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Outline – Lecture 3

Aim: Motivate and introduce the Monte Carlo idea and derive impor-

tance sampling.

Outline:

1. Why do we need Monte Carlo?

2. The Monte Carlo idea

3. Importance sampling

4. Ex. joint filtering using importance sampling
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Why do we need Monte Carlo methods?

Probabilistic modelling often produce intractable optimization and/or

integration problems.

Recall the nonlinear filtering problem or consider the computation of a

point estimate via expectation, e.g. the conditional mean

x̂t | t = E[Xt | y1:t ] =

∫
xtp(xt | y1:t)dxt .

Monte Carlo methods are computational solutions where the

distributions of interest are approximated by a large number of N random

samples sometimes called particles.
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Common test functions

Hence, Monte Carlo methods can be used to solve integrals like

E[ϕ(X ) | y1:t ] =

∫
ϕ(x)p(x | y1:T )dx

Common test functions ϕ(x) include:

• Conditional mean ϕ(x) = x (previous slide)

• Indicator function ϕ(x) = I (x > ϑ) for some threshold ϑ, which

provides an estimate of tail probabilities (modelling e.g. extreme

events).

• Covariances and other higher order moments.

• ...
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The Monte Carlo idea (I/II)

Let X ∼ π(x), where we refer to π(x) as the target density.

(Very) restrictive assumption: Assume that we have N samples

{x i}Ni=1 from the target density π(x), making up an empirical

approximation

π̂N(x) =
N∑
i=1

1

N
δx i (x).

Allows for the following approximation of the integral,

Eπ[ϕ(X )] =

∫
ϕ(x)π(x)dx ≈

∫
ϕ(x)

N∑
i=1

1

N
δx i (x)dx =

1

N

N∑
i=1

ϕ(x i )

”

∫
+ δ →

∑
”
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The Monte Carlo idea (II/II)

The integral

I (ϕ) = Eπ[ϕ(X )] =

∫
ϕ(x)π(x)dx

is approximated by

ÎN(ϕ) =
1

N

N∑
i=1

ϕ(x i ).

The strong law of large numbers tells us that

ÎN(ϕ)
a.s.−→ I (ϕ), N →∞,

and the central limit theorem states that
√
N
(
ÎN(ϕ)− I (ϕ)

)
σϕ

d−→ N (0, 1) , N →∞.
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The Monte Carlo idea – toy illustration

π(x) = 0.3N (x | 2, 2) + 0.7N (x | 9, 19)

5 000 samples 50 000 samples

Obvious problem: In general we are not able to directly sample from

the density we are interested in.
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Importance sampling



Importance sampling

Importance sampling can be used to evaluate integrals of the form

I (ϕ) = Eπ[ϕ(X )] =

∫
ϕ(x)π(x)dx (x ∼ π(x))

without requiring exact samples from the target.

Note that

Eπ[ϕ(X )] =

∫
ϕ(x)π(x)dx =

∫
ϕ(x)

π(x)

q(x)
q(x)dx

where q is known as the proposal distribution.

7/19



Importance sampling

Importance sampling can be used to evaluate integrals of the form

I (ϕ) = Eπ[ϕ(X )] =

∫
ϕ(x)π(x)dx (x ∼ π(x))

without requiring exact samples from the target.

Note that

Eπ[ϕ(X )] =

∫
ϕ(x)π(x)dx =

∫
ϕ(x)

π(x)

q(x)
q(x)dx

where q is known as the proposal distribution.

7/19



Importance sampling – proposal distribution

The proposal distribution1 is chosen by the user:

1. It should be simple to sample from and

2. we require q(x) > 0 for all x where π(x) > 0

Idea: Chose the proposal density q(x) such that it is easy to generate

samples from it and somehow compensate for the mismatch between

the target and the proposal.

1a.k.a. importance distribution or instrumental distribution.
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Importance sampling

We have that

Eπ[ϕ(X )] =

∫
ϕ(x)π(x)dx =

∫
ϕ(x)

π(x)

q(x)
q(x)dx

We define the weight function

ω(x) =
π(x)

q(x)

Using this we get that

Eπ[ϕ(X )] =

∫
ϕ(x)ω(x)q(x)dx = Eq[ϕ(x ′)ω(x ′)] (x ′ ∼ q(x ′))
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Importance sampling

Algorithm 1 Importance sampling

1. Sample x i ∼ q(x).

2. Compute the weights w i = ω(x i ) = π(x i )/q(x i ).

Each step is performed for i = 1, . . .N.

We perform an MC estimator as

ÎN(ϕ) =
1

N

N∑
i=1

w iϕ(x i ).
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Point-wise evaluation of the target

It is often the case that the target density π(x) can only be evaluated up

to an unknown normalization constant Z ,

π(x) =
π̃(x)

Z

where π̃(x) can be evaluated for any x , but the constant Z is unknown.

Ex. (nonlinear joint filtering problem) The target density is given by

π(x) = p(x0:t | y1:t) and we have

p(x0:t | y1:t)︸ ︷︷ ︸
π(x)

=

π̃(x)︷ ︸︸ ︷
p(x0:t , y1:t)

p(y1:t)︸ ︷︷ ︸
Z

,

where we can evaluate π̃(x) = p(x0:t , y1:t) point-wise, but Z = p(y1:t) is

intractable in general.
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Self-normalized importance

sampling



Self-normalized importance sampling

Inserting

π(x) =
π̃(x)

Z

into the importance sampling integral results in

I (ϕ) = E[ϕ(X )] =

∫
ϕ(x)

π̃(x)

Zq(x)
q(x)dx =

1

Z

∫
ϕ(z)

π̃(x)

q(x)︸ ︷︷ ︸
=ω(x)

q(x)dx

Hence, the importance sampling estimator is

ĨN(ϕ) =
1

NZ

N∑
i=1

w̃ iϕ(x i ),

where w̃ i = ω(x i ).

The normalization constant Z is still problematic.
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ĨN(ϕ) =
1

NZ

N∑
i=1

w̃ iϕ(x i ),

where w̃ i = ω(x i ).

The normalization constant Z is still problematic.

12/19



Self-normalized importance sampling

The normalization constant is given by the following integral

Z =

∫
π̃(x)dx ,

which we can approximate using our samples {x i}Ni=1 from q(x). The

result is

Z =

∫
π̃(x)

q(x)
q(x)dx ≈ 1

N

N∑
i=1

w̃ i .

The self-normalized importance sampling estimate is obtained by

inserting this into ĨN(ϕ),

ĨN(ϕ) =
N∑
i=1

w iϕ(x i ), w i =
w̃ i∑N
j=1 w̃

j
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Self-normalized importance sampling

Algorithm 2 Self-noramlized Importance sampler

1. Sample x i ∼ q(x).

2. Compute the weights w̃ i = π̃(x i )/q(x i ).

3. Normalize the weights w i = w̃ i/
∑N

j=1 w̃
j .

Each step is carried out for i = 1, . . . ,N.

The convergence of the resulting approximation π̂N(x) =
∑N

i=1 w
iδx i (x)

is since long well established.

The fact that we are sampling from a user-chosen proposal distribution

q(x) is corrected for by the weights, which accounts for the discrep-

ancy between the proposal q(x) and the target π(x).
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The importance of a good proposal density

q1(x) = N (x | 5, 20) (dashed) q2(x) = N (x | 1, 20) (dashed)

50 000 samples were used in both simulations.

Lesson learned: It is important to be careful in selecting the proposal

distribution.
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Ex) Importance sampling of the joint filtering PDF

Problem statement: Use importance sampling to compute the joint

filtering PDF p(x1:t | y1:t) for (x = x1:t , π(x) = p(x1:t | y1:t))

Xt | (Xt−1 = xt−1) ∼ p(xt | xt−1),

Yt | (Xt = xt) ∼ p(yt | xt),
X0 ∼ p(x0).

Xt = f (Xt−1) + Vt ,

Yt = g(Xt) + Et ,

X0 ∼ p(x0).

Key challenge: Nontrivial to design proposal distributions for

high-dimensional problems. Here the dimension of the space X t grows

with t! (xt ∈ X ).
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Ex) Importance sampling of the joint filtering pdf

Idea: Reuse computations over time by exploiting the sequential

structure of the SSM via a proposal distribution that factorizes as

q(x0:t | y1:t) = q(x0)
t∏

s=1

q(xs | x0:s−1, y1:s) = q(x0)
t∏

s=1

q(xs | xs−1, ys)

Next we derive the weight function

ωt(x0:t) =
π̃(x0:t)

q(x0:t)
=

p(x0:t , y1:t)

q(x0:t | y1:t)
= . . .

=
p(yt | xt)p(xt | xt−1)

q(xt | xt−1, yt)

p(x0:t−1, y1:t−1)

q(x0:t−1 | y1:t−1)︸ ︷︷ ︸
ωt−1(x0:t−1)

Hence, the weights can also be computed sequentially

w̃t =
p(yt | xt)p(xt | xt−1)

q(xt | xt−1, yt)
w̃t−1
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Ex) Importance sampling of the joint filtering pdf

Sequential importance sampling: New samples are proposed

sequentially and weights are computed sequentially.

Show stopper: It can be shown that the variance of the weights will

grow unboundedly (weight degeneracy).

Practical consequence of weight degeneracy: after some time there will

only be one weight with non-zero value (more in lecture 5).

Next lecture we will derive a working importance sampler by directly

target the (marginal) filtering density p(xt | y1:t).

Note that the dimension of xt is fixed, whereas the dimension of

p(x0:t | y1:t) grows with t.

18/19



Ex) Importance sampling of the joint filtering pdf

Sequential importance sampling: New samples are proposed

sequentially and weights are computed sequentially.

Show stopper: It can be shown that the variance of the weights will

grow unboundedly (weight degeneracy).

Practical consequence of weight degeneracy: after some time there will

only be one weight with non-zero value (more in lecture 5).

Next lecture we will derive a working importance sampler by directly

target the (marginal) filtering density p(xt | y1:t).

Note that the dimension of xt is fixed, whereas the dimension of

p(x0:t | y1:t) grows with t.

18/19



A few concepts to summarize lecture 3

Monte Carlo method: Computational method making use of random sampling to obtain

numerical solutions.

Target density: The probability density function that we are interested in.

Empirical approximation: An approximation of a distribution made up of weighted samples.

Importance sampling: A general technique for estimating properties of some target distribution

when we only have access to samples from a distribution that is different from the target

distribution.

Proposal distribution: A user-chosen distribution that it should be simple to sample from.

Sequential importance sampling: An importance sampler where the proposal distribution is

defined sequentially and where the weights can be evaluated sequentially.
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