric approaches to flow-
normalisation and source apportionment of substance transport in 
rivers. Environmetrics, 12, 233-250. 

Stålnacke P., Grimvall A., Sundblad K. and Wilander A. (1999). Trends in 
nitrogen transport in Swedish rivers. Environmental Monitoring and 
Assessment, 59, 47-72. 

Strand M. (2003). Comparisons of methods for monotone nonparametric 
multiple regression. Communications in Statistics, Simulation and 
Computations, 32, 165-178. 

Thompson M. L., Reynolds J., Cok L. H., Guttorp P. and Sampson P. D. 
(2001). A review of statistical methods for the meteorological 
adjustment of ozone. Atmospheric Environment, 35, 617-630. 

Uhlig S. and Kuhbier P. (2001). Trend methods for the assessment of the 
effectiveness of reduction measures in the water system. 
Umweltforchungsplan (UFOPLAN), Nr. 298 22 244.  
Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, 
Berlin. 

Wahlin K., Shahsavani D., Grimvall A., Wade A. and Butterfield D. 
(2004). Reduced models of the retention of nitrogen in catchments. In: 
C. Pahl-Wostl, S. Schmidt, A.E. Rizzoli, and A. J. Jakeman (Eds.) 
Complexity and Integrated Resources Management, Transactions of the 
2nd Biennial Meeting of the International Environmental Modelling 
and Software Society, iEMSs: Manno, Switzerland. 

 

 53


	Introduction
	Study objectives
	Outline of the thesis

	Normalisation of environmental quality data
	Monotonic regression (MR) models
	MR regarded as an optimisation problem
	The PAV and GPAV algorithms
	Hasse diagrams and MR
	Estimation of monotonic response surfaces for environmental 
	Normalisation using MR

	Semiparametric regression (SPR) models
	Estimation of SPR models
	Normalisation of environmental data using SPR models

	Comparison of different regression methods
	Methods for annual data
	Methods for data collected over several seasons

	Conclusions and final remarks
	References

