
Sequential Monte Carlo methods
Lecture 8 – Path space view of the particle filter

Fredrik Lindsten, Linköping University
2025-02-04

Outline – Lecture 8

Aim: Introduce the path space view of the particle filter, explain
the path degeneracy problem and briefly mention the low-variance
resampling methods.

Outline:

1. Path space view of the particle filter
2. Path degeneracy
3. Mitigating the path degeneracy problem

a. Effective samples size (ESS)
b. Low variance resampling

4. Parameter inference in SSMs

1/23

Reminder – the bootstrap particle filter

Algorithm 1 Bootstrap particle filter (for i = 1, . . . , N)
1. Initialization (t = 0):
(a) Sample xi0 ∼ p(x0).

(b) Set initial weights: wi0 = 1/N.
2. for t = 1 to T do
(a) Resample: sample ancestor indices ait ∼ C({wjt−1}Nj=1).

(b) Propagate: sample xit ∼ p(xt | xa
i
t
t−1) and set xi0:t = (xa

i
t
0:t−1, xit).

(c) Weight: compute w̃it = p(yt | xit) and normalize wit = w̃it/
∑N

j=1 w̃
j
t.

The ancestor indices {ait}Ni=1 allow us to keep track of exactly what
happens in each resampling step.

Note the bookkeeping added to the propagation step 2b.

2/23

Bookkeeping – ancestral path

Example evolution of three particles for t = 0, 1, 2.

x10

x20

x30

x11

x21

x31

x12

x22

x32

The ancestral path of x12, i.e. x10:2, is shown as the thick line.

3/23

Bookkeeping – ancestral path

Example evolution of three particles for t = 0, 1, 2.

x10

x20

x30

x11

x21

x31

x12

x22

x32

The ancestral path of x12, i.e. x10:2, is shown as the thick line.

3/23

Bookkeeping – ancestor indices

At time t = 1, particle x20 is resampled twice and particle x30 is
resampled once (whereas particle x10 is not resampled). Hence, at
time t = 1, the ancestor indices are

a11 = 2, a21 = 2 and a31 = 3.

Similarly, at time t = 2, the ancestor indices are given by

a12 = 2, a22 = 3 and a32 = 3.

The ancestral path of x12, i.e. x10:2, is shown as a thick line. It is defined
recursively from the ancestor indices

x10:2 = (xa
a12
1
0 , xa

1
2
1 , x12) = (xa

2
1
0 , x

2
1 , x12) = (x20, x21 , x12).

4/23

Bootstrap PF targeting the joint filtering PDF

Algorithm 2 joint filtering bootstrap PF (for i = 1, . . . , N)

1. Initialization (t = 0):
(a) Sample xi0 ∼ p(x0).

(b) Set initial weights: wi0 = 1/N.
2. for t = 1 to T do
(a) Resample: sample ancestor indices ait ∼ C({wjt−1}Nj=1).

(b) Propagate: sample xit ∼ p(xt | xa
i
t
t−1) and set xi0:t = (xa

i
t
0:t−1, xit).

(c) Weight: compute w̃it = p(yt | xit) and normalize wit = w̃it/
∑N

j=1 w̃
j
t.

5/23

Bootstrap PF targeting the joint filtering PDF

It can be shown that Algorithm 2 targets the joint filtering pdf

p(x0:t | y1:t) = p(x0:t−1 | y1:t−1)
p(xt | xt−1)p(yt | xt)
p(yt) | y1:t−1)

.

It resamples entire trajectories xi0:t, not just individual states xit.

Resulting approximation of the joint filtering PDF

p̂N(x0:t | y1:t) =
N∑
i=1

witδxi0:t(x0:t).

Problem: While it can be shown that the estimate p̂N(x0:t | y1:t) pro-
duced by Algorithm 2 converges asymptotically as N → ∞, it is in
many cases not a good approximation of p(x0:t | y1:t)!

Why?

6/23

Bootstrap PF targeting the joint filtering PDF

It can be shown that Algorithm 2 targets the joint filtering pdf

p(x0:t | y1:t) = p(x0:t−1 | y1:t−1)
p(xt | xt−1)p(yt | xt)
p(yt) | y1:t−1)

.

It resamples entire trajectories xi0:t, not just individual states xit.

Resulting approximation of the joint filtering PDF

p̂N(x0:t | y1:t) =
N∑
i=1

witδxi0:t(x0:t).

Problem: While it can be shown that the estimate p̂N(x0:t | y1:t) pro-
duced by Algorithm 2 converges asymptotically as N → ∞, it is in
many cases not a good approximation of p(x0:t | y1:t)!

Why?

6/23

Bootstrap PF targeting the joint filtering PDF

It can be shown that Algorithm 2 targets the joint filtering pdf

p(x0:t | y1:t) = p(x0:t−1 | y1:t−1)
p(xt | xt−1)p(yt | xt)
p(yt) | y1:t−1)

.

It resamples entire trajectories xi0:t, not just individual states xit.

Resulting approximation of the joint filtering PDF

p̂N(x0:t | y1:t) =
N∑
i=1

witδxi0:t(x0:t).

Problem: While it can be shown that the estimate p̂N(x0:t | y1:t) pro-
duced by Algorithm 2 converges asymptotically as N → ∞, it is in
many cases not a good approximation of p(x0:t | y1:t)!

Why?

6/23

Path degeneracy

ex) Path degeneracy

1D Gaussian random walk, measured in Gaussian noise, T = 25.

Target the joint filtering density using a bootstrap PF (Alg. 2) with
N = 30 particles.

p̂(x0:25 | y1:25) =
30∑
i=1

wi25δxi0:25(x0:25).

7/23

ex) Path degeneracy

8/23

ex) Path degeneracy

5 10 15 20 25
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Time

S
ta

te

At each point in time all particles are
plotted using a black dot and each
particle is connected with its ancestor
using a black line.

5 10 15 20 25
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Time

S
ta

te

The grey dots represents p̂(xt | y1:t) at
each point in time.

The black lines represents
p̂(x0:25 | y1:t).

9/23

ex) Path degeneracy

5 10 15 20 25
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Time

S
ta

te

At each point in time all particles are
plotted using a black dot and each
particle is connected with its ancestor
using a black line.

5 10 15 20 25
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Time

S
ta

te

The grey dots represents p̂(xt | y1:t) at
each point in time.

The black lines represents
p̂(x0:25 | y1:t).

9/23

ex) Path degeneracy

Note that all ancestral paths {xi0:25}Ni=1 share a common ancestor at
time t = 6 (and consequently for all times t < 6 as well).

Let us use the resulting particle system {wi25, xi0:25}Ni=1 to compute a
Monte Carlo estimate of E[x3 | y1:25],

E[x3 | y1:25] ≈
30∑
i=1

wi25xi3

Boils down to an estimate using a single sample, since xi3 is identical
for all i = 1, . . . , 30.

10/23

ex) Path degeneracy

Note that all ancestral paths {xi0:25}Ni=1 share a common ancestor at
time t = 6 (and consequently for all times t < 6 as well).

Let us use the resulting particle system {wi25, xi0:25}Ni=1 to compute a
Monte Carlo estimate of E[x3 | y1:25],

E[x3 | y1:25] ≈
30∑
i=1

wi25xi3

Boils down to an estimate using a single sample, since xi3 is identical
for all i = 1, . . . , 30.

10/23

ex) Path degeneracy

Note that all ancestral paths {xi0:25}Ni=1 share a common ancestor at
time t = 6 (and consequently for all times t < 6 as well).

Let us use the resulting particle system {wi25, xi0:25}Ni=1 to compute a
Monte Carlo estimate of E[x3 | y1:25],

E[x3 | y1:25] ≈
30∑
i=1

wi25xi3

Boils down to an estimate using a single sample, since xi3 is identical
for all i = 1, . . . , 30.

10/23

Path degeneracy

Path degeneracy follows as a direct consequence of resampling.

The resampling step will by construction result in that for any time s
there exists a time t > s, such that the PF approximation p̂N(x0:t | y1:t)
consists of a single particle at time s.

In the above example this happened for s = 6 and t = 25.

11/23

Mitigating path degeneracy

Mitigating the path degeneracy problem

The impact of the path degeneracy problem can be reduced:

1. Do not resample at each iteration, when?
2. Better resampling algorithms
3. ...

12/23

Effective sample size (ESS)

The effective sample size (ESS) Neff is a diagnostics tool that tells us
when our weights are problematic in the sense that they are close to
being degenerate.

Neff =
N

Eq
[
{ω(xi)}2

] ≤ N.

We cannot evaluate Neff exactly, but we can compute an estimate

N̂eff =
1∑N

i=1(wi)2
.

ESS-adaptive resampling: When N̂eff falls below some threshold
Nthres we resample the particles, otherwise we continue without re-
sampling.

13/23

Effective sample size (ESS)

The effective sample size (ESS) Neff is a diagnostics tool that tells us
when our weights are problematic in the sense that they are close to
being degenerate.

Neff =
N

Eq
[
{ω(xi)}2

] ≤ N.

We cannot evaluate Neff exactly, but we can compute an estimate

N̂eff =
1∑N

i=1(wi)2
.

ESS-adaptive resampling: When N̂eff falls below some threshold
Nthres we resample the particles, otherwise we continue without re-
sampling.

13/23

Effective sample size (ESS)

The effective sample size (ESS) Neff is a diagnostics tool that tells us
when our weights are problematic in the sense that they are close to
being degenerate.

Neff =
N

Eq
[
{ω(xi)}2

] ≤ N.

We cannot evaluate Neff exactly, but we can compute an estimate

N̂eff =
1∑N

i=1(wi)2
.

ESS-adaptive resampling: When N̂eff falls below some threshold
Nthres we resample the particles, otherwise we continue without re-
sampling.

13/23

Ex) Effective sample size (ESS)

Ex. 1) Let wi = 1/N for all i = 1, . . . ,N (independent samples),

N̂eff =
1∑N

i=1(wi)2
=

1
N× 1/N2 = N.

Ex. 2) Let wi = 0 for i = 1, . . . ,N− 1 and wN = 1 (completely
degenerate),

N̂eff =
1∑N

i=1(wi)2
= 1.

14/23

Ex) Effective sample size (ESS)

Ex. 1) Let wi = 1/N for all i = 1, . . . ,N (independent samples),

N̂eff =
1∑N

i=1(wi)2
=

1
N× 1/N2 = N.

Ex. 2) Let wi = 0 for i = 1, . . . ,N− 1 and wN = 1 (completely
degenerate),

N̂eff =
1∑N

i=1(wi)2
= 1.

14/23

Bootstrap PF with ESS-adaptive resampling

Algorithm 3 joint filtering bootstrap PF (for i = 1, . . . , N)
1. Initialization (t = 0):
(a) Sample xi0 ∼ p(x0).

(b) Set initial weights: wi0 = 1/N.
2. for t = 1 to T do
(a) Compute N̂eff = 1∑N

i=1(wit−1)
2 .

(b) ESS-adapted resample: If N̂eff < Nthres sample ancestor indices
ait ∼ C({wjt−1}Nj=1) and set wit−1 = 1/N.
If N̂eff ≥ Nthres set ait = i.

(c) Propagate: sample xit ∼ p(xt | xa
i
t
t−1). xi0:t = {xa

i
t
0:t−1, xit}.

(d) Weight: compute w̃it = p(yt | xit)wt−1 and normalize
wit = w̃it/

∑N
j=1 w̃

j
t.

15/23

Multinomial resampling

Multinomial resampling introduced during lecture 4

ai ∼ C({wj}Nj=1), P
(
ai = j

)
= wj.

 0

(a) Multinomial

 0

(b) Stratified

 0

(c) Systematic

 0

(d) Metropolis

 0

(e) Rejection

Figure 1: Visualisation of the resampling algorithms considered. Arcs along the perimeter of the circles
represent particles by weight, solid arrows indicate selected particles and are positioned (a) uniformly
randomly in the multinomial resampler, (b & c) by evenly slicing the circle into strata (dashed lines) and
randomly selecting an offset into each stratum (stratified resampler) or using the same offset (systematic
resampler), (d) by initialising multiple Markov chains (dashed arrows) and simulating to convergence
in the Metropolis resampler, or (e) by rejection sampling. The outputs of multinomial, Metropolis and
rejection resamplers follow the same distribution (represented by identical solid arrows).

One common approach is to draw ot according to a multinomial distribution with parameters N and
wt−1 (multinomial resampling). We will consider alternative strategies below, including some opportuni-
ties to relax the unbiasedness condition in exchange for a significant reduction in execution time. Figure
1 visualises both standard and alternative approaches.

1.2 Parallelisation

The initialisation, propagation and weighting steps of SMC are readily parallelised, being independent
operations on each particle xit and its weight wit. Resampling, on the other hand, is a collective operation
across particles and weights, so that parallelisation is more difficult. Summing the N weights necessitates
synchronization across threads, so that some threads may wastefully idle while waiting on others. For
certain hardware that does not permit global communication between concurrently running threads, such
as graphics processing units (GPUs), the elimination of collective operations can yield significant speed
up. For this reason the resampling step has attracted recent attention as a potential bottleneck in the
further scaling of SMC to larger systems (Murray, 2011; Whiteley et al., 2013).

At the core of most standard resampling schemes, such as the multinomial, stratified and systematic
schemes, is a cumulative sum of weights, also called a prefix sum. A major theme of prior contributions
has been the parallelisation of this prefix sum (Maskell et al., 2006; Hendeby et al., 2010; Chao et al.,
2010; Gong et al., 2012). This is a generic problem that is also relevant to other algorithms (see e.g.
Harris et al., 2007). Another theme in prior work is the partitioning of particles into disjoint subsets
within which local resampling is performed (Chao et al., 2010). This is more useful in a distributed
memory context, as it limits communication between processes (Whiteley et al., 2013); it has been
considered in this context before (Brun et al., 2002; Bolić et al., 2005). General comments regarding the
parallelisability of particle filtering algorithms are given in Lee et al. (2010) and Murray (2013).

1.3 Numerical precision and stability

As demonstrated later in this work, numerical instabilities can be apparent in standard resampling
schemes when N is large. One million particles is not an unrealistic number for some contemporary
applications of SMC (see e.g. Klaas et al., 2006; Kitagawa, 2014). In double-precision, where 15 significant
figures (in decimal) are expected, it is unlikely that N will be sufficiently large for numerical instability
to be a problem in current applications. In single-precision, however, where 8 significant figures (in
decimal) are expected, numerical instabilities can manifest with this many particles. This is important
because contemporary hardware has significantly faster single-precision than double-precision floating-
point performance. There is reason to believe that this gap will remain; consider, for example, that single-
precision is twice as fast on CPU architectures—even reasonably mature architectures—when SIMD

3

Blue circular disc – weights {wi}8i=1.

Solid arrows – selected particles {xi}8i=1.

16/23

Multinomial resampling

Multinomial resampling introduced during lecture 4

ai ∼ C({wj}Nj=1), P
(
ai = j

)
= wj.

 0

(a) Multinomial

 0

(b) Stratified

 0

(c) Systematic

 0

(d) Metropolis

 0

(e) Rejection

Figure 1: Visualisation of the resampling algorithms considered. Arcs along the perimeter of the circles
represent particles by weight, solid arrows indicate selected particles and are positioned (a) uniformly
randomly in the multinomial resampler, (b & c) by evenly slicing the circle into strata (dashed lines) and
randomly selecting an offset into each stratum (stratified resampler) or using the same offset (systematic
resampler), (d) by initialising multiple Markov chains (dashed arrows) and simulating to convergence
in the Metropolis resampler, or (e) by rejection sampling. The outputs of multinomial, Metropolis and
rejection resamplers follow the same distribution (represented by identical solid arrows).

One common approach is to draw ot according to a multinomial distribution with parameters N and
wt−1 (multinomial resampling). We will consider alternative strategies below, including some opportuni-
ties to relax the unbiasedness condition in exchange for a significant reduction in execution time. Figure
1 visualises both standard and alternative approaches.

1.2 Parallelisation

The initialisation, propagation and weighting steps of SMC are readily parallelised, being independent
operations on each particle xit and its weight wit. Resampling, on the other hand, is a collective operation
across particles and weights, so that parallelisation is more difficult. Summing the N weights necessitates
synchronization across threads, so that some threads may wastefully idle while waiting on others. For
certain hardware that does not permit global communication between concurrently running threads, such
as graphics processing units (GPUs), the elimination of collective operations can yield significant speed
up. For this reason the resampling step has attracted recent attention as a potential bottleneck in the
further scaling of SMC to larger systems (Murray, 2011; Whiteley et al., 2013).

At the core of most standard resampling schemes, such as the multinomial, stratified and systematic
schemes, is a cumulative sum of weights, also called a prefix sum. A major theme of prior contributions
has been the parallelisation of this prefix sum (Maskell et al., 2006; Hendeby et al., 2010; Chao et al.,
2010; Gong et al., 2012). This is a generic problem that is also relevant to other algorithms (see e.g.
Harris et al., 2007). Another theme in prior work is the partitioning of particles into disjoint subsets
within which local resampling is performed (Chao et al., 2010). This is more useful in a distributed
memory context, as it limits communication between processes (Whiteley et al., 2013); it has been
considered in this context before (Brun et al., 2002; Bolić et al., 2005). General comments regarding the
parallelisability of particle filtering algorithms are given in Lee et al. (2010) and Murray (2013).

1.3 Numerical precision and stability

As demonstrated later in this work, numerical instabilities can be apparent in standard resampling
schemes when N is large. One million particles is not an unrealistic number for some contemporary
applications of SMC (see e.g. Klaas et al., 2006; Kitagawa, 2014). In double-precision, where 15 significant
figures (in decimal) are expected, it is unlikely that N will be sufficiently large for numerical instability
to be a problem in current applications. In single-precision, however, where 8 significant figures (in
decimal) are expected, numerical instabilities can manifest with this many particles. This is important
because contemporary hardware has significantly faster single-precision than double-precision floating-
point performance. There is reason to believe that this gap will remain; consider, for example, that single-
precision is twice as fast on CPU architectures—even reasonably mature architectures—when SIMD

3

Blue circular disc – weights {wi}8i=1.

Solid arrows – selected particles {xi}8i=1.

16/23

Alternative implementations of resampling

 0

(a) Multinomial

 0

(b) Stratified

 0

(c) Systematic

 0

(d) Metropolis

 0

(e) Rejection

Figure 1: Visualisation of the resampling algorithms considered. Arcs along the perimeter of the circles
represent particles by weight, solid arrows indicate selected particles and are positioned (a) uniformly
randomly in the multinomial resampler, (b & c) by evenly slicing the circle into strata (dashed lines) and
randomly selecting an offset into each stratum (stratified resampler) or using the same offset (systematic
resampler), (d) by initialising multiple Markov chains (dashed arrows) and simulating to convergence
in the Metropolis resampler, or (e) by rejection sampling. The outputs of multinomial, Metropolis and
rejection resamplers follow the same distribution (represented by identical solid arrows).

One common approach is to draw ot according to a multinomial distribution with parameters N and
wt−1 (multinomial resampling). We will consider alternative strategies below, including some opportuni-
ties to relax the unbiasedness condition in exchange for a significant reduction in execution time. Figure
1 visualises both standard and alternative approaches.

1.2 Parallelisation

The initialisation, propagation and weighting steps of SMC are readily parallelised, being independent
operations on each particle xit and its weight wit. Resampling, on the other hand, is a collective operation
across particles and weights, so that parallelisation is more difficult. Summing the N weights necessitates
synchronization across threads, so that some threads may wastefully idle while waiting on others. For
certain hardware that does not permit global communication between concurrently running threads, such
as graphics processing units (GPUs), the elimination of collective operations can yield significant speed
up. For this reason the resampling step has attracted recent attention as a potential bottleneck in the
further scaling of SMC to larger systems (Murray, 2011; Whiteley et al., 2013).

At the core of most standard resampling schemes, such as the multinomial, stratified and systematic
schemes, is a cumulative sum of weights, also called a prefix sum. A major theme of prior contributions
has been the parallelisation of this prefix sum (Maskell et al., 2006; Hendeby et al., 2010; Chao et al.,
2010; Gong et al., 2012). This is a generic problem that is also relevant to other algorithms (see e.g.
Harris et al., 2007). Another theme in prior work is the partitioning of particles into disjoint subsets
within which local resampling is performed (Chao et al., 2010). This is more useful in a distributed
memory context, as it limits communication between processes (Whiteley et al., 2013); it has been
considered in this context before (Brun et al., 2002; Bolić et al., 2005). General comments regarding the
parallelisability of particle filtering algorithms are given in Lee et al. (2010) and Murray (2013).

1.3 Numerical precision and stability

As demonstrated later in this work, numerical instabilities can be apparent in standard resampling
schemes when N is large. One million particles is not an unrealistic number for some contemporary
applications of SMC (see e.g. Klaas et al., 2006; Kitagawa, 2014). In double-precision, where 15 significant
figures (in decimal) are expected, it is unlikely that N will be sufficiently large for numerical instability
to be a problem in current applications. In single-precision, however, where 8 significant figures (in
decimal) are expected, numerical instabilities can manifest with this many particles. This is important
because contemporary hardware has significantly faster single-precision than double-precision floating-
point performance. There is reason to believe that this gap will remain; consider, for example, that single-
precision is twice as fast on CPU architectures—even reasonably mature architectures—when SIMD

3

 0

(a) Multinomial

 0

(b) Stratified

 0

(c) Systematic

 0

(d) Metropolis

 0

(e) Rejection

Figure 1: Visualisation of the resampling algorithms considered. Arcs along the perimeter of the circles
represent particles by weight, solid arrows indicate selected particles and are positioned (a) uniformly
randomly in the multinomial resampler, (b & c) by evenly slicing the circle into strata (dashed lines) and
randomly selecting an offset into each stratum (stratified resampler) or using the same offset (systematic
resampler), (d) by initialising multiple Markov chains (dashed arrows) and simulating to convergence
in the Metropolis resampler, or (e) by rejection sampling. The outputs of multinomial, Metropolis and
rejection resamplers follow the same distribution (represented by identical solid arrows).

One common approach is to draw ot according to a multinomial distribution with parameters N and
wt−1 (multinomial resampling). We will consider alternative strategies below, including some opportuni-
ties to relax the unbiasedness condition in exchange for a significant reduction in execution time. Figure
1 visualises both standard and alternative approaches.

1.2 Parallelisation

The initialisation, propagation and weighting steps of SMC are readily parallelised, being independent
operations on each particle xit and its weight wit. Resampling, on the other hand, is a collective operation
across particles and weights, so that parallelisation is more difficult. Summing the N weights necessitates
synchronization across threads, so that some threads may wastefully idle while waiting on others. For
certain hardware that does not permit global communication between concurrently running threads, such
as graphics processing units (GPUs), the elimination of collective operations can yield significant speed
up. For this reason the resampling step has attracted recent attention as a potential bottleneck in the
further scaling of SMC to larger systems (Murray, 2011; Whiteley et al., 2013).

At the core of most standard resampling schemes, such as the multinomial, stratified and systematic
schemes, is a cumulative sum of weights, also called a prefix sum. A major theme of prior contributions
has been the parallelisation of this prefix sum (Maskell et al., 2006; Hendeby et al., 2010; Chao et al.,
2010; Gong et al., 2012). This is a generic problem that is also relevant to other algorithms (see e.g.
Harris et al., 2007). Another theme in prior work is the partitioning of particles into disjoint subsets
within which local resampling is performed (Chao et al., 2010). This is more useful in a distributed
memory context, as it limits communication between processes (Whiteley et al., 2013); it has been
considered in this context before (Brun et al., 2002; Bolić et al., 2005). General comments regarding the
parallelisability of particle filtering algorithms are given in Lee et al. (2010) and Murray (2013).

1.3 Numerical precision and stability

As demonstrated later in this work, numerical instabilities can be apparent in standard resampling
schemes when N is large. One million particles is not an unrealistic number for some contemporary
applications of SMC (see e.g. Klaas et al., 2006; Kitagawa, 2014). In double-precision, where 15 significant
figures (in decimal) are expected, it is unlikely that N will be sufficiently large for numerical instability
to be a problem in current applications. In single-precision, however, where 8 significant figures (in
decimal) are expected, numerical instabilities can manifest with this many particles. This is important
because contemporary hardware has significantly faster single-precision than double-precision floating-
point performance. There is reason to believe that this gap will remain; consider, for example, that single-
precision is twice as fast on CPU architectures—even reasonably mature architectures—when SIMD

3

 0

(a) Multinomial

 0

(b) Stratified

 0

(c) Systematic

 0

(d) Metropolis

 0

(e) Rejection

Figure 1: Visualisation of the resampling algorithms considered. Arcs along the perimeter of the circles
represent particles by weight, solid arrows indicate selected particles and are positioned (a) uniformly
randomly in the multinomial resampler, (b & c) by evenly slicing the circle into strata (dashed lines) and
randomly selecting an offset into each stratum (stratified resampler) or using the same offset (systematic
resampler), (d) by initialising multiple Markov chains (dashed arrows) and simulating to convergence
in the Metropolis resampler, or (e) by rejection sampling. The outputs of multinomial, Metropolis and
rejection resamplers follow the same distribution (represented by identical solid arrows).

One common approach is to draw ot according to a multinomial distribution with parameters N and
wt−1 (multinomial resampling). We will consider alternative strategies below, including some opportuni-
ties to relax the unbiasedness condition in exchange for a significant reduction in execution time. Figure
1 visualises both standard and alternative approaches.

1.2 Parallelisation

The initialisation, propagation and weighting steps of SMC are readily parallelised, being independent
operations on each particle xit and its weight wit. Resampling, on the other hand, is a collective operation
across particles and weights, so that parallelisation is more difficult. Summing the N weights necessitates
synchronization across threads, so that some threads may wastefully idle while waiting on others. For
certain hardware that does not permit global communication between concurrently running threads, such
as graphics processing units (GPUs), the elimination of collective operations can yield significant speed
up. For this reason the resampling step has attracted recent attention as a potential bottleneck in the
further scaling of SMC to larger systems (Murray, 2011; Whiteley et al., 2013).

At the core of most standard resampling schemes, such as the multinomial, stratified and systematic
schemes, is a cumulative sum of weights, also called a prefix sum. A major theme of prior contributions
has been the parallelisation of this prefix sum (Maskell et al., 2006; Hendeby et al., 2010; Chao et al.,
2010; Gong et al., 2012). This is a generic problem that is also relevant to other algorithms (see e.g.
Harris et al., 2007). Another theme in prior work is the partitioning of particles into disjoint subsets
within which local resampling is performed (Chao et al., 2010). This is more useful in a distributed
memory context, as it limits communication between processes (Whiteley et al., 2013); it has been
considered in this context before (Brun et al., 2002; Bolić et al., 2005). General comments regarding the
parallelisability of particle filtering algorithms are given in Lee et al. (2010) and Murray (2013).

1.3 Numerical precision and stability

As demonstrated later in this work, numerical instabilities can be apparent in standard resampling
schemes when N is large. One million particles is not an unrealistic number for some contemporary
applications of SMC (see e.g. Klaas et al., 2006; Kitagawa, 2014). In double-precision, where 15 significant
figures (in decimal) are expected, it is unlikely that N will be sufficiently large for numerical instability
to be a problem in current applications. In single-precision, however, where 8 significant figures (in
decimal) are expected, numerical instabilities can manifest with this many particles. This is important
because contemporary hardware has significantly faster single-precision than double-precision floating-
point performance. There is reason to believe that this gap will remain; consider, for example, that single-
precision is twice as fast on CPU architectures—even reasonably mature architectures—when SIMD

3

Multinomial Stratified

Systematic

Divide the circle into strata (grey dashed lines).

Stratified resampling randomly selects 1 sample from each strata.

Systematic resampling randomly generates 1 offset and then it picks
one sample from each strata using this offset. N.B. There are some
(pathological) cases when it can perform worse than simple
multinomial sampling.

Figures borrowed from the paper L.M. Murray, A. Lee and P.E. Jacob (2016). Parallel resampling in the particle filter. Journal of
Computational and Graphical Statistics. 25(3):789–805, 2016.

17/23

Alternative implementations of resampling

 0

(a) Multinomial

 0

(b) Stratified

 0

(c) Systematic

 0

(d) Metropolis

 0

(e) Rejection

Figure 1: Visualisation of the resampling algorithms considered. Arcs along the perimeter of the circles
represent particles by weight, solid arrows indicate selected particles and are positioned (a) uniformly
randomly in the multinomial resampler, (b & c) by evenly slicing the circle into strata (dashed lines) and
randomly selecting an offset into each stratum (stratified resampler) or using the same offset (systematic
resampler), (d) by initialising multiple Markov chains (dashed arrows) and simulating to convergence
in the Metropolis resampler, or (e) by rejection sampling. The outputs of multinomial, Metropolis and
rejection resamplers follow the same distribution (represented by identical solid arrows).

One common approach is to draw ot according to a multinomial distribution with parameters N and
wt−1 (multinomial resampling). We will consider alternative strategies below, including some opportuni-
ties to relax the unbiasedness condition in exchange for a significant reduction in execution time. Figure
1 visualises both standard and alternative approaches.

1.2 Parallelisation

The initialisation, propagation and weighting steps of SMC are readily parallelised, being independent
operations on each particle xit and its weight wit. Resampling, on the other hand, is a collective operation
across particles and weights, so that parallelisation is more difficult. Summing the N weights necessitates
synchronization across threads, so that some threads may wastefully idle while waiting on others. For
certain hardware that does not permit global communication between concurrently running threads, such
as graphics processing units (GPUs), the elimination of collective operations can yield significant speed
up. For this reason the resampling step has attracted recent attention as a potential bottleneck in the
further scaling of SMC to larger systems (Murray, 2011; Whiteley et al., 2013).

At the core of most standard resampling schemes, such as the multinomial, stratified and systematic
schemes, is a cumulative sum of weights, also called a prefix sum. A major theme of prior contributions
has been the parallelisation of this prefix sum (Maskell et al., 2006; Hendeby et al., 2010; Chao et al.,
2010; Gong et al., 2012). This is a generic problem that is also relevant to other algorithms (see e.g.
Harris et al., 2007). Another theme in prior work is the partitioning of particles into disjoint subsets
within which local resampling is performed (Chao et al., 2010). This is more useful in a distributed
memory context, as it limits communication between processes (Whiteley et al., 2013); it has been
considered in this context before (Brun et al., 2002; Bolić et al., 2005). General comments regarding the
parallelisability of particle filtering algorithms are given in Lee et al. (2010) and Murray (2013).

1.3 Numerical precision and stability

As demonstrated later in this work, numerical instabilities can be apparent in standard resampling
schemes when N is large. One million particles is not an unrealistic number for some contemporary
applications of SMC (see e.g. Klaas et al., 2006; Kitagawa, 2014). In double-precision, where 15 significant
figures (in decimal) are expected, it is unlikely that N will be sufficiently large for numerical instability
to be a problem in current applications. In single-precision, however, where 8 significant figures (in
decimal) are expected, numerical instabilities can manifest with this many particles. This is important
because contemporary hardware has significantly faster single-precision than double-precision floating-
point performance. There is reason to believe that this gap will remain; consider, for example, that single-
precision is twice as fast on CPU architectures—even reasonably mature architectures—when SIMD

3

 0

(a) Multinomial

 0

(b) Stratified

 0

(c) Systematic

 0

(d) Metropolis

 0

(e) Rejection

Figure 1: Visualisation of the resampling algorithms considered. Arcs along the perimeter of the circles
represent particles by weight, solid arrows indicate selected particles and are positioned (a) uniformly
randomly in the multinomial resampler, (b & c) by evenly slicing the circle into strata (dashed lines) and
randomly selecting an offset into each stratum (stratified resampler) or using the same offset (systematic
resampler), (d) by initialising multiple Markov chains (dashed arrows) and simulating to convergence
in the Metropolis resampler, or (e) by rejection sampling. The outputs of multinomial, Metropolis and
rejection resamplers follow the same distribution (represented by identical solid arrows).

One common approach is to draw ot according to a multinomial distribution with parameters N and
wt−1 (multinomial resampling). We will consider alternative strategies below, including some opportuni-
ties to relax the unbiasedness condition in exchange for a significant reduction in execution time. Figure
1 visualises both standard and alternative approaches.

1.2 Parallelisation

The initialisation, propagation and weighting steps of SMC are readily parallelised, being independent
operations on each particle xit and its weight wit. Resampling, on the other hand, is a collective operation
across particles and weights, so that parallelisation is more difficult. Summing the N weights necessitates
synchronization across threads, so that some threads may wastefully idle while waiting on others. For
certain hardware that does not permit global communication between concurrently running threads, such
as graphics processing units (GPUs), the elimination of collective operations can yield significant speed
up. For this reason the resampling step has attracted recent attention as a potential bottleneck in the
further scaling of SMC to larger systems (Murray, 2011; Whiteley et al., 2013).

At the core of most standard resampling schemes, such as the multinomial, stratified and systematic
schemes, is a cumulative sum of weights, also called a prefix sum. A major theme of prior contributions
has been the parallelisation of this prefix sum (Maskell et al., 2006; Hendeby et al., 2010; Chao et al.,
2010; Gong et al., 2012). This is a generic problem that is also relevant to other algorithms (see e.g.
Harris et al., 2007). Another theme in prior work is the partitioning of particles into disjoint subsets
within which local resampling is performed (Chao et al., 2010). This is more useful in a distributed
memory context, as it limits communication between processes (Whiteley et al., 2013); it has been
considered in this context before (Brun et al., 2002; Bolić et al., 2005). General comments regarding the
parallelisability of particle filtering algorithms are given in Lee et al. (2010) and Murray (2013).

1.3 Numerical precision and stability

As demonstrated later in this work, numerical instabilities can be apparent in standard resampling
schemes when N is large. One million particles is not an unrealistic number for some contemporary
applications of SMC (see e.g. Klaas et al., 2006; Kitagawa, 2014). In double-precision, where 15 significant
figures (in decimal) are expected, it is unlikely that N will be sufficiently large for numerical instability
to be a problem in current applications. In single-precision, however, where 8 significant figures (in
decimal) are expected, numerical instabilities can manifest with this many particles. This is important
because contemporary hardware has significantly faster single-precision than double-precision floating-
point performance. There is reason to believe that this gap will remain; consider, for example, that single-
precision is twice as fast on CPU architectures—even reasonably mature architectures—when SIMD

3

 0

(a) Multinomial

 0

(b) Stratified

 0

(c) Systematic

 0

(d) Metropolis

 0

(e) Rejection

Figure 1: Visualisation of the resampling algorithms considered. Arcs along the perimeter of the circles
represent particles by weight, solid arrows indicate selected particles and are positioned (a) uniformly
randomly in the multinomial resampler, (b & c) by evenly slicing the circle into strata (dashed lines) and
randomly selecting an offset into each stratum (stratified resampler) or using the same offset (systematic
resampler), (d) by initialising multiple Markov chains (dashed arrows) and simulating to convergence
in the Metropolis resampler, or (e) by rejection sampling. The outputs of multinomial, Metropolis and
rejection resamplers follow the same distribution (represented by identical solid arrows).

One common approach is to draw ot according to a multinomial distribution with parameters N and
wt−1 (multinomial resampling). We will consider alternative strategies below, including some opportuni-
ties to relax the unbiasedness condition in exchange for a significant reduction in execution time. Figure
1 visualises both standard and alternative approaches.

1.2 Parallelisation

The initialisation, propagation and weighting steps of SMC are readily parallelised, being independent
operations on each particle xit and its weight wit. Resampling, on the other hand, is a collective operation
across particles and weights, so that parallelisation is more difficult. Summing the N weights necessitates
synchronization across threads, so that some threads may wastefully idle while waiting on others. For
certain hardware that does not permit global communication between concurrently running threads, such
as graphics processing units (GPUs), the elimination of collective operations can yield significant speed
up. For this reason the resampling step has attracted recent attention as a potential bottleneck in the
further scaling of SMC to larger systems (Murray, 2011; Whiteley et al., 2013).

At the core of most standard resampling schemes, such as the multinomial, stratified and systematic
schemes, is a cumulative sum of weights, also called a prefix sum. A major theme of prior contributions
has been the parallelisation of this prefix sum (Maskell et al., 2006; Hendeby et al., 2010; Chao et al.,
2010; Gong et al., 2012). This is a generic problem that is also relevant to other algorithms (see e.g.
Harris et al., 2007). Another theme in prior work is the partitioning of particles into disjoint subsets
within which local resampling is performed (Chao et al., 2010). This is more useful in a distributed
memory context, as it limits communication between processes (Whiteley et al., 2013); it has been
considered in this context before (Brun et al., 2002; Bolić et al., 2005). General comments regarding the
parallelisability of particle filtering algorithms are given in Lee et al. (2010) and Murray (2013).

1.3 Numerical precision and stability

As demonstrated later in this work, numerical instabilities can be apparent in standard resampling
schemes when N is large. One million particles is not an unrealistic number for some contemporary
applications of SMC (see e.g. Klaas et al., 2006; Kitagawa, 2014). In double-precision, where 15 significant
figures (in decimal) are expected, it is unlikely that N will be sufficiently large for numerical instability
to be a problem in current applications. In single-precision, however, where 8 significant figures (in
decimal) are expected, numerical instabilities can manifest with this many particles. This is important
because contemporary hardware has significantly faster single-precision than double-precision floating-
point performance. There is reason to believe that this gap will remain; consider, for example, that single-
precision is twice as fast on CPU architectures—even reasonably mature architectures—when SIMD

3

Multinomial Stratified Systematic

Divide the circle into strata (grey dashed lines).

Stratified resampling randomly selects 1 sample from each strata.

Systematic resampling randomly generates 1 offset and then it picks
one sample from each strata using this offset. N.B. There are some
(pathological) cases when it can perform worse than simple
multinomial sampling.

Figures borrowed from the paper L.M. Murray, A. Lee and P.E. Jacob (2016). Parallel resampling in the particle filter. Journal of
Computational and Graphical Statistics. 25(3):789–805, 2016.

17/23

Residual resampling

Alternatively, create ⌊Nwi⌋ deterministic copies of particle i.

We then sample the remaining N−
∑N

i=1⌊Nwi⌋ particles by applying
any resampling scheme (e.g. stratified) to the residuals, i.e. we use
weights

Nwi − ⌊Nwi⌋
N−

∑N
j=1⌊Nwj⌋

for the resampling.

18/23

Mitigating the path degeneracy problem

Path degeneracy can mitigated by backward simulation (results in
particle smoothers).

Fredrik Lindsten and Thomas B. Schön. Backward simulation methods for Monte Carlo statistical inference. Foundations and Trends
in Machine Learning, 6(1):1-143, 2013.

Particle MCMC algorithms (lectures 11–14) can be used to tackle the
path degeneracy issue and solve the state smoothing problem
(jointly with inferring unknown model parameters).

Christophe Andrieu, Arnaud Doucet and Roman Holenstein. Particle Markov chain Monte Carlo methods. Journal of the Royal Statis-
tical Society: Series B, 72:269-342, 2010.

19/23

Mitigating the path degeneracy problem

Path degeneracy can mitigated by backward simulation (results in
particle smoothers).

Fredrik Lindsten and Thomas B. Schön. Backward simulation methods for Monte Carlo statistical inference. Foundations and Trends
in Machine Learning, 6(1):1-143, 2013.

Particle MCMC algorithms (lectures 11–14) can be used to tackle the
path degeneracy issue and solve the state smoothing problem
(jointly with inferring unknown model parameters).

Christophe Andrieu, Arnaud Doucet and Roman Holenstein. Particle Markov chain Monte Carlo methods. Journal of the Royal Statis-
tical Society: Series B, 72:269-342, 2010.

19/23

Fixed-lag smoother

In estimating the fixed-lag smoothing density p(xt−l+1:t | y1:t) for some
small l > 1 we can make use of

p̂(xt−l+1:t | y1:t) =
N∑
i=1

witδxit−l+1:t
(xt−l+1:t),

where the particle system comes from a particle filter targeting the
joint filtering density.

If l is taken too large we activate the path degeneracy problem to
such a degree that it will not work.

20/23

Parameter inference in SSMs

Nonlinear state space model

Xt = f(Xt−1, θ) + Vt,
Yt = g(Xt, θ) + Et,
X0 ∼ p(x0 | θ).

Xt | (Xt−1 = xt−1, θ = θ) ∼ p(xt | xt−1, θ),
Yt | (Xt = xt, θ = θ) ∼ p(yt | xt, θ),

X0 ∼ p(x0 | θ).

Two different parameter inference formulations differing in the way
the unknown parameters θ are modelled:

• Maximum likelihood: θ modelled as deterministic.
• Bayesian: θ modelled as stochastic.

21/23

Central object – data distribution/likelihood

The data distribution can be computed by marginalizing

p(x0:T, y1:T | θ) =
T∏
t=1

p(yt | xt, θ)
T∏
t=1

p(xt | xt−1, θ)p(x0 | θ)

w.r.t. the state trajectory x0:T

p(y1:T | θ) =
∫
p(x0:T, y1:T | θ)dx0:T.

Average over all possible values for the state trajectory x0:T.

Alternative way of performing the averaging:

p(y1:T | θ) =
T∏
t=1

p(yt | y1:t−1, θ) =
T∏
t=1

∫
p(yt | xt, θ)p(xt | y1:t−1, θ)︸ ︷︷ ︸

approx. by PF

dxt

22/23

Central object – data distribution/likelihood

The data distribution can be computed by marginalizing

p(x0:T, y1:T | θ) =
T∏
t=1

p(yt | xt, θ)
T∏
t=1

p(xt | xt−1, θ)p(x0 | θ)

w.r.t. the state trajectory x0:T

p(y1:T | θ) =
∫
p(x0:T, y1:T | θ)dx0:T.

Average over all possible values for the state trajectory x0:T.

Alternative way of performing the averaging:

p(y1:T | θ) =
T∏
t=1

p(yt | y1:t−1, θ) =
T∏
t=1

∫
p(yt | xt, θ)p(xt | y1:t−1, θ)︸ ︷︷ ︸

approx. by PF

dxt

22/23

Central object – data distribution/likelihood

The data distribution can be computed by marginalizing

p(x0:T, y1:T | θ) =
T∏
t=1

p(yt | xt, θ)
T∏
t=1

p(xt | xt−1, θ)p(x0 | θ)

w.r.t. the state trajectory x0:T

p(y1:T | θ) =
∫
p(x0:T, y1:T | θ)dx0:T.

Average over all possible values for the state trajectory x0:T.

Alternative way of performing the averaging:

p(y1:T | θ) =
T∏
t=1

p(yt | y1:t−1, θ) =
T∏
t=1

∫
p(yt | xt, θ)p(xt | y1:t−1, θ)︸ ︷︷ ︸

approx. by PF

dxt

22/23

A few concepts to summarize lecture 8

Ancestral path: By starting from a particle xit at time t and tracing its ancestors backwards in time
via the ancestor indices we obtain xi0:t , which is the ancestral path for particle x

i
t .

Path degeneracy: The resampling step will by construction result in that for any time s there exists
a time t > s such that the PF approximation p̂(x0:t | y1:t) consists of a single particle at time s.

Effective sample size (ESS): An importance sampling diagnostics tool that tells us when our
weights are problematic in the sense that they are close to being degenerate, i.e. it provides a way
of gauging the extent of the weight degeneracy.

Backward simulation: Generates samples backwards in time. When backward sampling can be
implemented it removes the path degeneracy problem (only possible in off-line situations).

Likelihood function: Deterministic function of θ obtained by inserting the available
measurements into the data distribution.

23/23

	Path degeneracy
	Mitigating path degeneracy
	Parameter inference in SSMs

	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

