
Sequential Monte Carlo methods
Lecture 9 – Maximum likelihood parameter estimation

Johan Alenlöv
2025-02-26

Outline – Lecture 9

Aim: Open up for using the particle filter for inference about param-
eters θ
(and not only states Xt) in state-space models.

Outline:

1. The particle filter as likelihood estimator
2. Maximum likelihood estimation of state-space models

a. Direct optimization
b. Expectation maximization

1/15

State-space models

From lecture 2:

Xt = f (Xt−1, θ) + Vt,
Yt = g(Xt, θ) + Et,

where Xt are the states and θ the model parameters.

Only (but important!) difference: Xt depends on t, whereas θ doesn’t.

The particle filter assumes θ is known and computes p(Xt | y1:T , θ).

2/15

State-space models

From lecture 2:

Xt = f (Xt−1, θ) + Vt,
Yt = g(Xt, θ) + Et,

where Xt are the states and θ the model parameters.

Only (but important!) difference: Xt depends on t, whereas θ doesn’t.

The particle filter assumes θ is known and computes p(Xt | y1:T , θ).

2/15

State-space models

From lecture 2:

Xt = f (Xt−1, θ) + Vt,
Yt = g(Xt, θ) + Et,

where Xt are the states and θ the model parameters.

Only (but important!) difference: Xt depends on t, whereas θ doesn’t.

The particle filter assumes θ is known and computes p(Xt | y1:T , θ).

2/15

The likelihood function

The particle filter assumes θ is known and computes p(xt | y1:T , θ).

Inference about θ requires

p(θ | y1:T) (Posterior; Bayesian inference)

or

p(y1:T | θ) (Likelihood function; Fisherian inference/maximum likelihood).

p(θ | y1:T) =
p(y1:T | θ)p(θ)

p(y1:T)

This lecture: Focus on maximum likelihood. More on the Bayesian
setting in later lectures.

3/15

The likelihood function

The particle filter assumes θ is known and computes p(xt | y1:T , θ).

Inference about θ requires

p(θ | y1:T) (Posterior; Bayesian inference)

or

p(y1:T | θ) (Likelihood function; Fisherian inference/maximum likelihood).

p(θ | y1:T) =
p(y1:T | θ)p(θ)

p(y1:T)

This lecture: Focus on maximum likelihood. More on the Bayesian
setting in later lectures.

3/15

The likelihood function

The particle filter assumes θ is known and computes p(xt | y1:T , θ).

Inference about θ requires

p(θ | y1:T) (Posterior; Bayesian inference)

or

p(y1:T | θ) (Likelihood function; Fisherian inference/maximum likelihood).

p(θ | y1:T) =
p(y1:T | θ)p(θ)

p(y1:T)

This lecture: Focus on maximum likelihood. More on the Bayesian
setting in later lectures.

3/15

The likelihood function

The particle filter assumes θ is known and computes p(xt | y1:T , θ).

Inference about θ requires

p(θ | y1:T) (Posterior; Bayesian inference)

or

p(y1:T | θ) (Likelihood function; Fisherian inference/maximum likelihood).

p(θ | y1:T) =
p(y1:T | θ)p(θ)

p(y1:T)

This lecture: Focus on maximum likelihood. More on the Bayesian
setting in later lectures.

3/15

Maximum likelihood parameter inference

Maximum likelihood problem: Select θ such that the observed data
y1:T is as likely as possible to have been observed, i.e.,

θ̂ = arg max
θ

p(y1:T | θ)

4/15

Particle filter as likelihood estimator

p(y1:T | θ) =
T∏
t=1

p(yt | y1:t−1, θ),

p(yt | y1:t−1, θ) =
∫
p(yt, xt | y1:t−1, θ)dxt =

=

∫
p(yt | xt, θ)p(xt | y1:t−1, θ)︸ ︷︷ ︸

bPF
≈

∑N
i=1

1
N δxit

(xt)

dxt ≈

≈ 1
N

N∑
i=1

p(yt | xit, θ) =
1
N

N∑
i=1

w̃it

⇒p(y1:T | θ) ≈
T∏
t=1

(
1
N

N∑
i=1

w̃it

)
(w̃it are the unnormalized weights)

5/15

Reminder: The bootstrap particle filter

Algorithm 1 Bootstrap particle filter (for i = 1, . . . , N)

1. Initialization (t = 0):
(a) Sample xi0 ∼ p(x0 | θ).

(b) Set initial weights: wi
0 = 1/N.

2. for t = 1 to T do
(a) Resample: sample ancestor indices ait ∼ C({wj

t−1}
N
j=1).

(b) Propagate: sample xit ∼ p(xt | xa
i
t
t−1, θ).

(c) Weight: compute w̃i
t = p(yt | xit, θ) and normalize wi

t = w̃i
t/
∑N

j=1 w̃
j
t .

p(y1:T | θ) ≈
T∏
t=1

(
1
N

N∑
i=1

w̃it

)

6/15

Log-weights: an important practical aspect

For realistic problems, w̃it might be smaller than machine precision
→ w̃it = 0 on your computer.

Use shifted log-weights vit!

vit = log w̃it − ct, ct = max{log w̃1t , . . . , log w̃Nt }

Implement your particle filter using shifted log-weights! Store {vit}Ni=1
and ct.

From this, the likelihood estimate is obtained
T∏
t=1

(
1
N

N∑
i=1

w̃it

)
=

T∏
t=1

exp

(
ct + log

N∑
i=1

ev
i
t − logN

)

Also the normalized weights {wit}Ni=1 can be computed from {v
i
t}Ni=1,

wit =
w̃it∑N
j=1 w̃

j
t
=

evit+ct∑N
j=1 ev

j
t+ct

=
evit∑N
j=1 ev

j
t

7/15

Log-weights: an important practical aspect

For realistic problems, w̃it might be smaller than machine precision
→ w̃it = 0 on your computer.

Use shifted log-weights vit!

vit = log w̃it − ct, ct = max{log w̃1t , . . . , log w̃Nt }

Implement your particle filter using shifted log-weights! Store {vit}Ni=1
and ct.

From this, the likelihood estimate is obtained
T∏
t=1

(
1
N

N∑
i=1

w̃it

)
=

T∏
t=1

exp

(
ct + log

N∑
i=1

ev
i
t − logN

)

Also the normalized weights {wit}Ni=1 can be computed from {v
i
t}Ni=1,

wit =
w̃it∑N
j=1 w̃

j
t
=

evit+ct∑N
j=1 ev

j
t+ct

=
evit∑N
j=1 ev

j
t

7/15

Log-weights: an important practical aspect

For realistic problems, w̃it might be smaller than machine precision
→ w̃it = 0 on your computer.

Use shifted log-weights vit!

vit = log w̃it − ct, ct = max{log w̃1t , . . . , log w̃Nt }

Implement your particle filter using shifted log-weights! Store {vit}Ni=1
and ct.

From this, the likelihood estimate is obtained
T∏
t=1

(
1
N

N∑
i=1

w̃it

)
=

T∏
t=1

exp

(
ct + log

N∑
i=1

ev
i
t − logN

)

Also the normalized weights {wit}Ni=1 can be computed from {v
i
t}Ni=1,

wit =
w̃it∑N
j=1 w̃

j
t
=

evit+ct∑N
j=1 ev

j
t+ct

=
evit∑N
j=1 ev

j
t

7/15

Log-weights: an important practical aspect

For realistic problems, w̃it might be smaller than machine precision
→ w̃it = 0 on your computer.

Use shifted log-weights vit!

vit = log w̃it − ct, ct = max{log w̃1t , . . . , log w̃Nt }

Implement your particle filter using shifted log-weights! Store {vit}Ni=1
and ct.

From this, the likelihood estimate is obtained
T∏
t=1

(
1
N

N∑
i=1

w̃it

)
=

T∏
t=1

exp

(
ct + log

N∑
i=1

ev
i
t − logN

)

Also the normalized weights {wit}Ni=1 can be computed from {v
i
t}Ni=1,

wit =
w̃it∑N
j=1 w̃

j
t
=

evit+ct∑N
j=1 ev

j
t+ct

=
evit∑N
j=1 ev

j
t

7/15

ex) Numerical illustration

Simple LG-SSM,

Xt = θXt−1 + Vt, Vt ∼ N (0, 1),
Yt = Xt + Et, Et ∼ N (0, 1).

Task: estimate p(y1:100 | θ) for a simulated data set. True θ? = 0.9.

0.5 0.6 0.7 0.8 0.9 1

3

-240

-230

-220

-210

-200

-190

-180

lo
g-

lik
el

ih
oo

d

Black line – true likelihood computed
using the Kalman filter.

Blue thin lines – 5 different likelihood
estimates p̂N(y1:100 | θ) computed using a
bootstrap particle filter with N = 100
particles.

8/15

The particle filter as likelihood estimator

• Good news: Each run of the particle filter returns an estimate of
p(y1:T | θ)
— in addition to the state estimates!

• Challenge: The particle filter contains randomness→ the
estimate of p(y1:T | θ) contains randomness or ‘noise’.

• More on its stochastic properties in the next lecture.

9/15

The particle filter as likelihood estimator

• Good news: Each run of the particle filter returns an estimate of
p(y1:T | θ)
— in addition to the state estimates!

• Challenge: The particle filter contains randomness→ the
estimate of p(y1:T | θ) contains randomness or ‘noise’.

• More on its stochastic properties in the next lecture.

9/15

The particle filter as likelihood estimator

• Good news: Each run of the particle filter returns an estimate of
p(y1:T | θ)
— in addition to the state estimates!

• Challenge: The particle filter contains randomness→ the
estimate of p(y1:T | θ) contains randomness or ‘noise’.

• More on its stochastic properties in the next lecture.

9/15

Direct optimization

θ̂ = arg max
θ

p(y1:T | θ)

Can we use standard optimization routines?

Say, scipy.optimize.minimize(fun=-my_BPF_function,x0 = .2)

No. The evaluation of the cost function is ‘noisy’.

Solution: Use (or design) probabilistic optimization methods that
can work with noisy cost functions.

For example using Gaussian processes

10/15

Direct optimization

θ̂ = arg max
θ

p(y1:T | θ)

Can we use standard optimization routines?

Say, scipy.optimize.minimize(fun=-my_BPF_function,x0 = .2)

No. The evaluation of the cost function is ‘noisy’.

Solution: Use (or design) probabilistic optimization methods that
can work with noisy cost functions.

For example using Gaussian processes

10/15

Direct optimization

θ̂ = arg max
θ

p(y1:T | θ)

Can we use standard optimization routines?

Say, scipy.optimize.minimize(fun=-my_BPF_function,x0 = .2)

No. The evaluation of the cost function is ‘noisy’.

Solution: Use (or design) probabilistic optimization methods that
can work with noisy cost functions.

For example using Gaussian processes

10/15

Estimating likelihood gradients

We can also get noisy approximations for the gradient of the
likelihood.

Fisher’s identity ∇θ log p(y1:T | θ) = Eθ[∇θ log p(x1:T , y1:T | θ) | y1:T] ,

where

∇θ log p(x1:T , y1:T | θ) =
T∑
t=1
∇θ log p(xt | xt−1, θ) +∇θ log p(yt | xt, θ),

⇒∇θ log p(y1:T | θ) =
T∑
t=1

∫
[∇θ log p(xt | xt−1, θ) +∇θ log p(yt | xt, θ)]p(xt−1:t | y1:T , θ)dxt−1:t.

Here, p(xt−1:t | y1:T , θ) requires a particle smoother. Several
SMC-based alternative exists, but are not in this course.

11/15

Estimating likelihood gradients

We can also get noisy approximations for the gradient of the
likelihood.

Fisher’s identity ∇θ log p(y1:T | θ) = Eθ[∇θ log p(x1:T , y1:T | θ) | y1:T] ,

where

∇θ log p(x1:T , y1:T | θ) =
T∑
t=1
∇θ log p(xt | xt−1, θ) +∇θ log p(yt | xt, θ),

⇒∇θ log p(y1:T | θ) =
T∑
t=1

∫
[∇θ log p(xt | xt−1, θ) +∇θ log p(yt | xt, θ)]p(xt−1:t | y1:T , θ)dxt−1:t.

Here, p(xt−1:t | y1:T , θ) requires a particle smoother. Several
SMC-based alternative exists, but are not in this course.

11/15

Estimating likelihood gradients

We can also get noisy approximations for the gradient of the
likelihood.

Fisher’s identity ∇θ log p(y1:T | θ) = Eθ[∇θ log p(x1:T , y1:T | θ) | y1:T] ,

where

∇θ log p(x1:T , y1:T | θ) =
T∑
t=1
∇θ log p(xt | xt−1, θ) +∇θ log p(yt | xt, θ),

⇒∇θ log p(y1:T | θ) =
T∑
t=1

∫
[∇θ log p(xt | xt−1, θ) +∇θ log p(yt | xt, θ)]p(xt−1:t | y1:T , θ)dxt−1:t.

Here, p(xt−1:t | y1:T , θ) requires a particle smoother. Several
SMC-based alternative exists, but are not in this course.

11/15

Estimating likelihood gradients

We can also get noisy approximations for the gradient of the
likelihood.

Fisher’s identity ∇θ log p(y1:T | θ) = Eθ[∇θ log p(x1:T , y1:T | θ) | y1:T] ,

where

∇θ log p(x1:T , y1:T | θ) =
T∑
t=1
∇θ log p(xt | xt−1, θ) +∇θ log p(yt | xt, θ),

⇒∇θ log p(y1:T | θ) =
T∑
t=1

∫
[∇θ log p(xt | xt−1, θ) +∇θ log p(yt | xt, θ)]p(xt−1:t | y1:T , θ)dxt−1:t.

Here, p(xt−1:t | y1:T , θ) requires a particle smoother. Several
SMC-based alternative exists, but are not in this course.

11/15

Estimating likelihood gradients

We can also get noisy approximations for the gradient of the
likelihood.

Fisher’s identity ∇θ log p(y1:T | θ) = Eθ[∇θ log p(x1:T , y1:T | θ) | y1:T] ,

where

∇θ log p(x1:T , y1:T | θ) =
T∑
t=1
∇θ log p(xt | xt−1, θ) +∇θ log p(yt | xt, θ),

⇒∇θ log p(y1:T | θ) =
T∑
t=1

∫
[∇θ log p(xt | xt−1, θ) +∇θ log p(yt | xt, θ)]p(xt−1:t | y1:T , θ)dxt−1:t.

Here, p(xt−1:t | y1:T , θ) requires a particle smoother. Several
SMC-based alternative exists, but are not in this course.

11/15

Expectation Maximization

As an alternative to direct optimization of p(y1:T | θ), we can use the
Expectation Maximization (EM) method.

Dempster, Arthur P., Nan M. Laird, and Donald B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of
the Royal Statistical Society: Series B (Methodological), 39.1 (1977): 1-22..

Idea:

(E) Let Q(θ, θk−1) =
∫
log p(y1:T , x0:T | θ)p(x0:T | y1:T , θk−1)dx0:T

(M) Solve θk ← argmaxθ Qk(θ, θk−1)

Iterate until convergence.

Note: Does not make use of the particle filter as a likelihood
estimator, but uses a particle smoother (again: not in this course).

12/15

Expectation Maximization

As an alternative to direct optimization of p(y1:T | θ), we can use the
Expectation Maximization (EM) method.

Dempster, Arthur P., Nan M. Laird, and Donald B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of
the Royal Statistical Society: Series B (Methodological), 39.1 (1977): 1-22..

Idea:

(E) Let Q(θ, θk−1) =
∫
log p(y1:T , x0:T | θ)p(x0:T | y1:T , θk−1)dx0:T

(M) Solve θk ← argmaxθ Qk(θ, θk−1)

Iterate until convergence.

Note: Does not make use of the particle filter as a likelihood
estimator, but uses a particle smoother (again: not in this course).

12/15

Expectation Maximization

As an alternative to direct optimization of p(y1:T | θ), we can use the
Expectation Maximization (EM) method.

Dempster, Arthur P., Nan M. Laird, and Donald B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of
the Royal Statistical Society: Series B (Methodological), 39.1 (1977): 1-22..

Idea:

(E) Let Q(θ, θk−1) =
∫
log p(y1:T , x0:T | θ)p(x0:T | y1:T , θk−1)dx0:T

(M) Solve θk ← argmaxθ Qk(θ, θk−1)

Iterate until convergence.

Note: Does not make use of the particle filter as a likelihood
estimator, but uses a particle smoother (again: not in this course).

12/15

Computing Q

Inserting

log p(x0:T , y1:T | θ) = log

(T∏
t=1

p(yt | xt, θ)
T∏
t=1

p(xt | xt−1, θ)p(x0 | θ)
)

=
T∑
t=1

log p(yt | xt, θ) +
T∑
t=1

log p(xt | xt−1, θ) + log p(x0 | θ)

into the expression for Q(θ, θk) results in

Q(θ, θk) =
∫ T∑

t=1
log p(yt | xt, θ)p(xt | y1:T , θk)dxt

+

∫ T∑
t=1

log p(xt | xt−1, θ)p(xt−1:t | y1:T , θk)dxt−1:t

+

∫
log p(x0 | θ)p(x0 | y1:T , θk)dx0.

13/15

Computing Q

Inserting

log p(x0:T , y1:T | θ) = log

(T∏
t=1

p(yt | xt, θ)
T∏
t=1

p(xt | xt−1, θ)p(x0 | θ)
)

=
T∑
t=1

log p(yt | xt, θ) +
T∑
t=1

log p(xt | xt−1, θ) + log p(x0 | θ)

into the expression for Q(θ, θk) results in

Q(θ, θk) =
∫ T∑

t=1
log p(yt | xt, θ)p(xt | y1:T , θk)dxt

+

∫ T∑
t=1

log p(xt | xt−1, θ)p(xt−1:t | y1:T , θk)dxt−1:t

+

∫
log p(x0 | θ)p(x0 | y1:T , θk)dx0.

13/15

Final EM algorithm

Inserting particle smoothing approximations now allows for
straightforward approximation of Q(θ, θk),

Q̂(θ, θk) =
T∑
t=1

N∑
i=1

log p(yt | xit | T , θ) +
T∑
t=1

N∑
i=1

log p(xit | T | x
i
t−1 | T , θ)

+ log
N∑
i=1

p(xi0 | T | θ).

1. Initialize θ0 and run a particle smoother conditional on θ0.
2. Use the result from previous step to compute Q̂(θ, θ0).
3. Solve θ1 = arg max

θ
Q̂(θ, θ0).

4. Run a particle smoother conditional on θ1.

5.

Requires N→∞ and infinitely many iterations. There are more
intricate solutions.

14/15

Final EM algorithm

Inserting particle smoothing approximations now allows for
straightforward approximation of Q(θ, θk),

Q̂(θ, θk) =
T∑
t=1

N∑
i=1

log p(yt | xit | T , θ) +
T∑
t=1

N∑
i=1

log p(xit | T | x
i
t−1 | T , θ)

+ log
N∑
i=1

p(xi0 | T | θ).

1. Initialize θ0 and run a particle smoother conditional on θ0.
2. Use the result from previous step to compute Q̂(θ, θ0).
3. Solve θ1 = arg max

θ
Q̂(θ, θ0).

4. Run a particle smoother conditional on θ1.

5.

Requires N→∞ and infinitely many iterations. There are more
intricate solutions.

14/15

Final EM algorithm

Inserting particle smoothing approximations now allows for
straightforward approximation of Q(θ, θk),

Q̂(θ, θk) =
T∑
t=1

N∑
i=1

log p(yt | xit | T , θ) +
T∑
t=1

N∑
i=1

log p(xit | T | x
i
t−1 | T , θ)

+ log
N∑
i=1

p(xi0 | T | θ).

1. Initialize θ0 and run a particle smoother conditional on θ0.
2. Use the result from previous step to compute Q̂(θ, θ0).
3. Solve θ1 = arg max

θ
Q̂(θ, θ0).

4. Run a particle smoother conditional on θ1.

5.

Requires N→∞ and infinitely many iterations. There are more
intricate solutions. 14/15

Further reading

Fairly recent survey/tutorial papers:
Nikolas Kantas, Arnaud Doucet, Sumeetpal S. Singh, Jan Maciejowski and Nicolas Chopin. On particle methods for parameter estima-
tion in general state-space models. Statistical Science, 30(3):328-351, 2015.

Thomas B. Schön, Fredrik Lindsten, Johan Dahlin, Johan Wagberg, Christian A. Naesseth, Andreas Svensson and Liang Dai. Sequential
Monte Carlo methods for system identification. Proceedings of the 17th IFAC Symposium on System Identification (SYSID), Beijing,
China, October 2015.

Maximum likelihood inference using the Gaussian process:
Adrian G. Wills and Thomas B. Schön. On the construction of probabilistic Newton-type algorithms. Proceedings of the 56th IEEE
Conference on Decision and Control (CDC), Melbourne, Australia, December 2017.

Maximum likelihood inference using EM:
Andreas Lindholm and Fredrik Lindsten. Learning dynamical systems with particle stochastic approximation EM. arXiv:1806.09548,
2018.

Maximum likelihood inference using gradients:
Jimmy Olsson and Johan Alenlöv. Particle-based online estimation of tangent filters with application to parameter estimation in
nonlinear state-space models. Annals of the Institute of Statistical Mathematics, 2020.

15/15

