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Outline – Lecture 7

Aim: Illustrate the use of “locally optimal” proposals in the auxiliary
particle filter (= fully adapted PF)

Outline:

1. Locally optimal proposals
2. When can they be computed?
3. Numerical illustration of fully adapted PF
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Fully adapted particle filter



Locally optimal proposals

Recall, auxiliary particle filter

Joint target ∝ watt−1p(yt | xt)p(xt | x
at
t−1)

Joint proposal = νatt−1q(xt | x
at
t−1, yt)

Possible to match term by term?

No! — to set proposal = target we
first need to normalize the target distribution.
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Locally optimal proposals

With the choices

Resampling weights: ν it−1 ∝ wit−1 p(yt | xit−1), i = 1, . . . , N
Propagation proposal: q(xt | xt−1, yt) = p(xt | xt−1, yt)

we are effectively sampling from the joint target for (Xt,At).

=⇒

w̃it =
wa

i
t
t−1

ν
ait
t−1

p(yt | xit)p(xit | x
ait
t−1)

q(xit | x
ait
t−1, yt)

= const. =⇒ wit =
1
N , i = 1, . . . , N

Referred to as the fully adapted particle filter (FAPF)
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Locally optimal proposals

Bootstrap particle filter

Fully adapted particle filter
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Weighting Resampling Propagation Weighting Resampling

wit−1 p(xt | xa
i
t
t−1) p(yt | xit)

yt

Weighting Resampling Propagation Weighting Resampling

p(yt | xit−1) p(xt | xa
i
t
t−1, yt)

1
N

yt



ex) ARCH model

ex) 1st order autoregressive conditional heteroskedasticity (ARCH)
model:

Xt =
√
1+ 0.5X2t−1Vt, Vt ∼ N (0, 1),

Yt = Xt + Et, Et ∼ N (0, r).

We simulate a data set and compare the bootstrap particle filter
with the fully adapted particle filter, both using N = 100 particles.

Evaluation criteria: Estimator variance for the test function φ(xt) =
xt, t = 1, . . . , 100.
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ex) ARCH model

Data set with r = 1

0 20 40 60 80 100

Time step
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Bootstrap PF
Fully adapted PF
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ex) ARCH model

Data set with r = 0.1 (high signal-to-noise ratio)

0 20 40 60 80 100

Time step

10-4

10-3

10-2

10-1

100
E

st
im

at
or

 v
ar

ia
nc

e
Bootstrap PF
Fully adapted PF

6/10



ex) ARCH model

Data set with r = 10 (low signal-to-noise ratio)
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Partially adapted particle filter



Partial adaptation

Non-conjugate models: approximate p̄(xt | xt−1, yt) ≈ p(xt | xt−1, yt)
and p̄(yt | xt−1) ≈ p(yt | xt−1). E.g., local linearization, variational
approximation, …

Approximate model used only to define the proposal!

Care needs to be taken so that the approximations are suitable to
use as importance sampling proposals. (Heavier tails than target.)
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A few concepts to summarize lecture 7

Locally optimal proposals: Proposals that take all the available
information in the current measurement yt into account.

Fully adapted particle filter: An auxiliary variable that use locally
optimal proposals both for the ancestor indices (auxiliary variables)
and for the state variable.

Partially adapted particle filter: An auxiliary particle filter that uses
some suboptimal proposals (e.g. an approximation of the locally
optimal ones) which still take the current measurement yt into
account.
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