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Outline - Lecture 5

Aim: Provide some insight into the convergence and stability of the
bootstrap particle filter.

Outline:

1. Central limit theorem for importance sampling
2. Central limit theorem for the bootstrap particle filter

3. Stability — key difference between the two
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CLT for importance sampling



Importance sampling

Importance sampling,
Target: m(x)
Proposal: g(x)
Weight function: w(x) = =%
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Importance sampling

Importance sampling, Procedure (fori=1, ..., N)
Target: m(x) 1. Sample x' ~ g(x),
Proposal: g(x) 2. Compute W' = w(x),
Weight function: w(x) = % 3. Normalize w' = /Z; =.
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Importance sampling

Importance sampling, Procedure (fori=1, ..., N)
Target: m(x) 1. Sample x' ~ g(x),
Proposal: g(x) 2. Compute W' = w(x),
Weight function: w(x) = % 3. Normalize w' = /Z; =.

N.B. Here, we define w in terms of the normalized target — no differ-
ence algorithmically but simplifies analysis.
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Importance sampling bias

Importance sampling estimate of I(¢) = [ ¢(x)m(x)dx is

T = 3 <)y — —Zimrel)el)

T i) S ()
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Importance sampling bias

Importance sampling estimate of I(¢) = [ ¢(x)m(x)dx is
N

T =Y ) o) — i w0

N

T2
= 22— w(¥)
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Importance sampling bias

Importance sampling estimate of I(¢) = [ ¢(x)m(x)dx is
N ' 15N i i
TS(0) = w(x') i_ N i wX)e(X)

2D BB v i )

Define g(x) = w(x)¢(x) and let g and @ be the samples means of the
respective functions

= Ti(e) =

I
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Importance sampling bias

Importance sampling estimate of I(¢) = [ ¢(x)m(x)dx is

Sy w(x) N i w(x)e(d)
e = Z ST ) T IS )

Define g(x) = w(x)¢(x) and let g and @ be the samples means of the
respective functions

=7
S
|
I

Both g and @ are vanilla Monte Carlo estimators, standard SLLN and
CLTs hold for them

Bl5] = Balo()] = [ 7 e0ax = I(¢)
(6] = Eqfu(X)] = [ g(ﬁgq(x)dx 1
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Importance sampling bias

Consider a Taylor expansion of 1 around its mean of 1.

Tie)
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Importance sampling bias

Consider a Taylor expansion of 1 around its mean of 1.

Ti(e) = %_9{1 @=N+@-17—-..}
=@ )+ - @ =D+ @=1)"=..}
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Importance sampling bias

Consider a Taylor expansion of 1 around its mean of 1.

=@ @)+ -@-N+@-17-..}
=@l -@-N+@-17"—-..}
+ 11— (@ -+ @-1"-..}

417



Importance sampling bias

Consider a Taylor expansion of 1 around its mean of 1.
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Importance sampling bias

Consider a Taylor expansion of 1 around its mean of 1.

Take the expected value of both sides and we get
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Importance sampling bias

Consider a Taylor expansion of 1 around its mean of 1.

Take the expected value of both sides and we get

FS(W)} = I(p) — Cov[g, @] + I(¢) Var[@] + higher order terms
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Importance sampling bias

Going back to g and w we have,

Epﬁ(@)} — () — COVq[Q(ﬁ)-,W(X)] " /(@)Va’ilq[W(X)] N o< | )

5/17



Importance sampling bias

Going back to g and w we have,

Epﬁ(@)} — () — COVq[Q(ﬁ)»W(X)] " /(@)Va’;q[W(X)] N O</\jz)

Thus, the bias in the importance sampling estimator, for large I, is

E[l ()] - ()

~ ~ Covg[g(X), w(X)] n I() Varg[w(X)]
N N
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Importance sampling bias and variance

Importance sampling bias (large N):
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E[R5(0)] - 1) ~ -
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Importance sampling bias and variance

Importance sampling bias (large N):

T 2
B30 1) = — 7 [ oot - )

Importance sampling variance (large N):

- 1 7T(X)2 2
Var@\?(so)] ~ N/ a0 (p(x) = () dx
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Importance sampling bias and variance

Importance sampling bias (large N):

T 2
B30 1) = — 7 [ oot - )

Importance sampling variance (large N):

- 1 7T(X)2 2
Var@\?(so)} ~ N/ 00 (p(x) = I(p))“dx

[ Mean-squared error = bias? + variance — Dominated by variance! ]
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CLT for importance sampling

Asymptotically, as N — oo,

Central limit theorem (CLT) for importance sampler

N

. . T 2
N (Z Wig(X') - /(</>)> N (o, / q((XX)) (o) - /(so))de)
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Importance sampling for filtering

Importance sampling for m(xo.t) = p(Xo:t | Va:t), where

unnormalized target
/—/\H

Xo:ts Y1

p(Xo:t | Vit) = M oc p(Va:t | Xo:t)P(Xo:t)
S—— p(yﬂt)
target S——

normalization
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Importance sampling for filtering

Importance sampling for m(xo.t) = p(Xo:t | Va:t), where

unnormalized target

( )
Xo: IBAN
p(Xo:t | Vit) = —Poen V) oc p(Va:t | Xo:t)P(Xo:t)
S—— p(yﬁt)
target S——
normalization
Procedure: (fori=1, ..., N)

1. Generate xg:t ~ p(Xo:t) by simulating the system dynamics

2. Compute weights W} = p(yi.¢ | X)) and normalize = w}
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ex) Importance sampling for filtering

ex) Very simple state space model where the states are independent
over time (no dynamics),

X~ N(0,1), t=0,1,...,
Yt|(Xt:Xt)NN(Xt702), t:12,
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ex) Importance sampling for filtering

ex) Very simple state space model where the states are independent
over time (no dynamics),

X~ N(0,1), t=0,1,...,
Yt|(Xt:Xt)NN(Xt702), t:12,

Asymptotic variance of importance sampler at time t is,

(1125087 ) [0 )
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ex) Importance sampling for filtering

ex) Very simple state space model where the states are independent
over time (no dynamics),

X~ N(0,1), t=0,1,...,
Yt|(Xt:Xt)NN(Xt702), t:12,

Asymptotic variance of importance sampler at time t is,

(1125087 ) [0 )
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ex) Importance sampling for filtering

ex) Very simple state space model where the states are independent
over time (no dynamics),

X~ N(0,1), t=0,1,...,
Yt|(Xt:Xt)NN(Xt702), t:12,

Asymptotic variance of importance sampler at time t is,

(1125087 ) [0 )
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CLT for bootstrap particle filter




CLT for bootstrap particle filter

Test function: I:(¢) = E[p(Xt) | Va.t)-

Theorem: CLT for bootstrap particle filter

with

and

(| X6) = E[00%) [ Visres Xe) <" / ()P | X Vi) 0.
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ex) Very simple model, cont'd

Simple model with X; ~ N(0, 1), independent over time.

Elp(Xe) [ve] R <Tt,

Ik,t(<P|Xh’) = E[(P(Xt) |yh’+1:tyxfe] = {(P(Xt) kR — t,

It follows that all terms k < t in the definition of V() are zero!

10

10 T
I = Importance sampler
% Bootstrap particle filter
a
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Particle filter stability

Often the distant past has little effect on the future (and vice versa)
— referred to as forgetting
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Particle filter stability

Often the distant past has little effect on the future (and vice versa)
— referred to as forgetting

Exponential forgetting of exact filter:

1 —
§/|P(Xt|meh+1:t) — p(Xe | Xp Vi) [dxe < pFF
Furthermore, it often holds that,

p(Xk \)/m)z ~ p(Xk |)/1:k+A)2
Pkl Yre—)  P(Xk | Yak—1)
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Particle filter stability

Often the distant past has little effect on the future (and vice versa)
— referred to as forgetting

Exponential forgetting of exact filter:

1 —
§/|P(Xt|meh+1:t) — p(Xe | Xp Vi) [dxe < pFF
Furthermore, it often holds that,

2
P(Xk | Y1:t) <A
P(Xe | Y1:ke—1)

12/17



Particle filter stability

Often the distant past has little effect on the future (and vice versa)
— referred to as forgetting

Exponential forgetting of exact filter:

1 —
§/|P(Xt|meh+1:t) — p(Xe | Xp Vi) [dxe < pFF
Furthermore, it often holds that,

2
P(Xk | Y1:t) <A
P(Xe | Y1:ke—1)
Thus, for bounded |¢| < B, it holds that Vi(¢) < C, independent of t!
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Particle filter stability

Often the distant past has little effect on the future (and vice versa)
— referred to as forgetting

Exponential forgetting of exact filter:

1 —
§/|P(Xt|meh+1:t) — p(Xe | Xp Vi) [dxe < pFF
Furthermore, it often holds that,

2
P(Xk | Y1:t) <A
P(Xe | Y1:ke—1)
Thus, for bounded |¢| < B, it holds that Vi(¢) < C, independent of t!

The bootstrap particle filter is stable, in the sense that the estimator
variance does not increase (unboundedly) with t.
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Proof sketch




Three steps of the approximation

> Resampling |—>| Propagation —={ Weighting [~

S wi_p(xi_,) approximates E[o(X;_1) | ya.t_1]

Resampling: a} ~ Discrete({w{_1}}‘V:1)
Propagation: xj ~ p(x |ng)

Weighting: wi = p(y; | x}) and normalize = w}
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Three steps of the approximation

> Resampling |—>| Propagation —={ Weighting [~

S wi_p(xi_,) approximates E[o(X;_1) | ya.t_1]
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Weighting: wi = p(y; | x}) and normalize = w}
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Three steps of the approximation

> Resampling |—>| Propagation —={ Weighting [~

S wi_p(xi_,) approximates E[o(X;_1) | ya.t_1]

Resampling: 4 31, o(x* ) approximates Efp(Xi_1) [ yie_1]

Propagation: § EL o(x) approximates E[o(X;) | y1.t1]

Weighting: wi = p(y; | x}) and normalize = w}
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Three steps of the approximation

> Resampling |—>| Propagation —={ Weighting [~

S wi_p(xi_,) approximates E[o(X;_1) | ya.t_1]

Resampling: 4 31, o(x* ) approximates Efp(Xi_1) [ yie_1]

Propagation: § EL o(x) approximates E[o(X;) | y1.t1]

Weighting: S, wip(x}) approximates E[p(X:) | ya]
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Inductive proof idea (1/11)

Inductive hypothesis:

VN (Z WLW‘P(XLW) — Elp(Xi-1) |y1:tw]> o N (0, Vi—1(¥))

Resampling:
VN (:I Z go(X?L) — E[p(Xt-1) |)/1:t1]> 4 N(0,Ve1(9))

with Vi_1(¢) = Vi_1(9) + Var[p(Xi—1) | vr1—1] follows from a condi-
tional CLT.
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Inductive proof idea (11/11)

Propagation:
( Zéﬁ Xt — Efp(X:) [yr:e— 1]) i>/\/(Ov\_/t(éo))

with V() = Veea(E[p(Xe) | Xe—1]) + E[Var[p(Xe) | Xe=1] | yre—1], again,
follows from a conditional CLT.
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Inductive proof idea (11/11)

( Zéﬁ X1) — E[p(Xe) | yre- 1]) i>/\/(Oa\_/t(SO))

with V() = Veea(E[p(Xe) | Xe—1]) + E[Var[p(Xe) | Xe=1] | yre—1], again,
follows from a conditional CLT.

<Z WtW(Xt — E[p(Xt) | y1. t]) % N(0, Vi(p))

with V() = (p(‘;fy‘ty‘ﬁg o(x) — ]E[go(Xt)|y1:t]}> follows from the
delta method.
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A few concepts to summarize lecture 5

Bias and variance: both of order % — mean squared error dominated
by variance! (Holds for both importance sampling and particle filter.)

Exponential forgetting: A property of the dynamical model — the
influence of historical states on the future diminishes exponentially
fast.

Particle filter stability: Under forgetting conditions, errors do not
accumulate with time.

17/17



	CLT for importance sampling
	CLT for bootstrap particle filter
	Proof sketch

