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Outline - Lecture 9

Aim: Open up for using the particle filter for inference about param-
eters 0
(and not only states X;) in state-space models.

Outline:

1. The particle filter as likelihood estimator
2. Maximum likelihood estimation of state-space models

a. Direct optimization
b. Expectation maximization
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State-space models

From lecture 2:

Xe =fF (X2, 0) + Vs,
Ye = g(Xe,0) + Et,

where X; are the states and 6 the model parameters.
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State-space models

From lecture 2:

Xe =fF (X2, 0) + Vs,
YI = g(Xt7 6) + El’7

where X; are the states and 6 the model parameters.
Only (but important!) difference: X; depends on t, whereas ¢ doesn'’t.

The particle filter assumes ¢ is known and computes p(X: | ya.1, 0).
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The likelihood function

The particle filter assumes ¢ is known and computes p(X¢ | 1.7, 6).

Inference about # requires
p(@|y..1) (Posterior; Bayesian inference)
or

p(y+.7|0) (Likelihood function; Fisherian inference/maximum likelihood).

p(@|y.r) = W

This lecture: Focus on maximum likelihood. More on the Bayesian
setting in later lectures.
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Maximum likelihood parameter inference

Maximum likelihood problem: Select # such that the observed data
yi.7 IS as likely as possible to have been observed, i.e.,

0= s p(yr7 | 6)
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Particle filter as likelihood estimator

T

p(yrr|0) = Hp(yt | Vi1, 0),

t=1

p(Ye | Vat—,0) = / p(Ve, Xt | Yast—1, 0)dXe =

/Pyt\Xu Xt\ynh 0) dx; ~

bPF

R Xl 18, ()

(Wi are the unnormalized weights)
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Reminder: The bootstrap particle filter

Algorithm 1 Bootstrap particle filter (fori=1, ..., N)

1. Initialization (t = 0):
(a) Sample xp ~ p(xo | 0).
(b) Set initial weights: wj = 1/N.
2. fort=1to T do
(a) Resample: sample ancestor indices ai ~ C({w)_,}I",).
(b) Propagate: sample xi ~ p(x: \xfg,e).
(c) Weight: compute W; = p(yt | xi, 6) and normalize w; = Wi/ >, W,
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Log-weights: an important practical aspect

For realistic problems, w} might be smaller than machine precision
— W} = 0 on your computer.
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Log-weights: an important practical aspect

For realistic problems, w} might be smaller than machine precision
— W} = 0 on your computer.

Use shifted log-weights vi!

Vi = logW; — ¢, ;= max{logW},...,logw}'}

Implement your particle filter using shifted log-weights! Store {\/{}{V:1
and ¢;.

From this, the likelihood estimate is obtained

T N T N
H (lil ZVV{) = Hexp <Ct + IogZth’ — log N)
t=1 =1 t=1 i—

Also the normalized weights {w/}!', can be computed from {v}}!"_,

o~ ! !

Wi - W{ B eVttt B evt
E7 0V 5 sV i N LY
YW Dyevta 3T et
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ex) Numerical illustration

Simple LG-SSM,

Xy = O0Xe—q1 + Vt, Vi NN(071)7
Yt:Xt-l-Et, EtNN(O,1)

Task: estimate p(yr.100 | ¢) for a simulated data set. True 6* = 0.9.

2
8

Black line - true likelihood computed
using the Kalman filter.
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Blue thin lines - 5 different likelihood
estimates p"(y1100 | @) computed using a
bootstrap particle filter with N = 100
particles.
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The particle filter as likelihood estimator

- Good news: Each run of the particle filter returns an estimate of

p(yi.r|0)
— in addition to the state estimates!
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The particle filter as likelihood estimator

- Good news: Each run of the particle filter returns an estimate of

p(yi.r|0)
— in addition to the state estimates!

- Challenge: The particle filter contains randomness — the
estimate of p(ys.7 | #) contains randomness or ‘noise"

- More on its stochastic properties in the next lecture.
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Direct optimization

0 = argmax p(yu7 | 0)
%

Can we use standard optimization routines?

Say, scipy.optimize.minimize(fun=-my_BPF_function,x0 = .2)
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Can we use standard optimization routines?

Say, scipy.optimize.minimize(fun=-my_BPF_function,x0 = .2)

No. The evaluation of the cost function is ‘noisy".
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Direct optimization

0 = argmax p(yu7 | 0)
%

Can we use standard optimization routines?

Say, scipy.optimize.minimize(fun=-my_BPF_function,x0 = .2)

No. The evaluation of the cost function is ‘noisy".

Solution: Use (or design) probabilistic optimization methods that
can work with noisy cost functions.

For example using Gaussian processes

10/15



Estimating likelihood gradients

We can also get noisy approximations for the gradient of the
likelihood.
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Estimating likelihood gradients

We can also get noisy approximations for the gradient of the
likelihood.

[ Fisher's Identlty Vo |0g p(y1:T ‘ 9) = E@[VG IOg p(X1:T7y‘I:T | 9) | y‘I:T] 9

where
;

Vo log p(xar,yar |0) = > Vg log p(x: | Xt—1,0) + Vg log p(y: | X, 6),
=1
=V log p(yr.7 ) =
;
> / [Vo log p(xt [ Xi—1,0) + Vg log p(Vi [ X, 0)] p(Xe—1:t | V1.7, 0)dXe—1:t.
=1

Here, p(xi—.¢ | v1.7,0) requires a particle smoother. Several

SMC-based alternative exists, but are not in this course. s



Expectation Maximization

As an alternative to direct optimization of p(ys.r | #), we can use the
Expectation Maximization (EM) method.

Dempster, Arthur P, Nan M. Laird, and Donald B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of
@ the Royal Statistical Society: Series B (Methodological), 391 (1977): 1-22..
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Expectation Maximization

As an alternative to direct optimization of p(ys.r | #), we can use the
Expectation Maximization (EM) method.

Dempster, Arthur P, Nan M. Laird, and Donald B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of
@ the Royal Statistical Society: Series B (Methodological), 391 (1977): 1-22..

ldea:

(E) Let Q(0,0,_1) = [log p(ya.r,Xo:r | 0)P(Xo:T | Vi, Op—1)AXo:r
(M) Solve 6y + argmax, Qr(0, Or_1)
Iterate until convergence.

Note: Does not make use of the particle filter as a likelihood
estimator, but uses a particle smoother (again: not in this course).
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Computing Q

Inserting

T T
log p(Xo.7, y1.7[0) = log (H p(ye [xe,0) [T pOxe | xe-1, 0)p(xo | 9))

t=1
T T
= Z log p(y: | Xt, 0) + Z log p(Xt | Xt—1,0) + log p(xo | 0)
t=1 t=1
into the expression for Q(6, ) results in
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Computing Q

Inserting

T T
log p(Xo.7, y1.7 [ 0) = log (H p(Ve|xt, 6) HP(Xr | Xt—1,0)P(Xo | 9))
t=1 =1

T T
= Z log p(y: | xt, ) + Z log p(Xt [ Xt—1,6) + log p(Xo | 6)

t=1
into the expression for Q(6, ) results in

(0, 6c) = /Z'ng (Ve [ Xe, 0)p(xe [ Va:T, Ok )dXe

+ / Z log p(X¢ | Xt—1, 0)P(Xt—1:t [ Va7, O ) AXe—1:t

t=1

+/|0gP(X0 | 0)p(Xo | yr.1, O )dXo.

13/15



Final EM algorithm

Inserting particle smoothing approximations now allows for
straightforward approximation of 9(6, F)k)

;
(6, 6,) = ZZIogpdet‘T, +ZZIogpxt|T\xt 17 0)

t=1 =1 t=1 =1
N

+1log > p(xh7]0).

i=1
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Final EM algorithm

Inserting particle smoothing approximations now allows for
straightforward approximation of 9(6, F)k)
T

Q(0,0y) = ZZIogpyﬂXt‘T, +ZZIogpxt|T\xt 17 0)

t=1 =1 t=1 =1

+ IogZD(Xé\TIG)

i=1

1. Initialize 6y and run a particle smoother conditional on 6.
2. Use the result from previous step to compute @(9,90).
3. Solve 6; = argmax Q(6, 6).

0

4. Run a particle smoother conditional on 6.
5. ..
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Final EM algorithm

Inserting particle smoothing approximations now allows for
straightforward approximation of 9(6, F)k)

;
(6, 6,) = ZZIogpyﬂXt‘T, +ZZIogpxt|T\xt 17 0)

t=1 =1 t=1 =1

+ IogZD(Xé\TIG)

i=1

1. Initialize 6y and run a particle smoother conditional on 6.
2. Use the result from previous step to compute @(9,90).
3. Solve 6; = argmax Q(6, 6).
0
4. Run a particle smoother conditional on 6.
5. ..

Requires N — oo and infinitely many iterations. There are more
intricate solutions. 1415



Further reading

Fairly recent survey/tutorial papers:
@ Nikolas Kantas, Arnaud Doucet, Sumeetpal S. Singh, Jan Maciejowski and Nicolas Chopin. On particle methods for parameter estima-

tion in general state-space models. Statistical Science, 30(3):328-351, 2015,

Monte Carlo methods for system identification. Proceedings of the 17th IFAC Symposium on System Identification (SYSID), Beijing,
China, October 2015.

@ Thomas B. Schon, Fredrik Lindsten, Johan Dahlin, Johan Wagberg, Christian A. Naesseth, Andreas Svensson and Liang Dai. Sequential

Maximum likelihood inference using the Gaussian process:

Adrian G. Wills and Thomas B. Schon. On the construction of probabilistic Newton-type algorithms. Proceedings of the 56th IEEE
Conference on Decision and Control (CDC), Melbourne, Australia, December 2017.

Maximum likelihood inference using EM:

@ Andreas Lindholm and Fredrik Lindsten. Learning dynamical systems with particle stochastic approximation EM. arXiv:1806.09548,
2018.

Maximum likelihood inference using gradients:

Jimmy Olsson and Johan Alenlov. Particle-based online estimation of tangent filters with application to parameter estimation in
@ nonlinear state-space models. Annals of the Institute of Statistical Mathematics, 2020.
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