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Outline - Lecture 8

Aim: Introduce the path space view of the particle filter, explain
the path degeneracy problem and briefly mention the low-variance
resampling methods.

Outline:

1. Path space view of the particle filter
2. Path degeneracy

3. Mitigating the path degeneracy problem

a. Effective samples size (ESS)
b. Low variance resampling

4. Parameter inference in SSMs
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Reminder - the bootstrap particle filter

Algorithm 1 Bootstrap particle filter (fori=1, ..., N)
1. Initialization (t = 0):

(a) sample X}, ~ p(xo).

(b) Setinitial weights: wj = 1/N.
2.fort=1to T do

(a) Resample: sample ancestor indices ai ~ C({\A/{71}j’-v:1).
(b) Propagate: sample xi ~ p(x; | X’,) and set xi,, = (x%,_,, x}).

(c) Weight: compute W} = p(y; | x}) and normalize wi = wi/ "N . W/
t t t t/ 24j=

The ancestor indices {a}}! , allow us to keep track of exactly what
happens in each resampling step.

Note the bookkeeping added to the propagation step 2b.
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Bookkeeping - ancestral path

Example evolution of three particles fort = 0,1, 2.
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Bookkeeping - ancestral path

Example evolution of three particles fort = 0,1, 2.

1 ] 1

X} X X3
°

2 2 2
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3 3 3

X0 X X

The ancestral path of x}, i.e. x},, is shown as the thick line.
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Bookkeeping - ancestor indices

Attime t =1, particle xJ is resampled twice and particle x3 is
resampled once (whereas particle x} is not resampled). Hence, at
time t = 1, the ancestor indices are

ay=2,a,=2and al =3.

Similarly, at time t = 2, the ancestor indices are given by

ay=2,a5=3and @ = 3.

The ancestral path of x}, i.e. x},, is shown as a thick line. It is defined
recursively from the ancestor indices

“; 1 2
XE):Z = (ng 7X$2’X;) = (XSW’X%X;) = (X%7X125X12)'
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Bootstrap PF targeting the joint filtering PDF

Algorithm 2 joint filtering bootstrap PF (fori=1, ..., N)

1. Initialization (t = 0):
(a) Sample x}) ~ p(xo).

(b) Setinitial weights: wj, = 1/N.
2.fort=1to Tdo
(a) Resample: sample ancestor indices a} ~ C({\A/{_1}/’-\’:1).

(b) Propagate: sample xi ~ p(x; | X°_,) and set xi,, = (x%,_,, xb).

(c) Weight: compute W} = p(y;|x}) and normalize wi = W}/ Z}-Nﬁ A
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Bootstrap PF targeting the joint filtering PDF

It can be shown that Algorithm 2 targets the joint filtering pdf
p(xe | Xe—1)p(ye | %)

P(Ve) [ Vrit—1)
It resamples entire trajectories xj.,, not just individual states x..

p(Xo:t | Ya:t) = P(Xo:t—1 | Ya:e—1)
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Bootstrap PF targeting the joint filtering PDF

It can be shown that Algorithm 2 targets the joint filtering pdf
p(xe | Xe—1)p(ye | %)

P(Vt) [Yrt—1)
It resamples entire trajectories xj.,, not just individual states x..

p(Xo:t | Ya:t) = P(Xo:t—1 | Ya:e—1)

Resulting approximation of the 'ointﬁ ltering PDF

P" (X0t | yat) = ZWt o (Xo:t)-

Problem: While it can be shown that the estimate p"(xo.¢ | y1.t) pro-
duced by Algorithm 2 converges asymptotically as N — oo, it is in
many cases not a good approximation of p(Xo:t | 1:¢)!

Why?
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Path degeneracy



ex) Path degeneracy

1D Gaussian random walk, measured in Gaussian noise, T = 25.

Target the joint filtering density using a bootstrap PF (Alg. 2) with
N = 30 particles.

P(Xo:25 | Y1.25) Z Wasd  (Xo2s)
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ex) Path degeneracy
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At each point in time all particles are
plotted using a black dot and each
particle is connected with its ancestor
using a black line.
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ex) Path degeneracy

At each point in time all particles are
plotted using a black dot and each
particle is connected with its ancestor
using a black line.

The grey dots represents p(x; | ya.¢) at
each pointin time.

The black lines represents
P(Xo:25 | Ya:t)-
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ex) Path degeneracy

Note that all ancestral paths {x} s}, share a common ancestor at

time t = 6 (and consequently for all times t < 6 as well).
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ex) Path degeneracy

Note that all ancestral paths {x} s}, share a common ancestor at
time t = 6 (and consequently for all times t < 6 as well).

Let us use the resulting particle system {whs, x5}, to compute a
Monte Carlo estimate of E[xs | y1.25],

30
E[x | y1.05] ~ Z W)sX3

i=1
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ex) Path degeneracy

Note that all ancestral paths {x} s}, share a common ancestor at
time t = 6 (and consequently for all times t < 6 as well).

Let us use the resulting particle system {whs, x5}, to compute a
Monte Carlo estimate of E[xs | y1.25],

30
E[x | y1.05] ~ Z W)sX3

i=1

Boils down to an estimate using a single sample, since x4 is identical
foralli=1,...,30.
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Path degeneracy

Path degeneracy follows as a direct consequence of resampling.

The resampling step will by construction result in that for any time s
there exists atime t > s, such that the PF approximation p"(xo. | va:¢)
consists of a single particle at time s.

In the above example this happened for s = 6 and t = 25.
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Mitigating path degeneracy




Mitigating the path degeneracy problem

The impact of the path degeneracy problem can be reduced:

1. Do not resample at each iteration, when?
2. Better resampling algorithms
3. .
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Effective sample size (ESS)

The effective sample size (ESS) N is a diagnostics tool that tells us
when our weights are problematic in the sense that they are close to
being degenerate.
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Effective sample size (ESS)

The effective sample size (ESS) N is a diagnostics tool that tells us
when our weights are problematic in the sense that they are close to
being degenerate.

_m

Eq [{w(x)}?]

We cannot evaluate Neg exactly, but we can compute an estimate
1

eff = TSN,

S (w2

Nef =

=)
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Effective sample size (ESS)

The effective sample size (ESS) N is a diagnostics tool that tells us
when our weights are problematic in the sense that they are close to

being degenerate.

_m

Eq [{w(x)}?]

We cannot evaluate Neg exactly, but we can compute an estimate
1

eff = TSN,

S (w2

Nef =

=)

ESS-adaptive resampling: When Ngg falls below some threshold
Ninres We resample the particles, otherwise we continue without re-

sampling.
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Ex) Effective sample size (ESS)

Ex. 1) Let w' =1/N foralli=1,...,N (independent samples),

1 1

N == = =
Ty NN
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Ex) Effective sample size (ESS)

Ex. 1) Let w' =1/N foralli=1,...,N (independent samples),

1 1
S (wy - Nx/NE

Nef =

Ex.2) Letw' =0fori=1,...,N—1and w"’ =1 (completely
degenerate),
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Bootstrap PF with ESS-adaptive resampling

Algorithm 3 joint filtering bootstrap PF (fori=1, ..., N)
1. Initialization (t = 0):

(a) Sample x}) ~ p(xo).

(b) Setinitial weights: wj) = 1/N.
2.fort=1to Tdo

(a) Compute Nggs = |

mwe_p)?
(b) ESS-adapted resample: If Nosr < Nipres Sample ancestor indices
a; ~ C({w;_;}1L,) and set w;_; = 1/N.
If Netr > Nipres Set Clé =1

(c) Propagate: sample xi ~ p(x; | x",). Xb., = {x&,_, xi}.

(d) Weight: compute W} = p(yt | x;)w;—1 and normalize

AL
Wy =W/ > W

15/23



Multinomial resampling

Multinomial resampling introduced during lecture 4

a ~Cc({w}L,), P(a” :j) —w.
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Multinomial resampling

Multinomial resampling introduced during lecture 4

a ~Cc({w}L,), P(a” :j) —w.

Blue circular disc — weights {w'}?_,.

Solid arrows - selected particles {x'}%_,.
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Alternative implementations of resampling

Multinomial Stratified

Divide the circle into strata (grey dashed lines).

Stratified resampling randomly selects 1 sample from each strata.
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Alternative implementations of resampling

Multinomial Stratified Systematic

Divide the circle into strata (grey dashed lines).
Stratified resampling randomly selects 1 sample from each strata.

Systematic resampling randomly generates 1 offset and then it picks

one sample from each strata using this offset. N.B. There are some
(pathological) cases when it can perform worse than simple
multinomial sampling. 17/23



Residual resampling

Alternatively, create [Nw/ | deterministic copies of particle .

We then sample the remaining N — ZL |Nw'| particles by applying
any resampling scheme (e.g. stratified) to the residuals, i.e. we use
weights , 4
Nw' — [Nw' |
N = YL [w)
for the resampling.
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Path degeneracy can mitigated by backward simulation (results in
particle smoothers).

Fredrik Lindsten and Thomas B. Schon. Backward simulation methods for Monte Carlo statistical inference. Foundations and Trends
in Machine Learning, 6(1)1-143, 2013
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Path degeneracy can mitigated by backward simulation (results in
particle smoothers).

Fredrik Lindsten and Thomas B. Schon. Backward simulation methods for Monte Carlo statistical inference. Foundations and Trends
@ in Machine Learning, 6(1)1-143, 2013

Particle MCMC algorithms (lectures 11-14) can be used to tackle the
path degeneracy issue and solve the state smoothing problem
(jointly with inferring unknown model parameters).

Christophe Andrieu, Arnaud Doucet and Roman Holenstein. Particle Markov chain Monte Carlo methods. Journal of the Royal Statis-
@ tical Society: Series B, 72:269-342, 2010.
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Fixed-lag smoother

In estimating the fixed-lag smoothing density p(X¢_i.1t | y1.t) for some
small [ > 1 we can make use of

b\(xtfHJ:t \)/11 ZW[ X1 H —[+1: t)

where the particle system comes from a particle filter targeting the
joint filtering density.

If [ is taken too large we activate the path degeneracy problem to
such a degree that it will not work.
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Parameter inference in SSMs




Nonlinear state space model

Xe = f(Xt=1,0) + V4, Xe | (Xe—1 = Xe—1,0 = 0) ~ p(X¢ | X¢—1,0),
Ye = g(Xt,0) + Et, Vel (Xe = X, 0 = 0) ~ p(ye | X, 0),
Xo ~ p(Xo | 0). Xo ~ p(Xo | 0).

Two different parameter inference formulations differing in the way
the unknown parameters ¢ are modelled:

- Maximum likelihood: & modelled as deterministic.

- Bayesian: # modelled as stochastic.
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Central object - data distribution/likelihood

The data distribution can be computed by marginalizing
T T

p(Xo.r, Y| 0) = Hp(yt | Xt, 0) HD(Xt | Xt—1,0)p(Xo | 0)

t=1 t=1

w.rt. the state trajectory xo.r

p(yr7|0) = /p(XO:T7y1:T|9)dXO:T~
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Central object - data distribution/likelihood

The data distribution can be computed by marginalizing
T T

p(Xo.r, Y| 0) = Hp(yt | Xt, 0) HD(Xt | Xt—1,0)p(Xo | 0)

t=1 t=1

w.rt. the state trajectory xo.r
p(ya.r]0) = /P(Xo:77V1:T|9)dXo:T~

Average over all possible values for the state trajectory Xo.7.

Alternative way of performing the averaging'

0) ; / Xt, 0) p(x ,0) dx
p(var|0) prt\)/nw H PVt [ Xt, 0) p(Xt | Ya:t—1, ) dX;

approx. by PF
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A few concepts to summarize lecture 8

Ancestral path: By starting from a particle x; at time t and tracing its ancestors backwards in time
via the ancestor indices we obtain xg.;, which is the ancestral path for particle x;.

Path degeneracy: The resampling step will by construction result in that for any time s there exists
atimet > s such that the PF approximation p(xo: | ya.t) consists of a single particle at time s.

Effective sample size (ESS): An importance sampling diagnostics tool that tells us when our
weights are problematic in the sense that they are close to being degenerate, i.e. it provides a way
of gauging the extent of the weight degeneracy.

Backward simulation: Generates samples backwards in time. When backward sampling can be
implemented it removes the path degeneracy problem (only possible in off-line situations).

Likelihood function: Deterministic function of § obtained by inserting the available
measurements into the data distribution.
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