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Outline – Lecture 6

Aim: Show how we can improve the proposals for the particle filter
by using auxiliary variables.

Outline:

1. Summary of day 1
2. Auxiliary variables
3. Ancestor indices as auxiliary variables
4. Improving the proposal distributions
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Summary of day 1

A state space model can be expressed using probability densities as.

Xt | (Xt−1 = xt−1) ∼ p(xt | xt−1),
Yt | (Xt = xt) ∼ p(yt | xt),

X0 ∼ p(x0).

The filtering problem amounts to computing the filter PDF p(xt | y1:t).

Solution conceptually given by,

p(xt | y1:t) =
p(yt | xt)p(xt | y1:t−1)

p(yt | y1:t−1)
,

p(xt | y1:t−1) =
∫
p(xt | xt−1)p(xt−1 | y1:t−1)dxt−1.

2/11



Summary of day 1

Monte Carlo: approximate an unknown distribution of interest by

π(x) ≈ π̂N(x) =
N∑
i=1

wiδxi(x).

Importance sampling: For i = 1, . . . , N,

1. Sample xi ∼ q(x),
2. Compute w̃i = π̃(xi)/q(xi),
3. Normalize wi = w̃i∑N

j=1 w̃i
.
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Summary of day 1

Bootstrap particle filter: sequentially using importance sampling to
approximate the filter update equations, with proposal distribution
at time t given by

q(xt | y1:t) =
∑N

i=1 wit−1p(xt | xit−1).

The resulting importance weights are,

w̃it = p(yt | xit).

1. Resample particles according to their importance weights
2. Simulate new particles according to the system dynamics
3. Compute weights according to the measurement likelihood

Under forgetting conditions, errors do not accumulate unboundedly
with time — the bootstrap particle filter is stable
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Auxiliary variables

Target distribution: π(x), difficult to sample from
Idea: Introduce another variable U with conditional distribution π(u | x)

The joint distribution π(x,u) = π(u | x)π(x) admits π(x) as amarginal
by construction, i.e.,

∫
π(x,u)du = π(x).

Sampling from the joint π(x,u)may be easier than directly sampling
from the marginal π(x)!

The variable U is an auxiliary variable. It may have some “physical”
interpretation (an unobserved measurement, unknown model
parameter, …) but this is not necessary.
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ex) Auxiliary variables

Importance sampling setting with target π(x) and proposal q(x). We
assume π̃(x) ≤ q(x).

To sample from π(x), introduce an auxiliary variable

U | (X = x) ∼ U(0, π̃(x)).

Joint target: π(u, x) = π(u | x)π(x) = U(u | 0, π̃(x))π(x)
Joint proposal: q(u, x) = q(u | x)q(x) = U(u | 0,q(x))q(x)

The weights are,
U(u | 0, π̃(x))
U(u | 0,q(x))

π̃(x)
q(x) = 1(u ≤ π̃(x))q(x)

π̃(x)
π̃(x)
q(x) = 1(u ≤ π̃(x))

In fact, conditionally on w̃i = 1, a sample xi is an exact draw from
π(x) — referred to as rejection sampling.
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Auxiliary particle filter



Sampling from the joint proposal

Sampling from the joint proposal q(xt,at | y1:t) = νatt−1q(xt | x
at
t−1, yt):

1. Sample the auxiliary variable (resampling),

ait ∼ C({ν jt−1}
N
j=1).

2. Sample xt conditionally on the auxiliary variable (propagation),

xit ∼ q(xt | xa
i
t
t−1, yt).

Repeat N times for i = 1, . . . , N.

Algorithmically, sampling from the proposal is done exactly in the
same way as before!
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Computing the weights

The importance weights are given by the ratio between the joint
target and joint proposal,

w̃it =
wa

i
t
t−1

ν
ait
t−1

p(yt | xit)p(xit | x
ait
t−1)

q(xit | x
ait
t−1, yt)

, i = 1, . . . , N.

The weights can be computed in O(N) computational time for quite
arbitrary choices of {ν it−1}Ni=1 and q(·).

Note that the resampling weights {ν it−1}Ni=1

• can be different from the importance weights {wit−1}Ni=1,
• may depend on {xit−1}Ni=1 as well as on yt.
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Auxiliary particle filter

Algorithm 1 Auxiliary particle filter (for i = 1, . . . , N)

1. Initialization (t = 0):
(a) Sample xi0 ∼ p(x0).

(b) Set initial weights: wi0 = 1/N.
2. for t = 1 to T do

(a) Resample: sample ancestor indices ait ∼ C({ν jt−1}
N
j=1).

(b) Propagate: sample xit ∼ q(xt | xa
i
t
t−1, yt).

(c) Weight: compute

w̃it =
wa

i
t
t−1

ν
ait
t−1

p(yt | xit)p(xit | x
ait
t−1)

q(xit | x
ait
t−1, yt)

and normalize wit = w̃it/
∑N

j=1 w̃
j
t.
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Selecting the proposals



How do we select the proposals?

There is freedom in selecting the resampling weights {ν it−1}Ni=1 and
proposal q(·). How are they chosen in practice?!

With ν it−1 = wit−1 and q(xt | xt−1, yt) = p(xt | xt−1) we recover exactly
the bootstrap particle filter.

Is it possible to select the proposals so that wit ≡ 1
N?
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A few concepts to summarize lecture 6

Auxiliary variable: a variable by which the target distribution is
extended to improve efficiency or enable sampling from the target.

Ancestor index: auxiliary variable used in the particle filter,
representing one of the components in the mixture target
distribution.

Auxiliary particle filter: particle filter explicitly using the ancestor
indices as auxiliary variables.
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