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Outline – Lecture 5

Aim: Provide some insight into the convergence and stability of the
bootstrap particle filter.

Outline:

1. Central limit theorem for importance sampling
2. Central limit theorem for the bootstrap particle filter
3. Stability — key difference between the two
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CLT for importance sampling



Importance sampling

Importance sampling,
Target: π(x)
Proposal: q(x)
Weight function: ω(x) = π(x)

q(x)

Procedure (for i = 1, . . . , N)
1. Sample xi ∼ q(x),
2. Compute w̃i = ω(xi),
3. Normalize wi = w̃i∑N

j=1 w̃i
.

N.B. Here, we define ω in terms of the normalized target – no differ-
ence algorithmically but simplifies analysis.
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Importance sampling bias

Importance sampling estimate of I(ϕ) =
∫
ϕ(x)π(x)dx is

ÎISN (ϕ) =
N∑
i=1

ω(xi)∑N
j=1 ω(xj)

ϕ(xi) =

1
N

∑N
i=1 ω(xi)ϕ(xi)

1
N

∑N
j=1 ω(xj)

Define g(x) = ω(x)ϕ(x) and let ḡ and ω̄ be the samples means of the
respective functions

⇒ ÎISN (ϕ) =
ḡ
ω̄

Both ḡ and ω̄ are vanilla Monte Carlo estimators, standard SLLN and
CLTs hold for them

E[ḡ] = Eq[g(X)] =
∫

π(x)
q(x)

ϕ(x)q(x)dx = I(ϕ)

E[ω̄] = Eq[ω(X)] =
∫

π(x)
q(x)

q(x)dx = 1.
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Importance sampling bias

Consider a Taylor expansion of 1
ω̄ around its mean of 1.

ÎISN (ϕ) =
ḡ
ω̄

= ḡ{1− (ω̄ − 1) + (ω̄ − 1)2 − . . .}

= (ḡ− I(ϕ) + I(ϕ)){1− (ω̄ − 1) + (ω̄ − 1)2 − . . .}
= (ḡ− I(ϕ)){1− (ω̄ − 1) + (ω̄ − 1)2 − . . .}
+ I(ϕ){1− (ω̄ − 1) + (ω̄ − 1)2 − . . .}
= I(ϕ) + (ḡ− I(ϕ))− I(ϕ)(ω̄ − 1)− (ḡ− I(ϕ))(ω̄ − 1) + I(ϕ)(ω̄ − 1)2 + . . .

Take the expected value of both sides and we get

E
[̂
IISN (ϕ)

]
= I(ϕ)− Cov[ḡ, ω̄] + I(ϕ) Var[ω̄] + higher order terms
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Importance sampling bias

Going back to g and ω we have,

E
[̂
IISN (ϕ)

]
= I(ϕ)− Covq[g(X), ω(X)]

N
+
I(ϕ) Varq[ω(X)]

N
+ O

(
1
N2

)

Thus, the bias in the importance sampling estimator, for large N, is

E
[̂
IISN (ϕ)

]
− I(ϕ)

≈ −
Covq[g(X), ω(X)]

N
+
I(ϕ) Varq[ω(X)]

N

= · · · = − 1
N

∫
π(x)2

q(x)
(ϕ(x)− I(ϕ))dx
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Importance sampling bias and variance

Importance sampling bias (large N):

E
[̂
IISN (ϕ)

]
− I(ϕ) ≈ − 1

N

∫
π(x)2

q(x)
(ϕ(x)− I(ϕ))dx

Importance sampling variance (large N):

Var
[̂
IISN (ϕ)

]
≈ 1
N

∫
π(x)2

q(x)
(ϕ(x)− I(ϕ))2dx

Mean-squared error = bias2 + variance — Dominated by variance!
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CLT for importance sampling

Asymptotically, as N→ ∞,

Central limit theorem (CLT) for importance sampler

√
N
( N∑

i=1

Wiϕ(Xi)− I(ϕ)
)

d−→ N
(
0,
∫

π(x)2

q(x)
(ϕ(x)− I(ϕ))2dx

)
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Importance sampling for filtering

Importance sampling for π(x0:t) = p(x0:t | y1:t), where

p(x0:t | y1:t)︸ ︷︷ ︸
target

=

unnormalized target︷ ︸︸ ︷
p(x0:t, y1:t)
p(y1:t)︸ ︷︷ ︸

normalization

∝ p(y1:t | x0:t)p(x0:t)

Procedure: (for i = 1, . . . , N)

1. Generate xi0:t ∼ p(x0:t) by simulating the system dynamics
2. Compute weights w̃it = p(y1:t | xi0:t) and normalize⇒ wit
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ex) Importance sampling for filtering

ex) Very simple state space model where the states are independent
over time (no dynamics),

Xt ∼ N (0, 1), t = 0, 1, . . . ,
Yt | (Xt = xt) ∼ N (xt, σ2), t = 1, 2, . . .

Asymptotic variance of importance sampler at time t is,{ t−1∏
k=0

∫ p(xk | yk)2

p(xk)
dxk

}∫ p(xt | yt)2

p(xt)
(ϕ(xt)− It(ϕ))2dxt
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Time step (t)
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CLT for bootstrap particle filter



CLT for bootstrap particle filter

Test function: It(ϕ) = E[ϕ(Xt) | y1:t].

Theorem: CLT for bootstrap particle filter

√
N
( N∑

i=1

Wi
tϕ(Xit)− It(ϕ)

)
d−→ N (0, Vt(ϕ))

with

Vt(ϕ) =
t∑

k=0

∫ p(xk | y1:t)2

p(xk | y1:k−1)
(
Ik,t(ϕ | xk)− It(ϕ)

)2 dxk
and

Ik,t(ϕ | xk) = E[ϕ(Xt) | yk+1:t, xk]
k<t
=

∫
ϕ(xt)p(xt | xk, yk+1:t)dxt.
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ex) Very simple model, cont’d

Simple model with Xt ∼ N (0, 1), independent over time.

Ik,t(ϕ | xk) = E[ϕ(Xt) | yk+1:t, xk] =
{
E[ϕ(Xt) | yt] k < t,
ϕ(xt) k = t,

It follows that all terms k < t in the definition of Vt(ϕ) are zero!

0 2 4 6 8 10

Time step (t)
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Particle filter stability

Often the distant past has little effect on the future (and vice versa)
— referred to as forgetting

Exponential forgetting of exact filter:
1
2

∫
|p(xt | xk, yk+1:t)− p(xt | x′k, yk+1:t)|dxt ≤ ρt−k

Furthermore, it often holds that,
p(xk | y1:t)2

p(xk | y1:k−1)
≤ A

Thus, for bounded |ϕ| < B, it holds that Vt(ϕ) ≤ C, independent of t!

The bootstrap particle filter is stable, in the sense that the estimator
variance does not increase (unboundedly) with t.
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Proof sketch



Three steps of the approximation

∑N
i=1 wit−1ϕ(xit−1) approximates E[ϕ(Xt−1) | y1:t−1]

Resampling: ait ∼ Discrete({wjt−1}Nj=1)

Propagation: xit ∼ p(xt | x
ait
t−1)

Weighting: w̃it = p(yt | xit) and normalize⇒ wit
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Inductive proof idea (I/II)

Inductive hypothesis:

√
N
( N∑

i=1

Wi
t−1ϕ(Xit−1)− E[ϕ(Xt−1) | y1:t−1]

)
d−→ N (0, Vt−1(ϕ))

Resampling:

√
N
(
1
N

N∑
i=1

ϕ(XA
i
t
t−1)− E[ϕ(Xt−1) | y1:t−1]

)
d−→ N (0, Ṽt−1(ϕ))

with Ṽt−1(ϕ) = Vt−1(ϕ) + Var[ϕ(Xt−1) | y1:t−1] follows from a condi-
tional CLT.
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Inductive proof idea (II/II)

Propagation:

√
N
(
1
N

N∑
i=1

ϕ(Xit)− E[ϕ(Xt) | y1:t−1]
)

d−→ N (0, V̄t(ϕ))

with V̄t(ϕ) = Ṽt−1(E[ϕ(Xt) | xt−1]) + E[Var[ϕ(Xt) | Xt−1] | y1:t−1] , again,
follows from a conditional CLT.

Weighting:

√
N
( N∑

i=1

Wi
tϕ(Xit)− E[ϕ(Xt) | y1:t]

)
d−→ N (0, Vt(ϕ))

with Vt(ϕ) = V̄t
(

p(yt | xt)
p(yt | y1:t−1)

· {ϕ(xt)− E[ϕ(Xt) | y1:t]}
)
follows from the

delta method.

15/17



Inductive proof idea (II/II)

Propagation:

√
N
(
1
N

N∑
i=1

ϕ(Xit)− E[ϕ(Xt) | y1:t−1]
)

d−→ N (0, V̄t(ϕ))
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A few concepts to summarize lecture 5

Bias and variance: both of order 1
N — mean squared error dominated

by variance! (Holds for both importance sampling and particle filter.)

Exponential forgetting: A property of the dynamical model — the
influence of historical states on the future diminishes exponentially
fast.

Particle filter stability: Under forgetting conditions, errors do not
accumulate with time.
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