
Sequential Monte Carlo methods
Lecture 2 – Probabilistic modelling of dynamical systems

Johan Alenlöv, Linköping University
2025-02-03



Outline – Lecture 2

Aim: Explain how latent variables and Markov chains are used in
probabilistic modelling of dynamical system.

Outline:

1. Latent variables
2. Linear Gaussian state space model (LG-SSM)
3. Nonlinear state space model
4. Nonlinear filtering problem and its conceptual solution
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Latent variable model

Model variables that are not observed are called latent (a.k.a.
hidden, missing and unobserved) variables.

The idea of introducing latent variables into models is probably one
of the most powerful concepts in probabilistic modelling.

Cost: Learning the model becomes (significantly) harder.
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Markov chain

The Markov chain is a probabilistic model that is used for modelling
a sequence of states (X0, X1, . . . , XT).

Definition (Markov chain)
A stochastic process {Xt}t≥0 is referred to as a Markov chain if, for
every k > 0 and t,

p(xt+k | x0, x1, . . . , xt) = p(xt+k | xt).

A Markov chain is completely specified by:
1. An initial value X0 and
2. a transition model (kernel) κ(xt+1 | xt) describing the transition
from state Xt to state Xt+1, according to
Xt+1 | (Xt = xt) ∼ κ(xt+1 | xt).

The state acts as a memory containing all information there is to
know about the process at this point in time.
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Markov chain

Our two most important applications of Markov chains in this course
are:

1. The Markov model is used in the state space model (SSM) where
we can only observe the state indirectly via a measurement that
is related to the state.

2. The Markov chain constitutes the basic ingredient in the Markov
chain Monte Carlo (MCMC) methods.
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State space models



State space model (SSM)

The state space model (SSM) is a Markov chain that makes use of a
latent variable representation to describe a dynamical process.

It consists of two stochastic processes:

1. unobserved (state) process {Xt}t≥0 modelling the dynamics,
2. observed process {Yt}t≥1 modelling the measurements and their
relationship to the unobserved state process.
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Linear Gaussian state space model

The linear Gaussian state space model (LG-SSM) is a model of a
dynamical system where:

1. The dynamics are modeled using a Markov chain, describing the
evolution of the latent state of the system,

Xt = AXt−1 + Vt, Vt ∼ N (0,Q).

2. The measurements are modeled using

Yt = CXt + Et, Et ∼ N (0,R).
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The Gaussian PDF

The PDF of a Gaussian variable is denoted N (x |µ,Σ), i.e.,

N (x |µ,Σ) = 1
(2π)n/2
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Transition and observation density

Recall equations defining the LG-SSM,

1. Transition model: Xt = AXt−1 + Vt, Vt ∼ N (0,Q).
2. Observation model: Yt = CXt + Et, Et ∼ N (0,R).
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Nonlinear state space model



Nonlinear state space model (SSM)

The state space model (SSM) is a Markov chain that makes use of a
latent variable representation to describe dynamical phenomena.

It consists of two stochastic processes:

1. unobserved (state) process {Xt}t≥0 modelling the dynamics,
2. observed process {Yt}t≥1 modelling the measurements and their
relationship to the unobserved state process.

Xt = f (Xt−1, θ) + Vt,
Yt = g(Xt, θ) + Et,

where θ ∈ Rnθ denotes static model parameters.

The SSM offers a practical representation not only for modelling, but
also for reasoning and inference.
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Ex) “what are Xt, θ and Yt”?

Aim (motion capture): Compute Xt (position and orientation of the
different body segments) of a person (θ describes the body shape)
moving around indoors using measurements Yt (accelerometers,
gyroscopes and ultrawideband).

Data intensive modeling in dynamical systems
Thomas Schön, Uppsala University

The Royal Swedish Academy of Sciences 
Stockholm, September 19, 2013

An experiment to illustrate the importance of a model

ω"

a$g"

m"

Inertial sensors Bio-mechanical Ultra-wideband The world

Task: Find the position and orientation of a human (human motion). 

Key models:

Manon Kok, Jeroen D. Hol and Thomas B. Schön. Using inertial sensors for position and orientation estimation. Foundations and
Trends of Signal Processing, 11(1-2):1-153, 2017.
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Representing the SSM using distributions

Representation using probability distributions

Xt | (Xt−1 = xt−1, θ) ∼ p(xt | xt−1, θ),
Yt | (Xt = xt, θ) ∼ p(yt | xt, θ),

X0 ∼ p(x0 | θ).

The unknown parameters can be modelled as either
1. deterministic but unknown (maximum likelihood) or
2. random variables (Bayesian), Θ ∼ p(θ).

State inference: Learn about the state from the observations.
Parameter inference: Learn the (static) parameters from the
observations.
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SSM – full probabilistic model

The full probabilistic model is given by

p(θ, x0:T , y1:T) = p(y1:T | x0:T , θ)p(x0:T | θ)p(θ)

Factorizing the state prior:

p(x0:T | θ) = p(xT | x0:T−1, θ)p(x0:T−1 | θ)

= p(xT | xT−1, θ)p(x0:T−1 | θ)

= · · · =
T∏
t=1

p(xt | xt−1, θ) p(x0 | θ)
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Distribution describing a parametric nonlinear SSM

p(θ, x0:T , y1:T) =
T∏
t=1

p(yt | xt, θ)︸ ︷︷ ︸
observation︸ ︷︷ ︸

data distribution

T∏
t=1
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dynamics

p(x0 | θ)︸ ︷︷ ︸
state

p(θ)︸︷︷︸
param.︸ ︷︷ ︸

prior

Model = probability distribution!
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Nonlinear filtering problem



State inference

State inference refers to the problem of learning about the state Xk:l
based on the available measurements Y1:t = y1:t.

We will represent this information using PDFs.

Name Probability density function
Filtering p(xt | y1:t)
Joint filtering p(x0:t | y1:t), t = 1, 2, . . .
Prediction p(xt+1 | y1:t)
Joint smoothing p(x1:T | y1:T)
Marginal smoothing p(xt | y1:T), t ≤ T
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The nonlinear filtering problem

State filtering problem: Learn about the current state Xt based on
the available measurements Y1:t = y1:t when

Xt | (Xt−1 = xt−1) ∼ p(xt | xt−1),
Yt | (Xt = xt) ∼ p(yt | xt),

X0 ∼ p(x0).

Xt = f (Xt−1) + Vt,
Yt = g(Xt) + Et,
X0 ∼ p(x0).

Goal: Compute the filter PDF p(xt | y1:t) as accurately as possible.
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Filtering problem – conceptual solution

The measurement update

p(xt | y1:t) =

measurement︷ ︸︸ ︷
p(yt | xt)

prediction pdf︷ ︸︸ ︷
p(xt | y1:t−1)

p(yt | y1:t−1)
,

and the time update

p(xt | y1:t−1) =
∫
p(xt | xt−1)︸ ︷︷ ︸
dynamics

p(xt−1 | y1:t−1)︸ ︷︷ ︸
filtering pdf

dxt−1.

Alternatively we can combine the two

p(xt | y1:t) =
p(yt | xt)

∫
p(xt | xt−1)p(xt−1 | y1:t−1)dxt−1

p(yt | y1:t−1)
.

No closed-form solutions available except for a few special cases.
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Explicit filtering solution for LG-SSM – Kalman filter

Linear transformations of Gaussian r.v. remain Gaussian and hence
completely characterized by their mean and covariance.

Measurement update

p(xt | y1:t) = N
(
xt
∣∣ x̂t | t,Pt|t) ,

x̂t|t = x̂t|t−1 + Kt
(
yt − Cx̂t|t−1 − Dut

)
,

Pt|t = (I− KtC)Pt|t−1,

Kt = Pt|t−1CT
(
CPt|t−1CT + R

)−1
.

Time update

p(xt+1 | y1:t) = N
(
xt+1

∣∣ x̂t+1|t,Pt+1|t) ,
x̂t+1|t = Ax̂t|t + But,
Pt+1|t = APt|tAT + Q.
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Backward computations – (too) brief

In off-line situations it often makes sense to also propagate the
information backwards in time from t = T to t = 0.

Joint smoothing PDF

p(x0:T | y1:T) =
T−1∏
t=0

p(xt | xt+1, y1:T)︸ ︷︷ ︸
backward kernel

p(xT | y1:T),

where

p(xt | xt+1, y1:T) =
p(xt+1 | xt)p(xt | y1:t)

p(xt+1 | y1:t)
.

Marginal smoothing PDF

p(xt | y1:T) = p(xt | y1:t)
∫ p(xt+1 | xt)p(xt+1 | y1:T)

p(xt+1 | y1:t)
dxt+1.

Fredrik Lindsten and Thomas B. Schön. Backward simulation methods for Monte Carlo statistical inference. Foundations and Trends
in Machine Learning, 6(1):1-143, 2013.
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Beyond state space models



The nonlinear SSM is just a special case...

A graphical model is a probabilistic model where a graph G = (V, E)
represents the conditional independency structure between random
variables,

1. a set of vertices V (nodes) represents the random variables
2. a set of edges E containing elements (i, j) ∈ E connecting a pair
of nodes (i, j) ∈ V

3. The arrows pointing to a certain node encodes which variables
the corresponding node are conditioned upon.

X0 X1 X2 . . . XT

Y1 Y2 YT

Christian A. Naesseth, Fredrik Lindsten and Thomas B. Schön. Sequential Monte Carlo methods for graphical models. Advances in
Neural Information Processing Systems (NIPS), Montreal, Quebec, Canada, December, 2014.
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The nonlinear SSM is just a special case...

Representation using probabilistic program

x[1] � Gaussian(0.0, 1.0); p(x1)

y[1] � Gaussian(x[1], 1.0); p(y1 | x1)
for (t in 2..T) {

x[t] � Gaussian(a*x[t - 1], 1.0); p(xt | xt−1)

y[t] � Gaussian(x[t], 1.0); p(yt | xt)
}

A probabilistic program encodes a probabilistic model (here an
LG-SSM) according to the semantics of a particular probabilistic
programming language (here Birch).

Lawrence Murray and Thomas B. Schön. Automated learning with a probabilistic programming language: Birch. Annual Reviews in
Control, 46:29-43, 2018. 21/23



Outlook – Gaussian process SSM

The Gaussian process (GP) is a non-parametric and probabilistic
model for nonlinear functions.

Non-parametric means that it does not rely on any particular
parametric functional form to be postulated.

Xt = f (Xt−1) + Vt, s.t. f (X) ∼ GP(0, κη,f (x, x′)),
Yt = g(Xt) + Et, s.t. g(X) ∼ GP(0, κη,g(x, x′)).

The model functions f and g are assumed to be realizations from
Gaussian process priors and Vt ∼ N (0,Q), Et ∼ N (0,R).

Task: Compute the posterior p(f ,g,Q,R, η, x0:T | y1:T).

Roger Frigola, Fredrik Lindsten, Thomas B. Schön, and Carl Rasmussen. Bayesian inference and learning in Gaussian process state-
space models with particle MCMC. NIPS, 2013.
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A few concepts to summarize lecture 2

Latent variable model: A model containing unknown variables that are not directly observed.

Markov chain: Described by an initial state and a transition kernel describing the transition from
the present state to the next.

Spate space model (SSM): A latent variable model, where the latent variable (the state) is observed
indirectly.

State inference: Learn about the state Xk:l based on the available measurements Y1:t = y1:t .

Parameter inference: Learn the (static) parameters θ based on the available measurements
y1:T = {y1, y2, . . . , yT}.

Filtering problem: Learn about the current state Xt based on the available measurements
Y1:t = y1:t by computing p(xt | y1:t).

Kalman filter: Explicit solution to the state filtering problem when the SSM is linear and Gaussian.
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