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Outline of Lecture 17

Aim: See examples how the general SMC framework can be used within

the world of Deep Generative Models

Outline:

1. (Generative) Diffusion models

2. Image inpainting as a Bayeisan inverse problem

3. SMC for image inpainting

4. (Generative) Autoregressive models

5. SMC for LLMs
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Generative modeling

Given unlabelled dataset

D = {x(i)}Ni=1

estimate data distribution, i.e.,

pθ(x) ≈ pdata(x)

In particular, enable sampling

xnew ∼ pθ(x)

Deep generative models: pθ(x) implictly defined by a neural network
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Diffusion Models



(Generative) Diffusion models

x0 ∼ N (0, σ2
0 I ) x1 x2 . . . xK−2 xK−1 xK ∼ D

xK ∼ pθ(xK )xK−1x0 ∼ N (0, σ2
0 I ) x1 x2 . . . xK−2

Illustration adapted from slides by Fredrik Lindsten

3/24



(Generative) Diffusion models

Start by assuming a fixed data-to-noise process (data x ≡ xK )

q(x0:K ) = q(xK )
K−1∏
k=0

q(xk |xk+1)

where

q(xk |xk+1) = N (xk |xk+1, βk I ).

Note: q(xk |xk−1, xK ) is available in closed form.

Generation via a procedure

pθ(x0:K ) = pθ(x0)
K∏

k=1

pθ(xk |xk−1),

where pθ(x0) ≈ q(x0) and pθ(xk |xk−1) ≈ q(xk |xk−1)
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Parametrization of the generative procedure

Initial distribution approximated by pθ(x0) = N (x0|0, σ2
0 I ).

Transitions q(xk |xk−1) =
∫
q(xk |xk−1, xK )q(xK |xk−1)dxK intractable

Neural network reconstructs xK as fθ(xk−1), and with approximation

pθ(xK |xk−1) = δfθ(xk−1)(xK ),

pθ(xk |xk−1) =

∫
q(xk |xk−1, xK )pθ(xK |xk−1)dxK ,

= q(xk |xk−1, xK = fθ(xk−1))
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Image inpainting as a Bayesian inverse problem

Task: fill in the missing pixels

But many potential possibilities...
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Image inpainting as a Bayesian inverse problem

Probabilistic formulation

p(x|y) = p(y|x)p(x)
p(y)

where p(y|x) = N (y|Ax, σ2
y I )

Use diffusion model pθ(xK ) as prior p(x)!

Bayesian inverse problem with diffusion prior: Sample from the

posterior

pθ(x|y) =
p(y|x)pθ(x)

pθ(y)

The sequential structure of the diffusion model makes SMC a suitable

framework
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Target distributions

Recall:

As long as
∫
πK (x0:K )dx0:K−1 = p(xK |y), the SMC algorithm is consis-

tent. Targets for k = 0, . . . ,K − 1 are auxiliary quantities.

Can design π̃k(x0:k) however we want, as long as π̃K (x0:K ) =

p(y|xK )pθ(x0:K )
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Target distributions

First attempt:

x0 x1 x2 . . . xK

y

Unnormalized targets:

π̃k(x0:k) =

{
pθ(x0)

∏k
l=1 pθ(xl |xl−1) k < K

p(y|xK )pθ(x0)
∏K

l=1 pθ(xl |xl−1) k = K

Not very efficient
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Target distributions

Second attempt:

π̃k(x0:k) = p(y|xk)pθ(x0)
k∏

l=1

pθ(xl |xl−1)

Likelihoods p(y|xk) intractable for k < K

Need to find approximations p̂(y|xk)

Can approximate likelihoods as we want, as long as p̂(y|xK ) := p(y|xK )
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Target distributions – likelihood approximations

TDS: Use reconstrution fθ(xk):

p̂(y|xk) = p(y|xK = fθ(xk))

Luhuan Wu, Brian Trippe, Christian Naesseth, David Blei, and John P. Cunningham. Practical and Asymptotically Exact Conditional

Sampling in Diffusion Models. NeurIPS, 2023.

DDSMC: Use approximation p̂θ(xK |xk) = N (fθ(xk), ρ2k I )

p̂(y|xk) =
∫

p(y|xK )p̂θ(xK |xk)dxK = N (Afθ(xk), σ
2
y I + ρ2kAA

T )

Filip Ekström Kelvinius, Zheng Zhao, and Fredrik Lindsten. Solving Linear-Gaussian Bayesian Inverse Problems with Decoupled

Diffusion Sequential Monte Carlo. arXiv, 2025.
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Proposals

Design proposal informed by y for better efficiency

TDS:

rk(xk |xk−1, y) = N (xk |xk−1 + βk ŝ, β̂k I )

where ŝ = sθ(xk−1) +∇xk−1
log p̂(y|xk−1) and

sθ(xk−1) ≈ ∇xk−1
log q(xk−1) is approximation of unconditional score (a

neural network)

Luhuan Wu, Brian Trippe, Christian Naesseth, David Blei, and John P. Cunningham. Practical and Asymptotically Exact Conditional

Sampling in Diffusion Models. NeurIPS, 2023.
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Proposals, DDSMC

Start with approximation of posterior p̂θ(xK |xk−1, y) ∝ p(y|xK )p̂θ(xK |xk)
(Gaussian). Then ”push back” to step k :

rk(xk |xk−1, y) =

∫
q(xk |xk−1, xK )p̂(xK |xk−1, y)dxK

Somewhat simplified, see paper for details

Filip Ekström Kelvinius, Zheng Zhao, and Fredrik Lindsten. Solving Linear-Gaussian Bayesian Inverse Problems with Decoupled

Diffusion Sequential Monte Carlo. arXiv, 2025.
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Some DDSMC results

Same prior, different likelihoods
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Autoregressive models/LLMs



(Generative) Autoregressive Models

Intuition: Can always decompose

p(x1, x2, x3) = p(x1)p(x2|x1)p(x3|x1, x2).

(Generative) Autoregressive model:

pθ(x1:K ) =
K∏

k=1

pθ(xk |x1:k−1),

conditionals pθ(·|·) defined by neural network.

LLMs: full sequence x1:K is of interest, and x1:k ∈ {0, . . . ,S}k
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Incorporating constraints

We want to incoporate some constraints via a potential Φ(x1:K ),

pΦθ (x1:K ) =
1

ZΦ
pθ(x1:K )Φ(x1:K )

Analogy to diffusion: Φ(x1:K ) = p(y|xK )

Can use SMC with target πK (x1:K ) = pΦθ (x1:K ).
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A note on ”twisting”

For efficiency, want to design intermediate targets

π̃k(x1:k) = Φ̂(x1:k)pθ(x1:k)

Compare with diffusion: Φ̂(x1:k) = p̂(y|xk)

Twisting: Multiplying the base distribution with a potential Φ̂(x1:k)

also for intermediate (k < K ) targets is sometimes called ”twisting”, or

”twisted SMC” in litterature. New term, but not a new SMC-method:

the intermediate targets are design choices anyway.
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Product-of-experts, targets

Product-of-experts: Φ(x1:K ) =
∏P

i=1 ψi (x1:K ).

Assuming ψ̂i can be evaluated on partial sequences x1:k , define targets

π̃k(x1:k) = pθ(x1:k)
P∏
i=1

ψ̂i (x1:k)

Again, no matter how the partial potentials ψ̂i are defined, the algorithm

will be consistent

João Loula, Benjamin LeBrun, Li Du, Ben Lipkin, Clemente Pasti, Gabriel Grand, Tianyu Liu, Yahya Emara, Marjorie Freedman, Jason

Eisner, Ryan Cotterell, Vikash Mansinghka, Alexander K. Lew, Tim Vieira, Timothy J. O’Donnell. Syntactic and Semantic Control

of Large Language Models via Sequential Monte Carlo. ICLR, 2025.
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Product-of-experts, proposal

Tempting to use proposal

r∗t (xk |x1:k−1) =
1

Z∗
k (x1:k−1)

pθ(xk |x1:k−1)
P∏
i=1

ψ̂i (x1:k)

But the potentials ψ̂i can be more or less expensive to evaluate for each

value of xk . Instead use

rt(xk |x1:k−1) =
1

Zk(x1:k−1)
pθ(xk |x1:k−1)

∏
j∈Φeff

ψ̂j(x1:k)

João Loula, Benjamin LeBrun, Li Du, Ben Lipkin, Clemente Pasti, Gabriel Grand, Tianyu Liu, Yahya Emara, Marjorie Freedman, Jason

Eisner, Ryan Cotterell, Vikash Mansinghka, Alexander K. Lew, Tim Vieira, Timothy J. O’Donnell. Syntactic and Semantic Control

of Large Language Models via Sequential Monte Carlo. ICLR, 2025.
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Learning potentials

If the potential Φ(·) requires full trajectories, the true distributions

π∗
k (x1:k) ∝

∑
xk+1:K

Φ(x1:K )pθ(x1:K )

are intractable.

Option: approximate π∗
k (x1:k) with πk(x1:k) ∝ Φ̂η(x1:k)pθ(x1:k), and

learn Φ̂η by minimizing

K∑
k=1

DKL(π
∗
k (x1:k)||πk(x1:k)),

Stephen Zhao, Rob Brekelmans, Alireza Makhzani, Roger Baker Grosse. Probabilistic Inference in Language Models via Twisted

Sequential Monte Carlo. ICML, 2024.
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Proposal with learned potentials

Parametrizing Φ̂η such that it is possible to (efficiently) compute proposal

rt(xk |x1:k−1) =
1

Zk(x1:k−1)
pθ(xk |x1:k−1)Φ̂

η(x1:k)

gives weights independent of xk , opens up for a fully-adapted SMC

algorithm

Stephen Zhao, Rob Brekelmans, Alireza Makhzani, Roger Baker Grosse. Probabilistic Inference in Language Models via Twisted

Sequential Monte Carlo. ICML, 2024.
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Some LLM results

João Loula, Benjamin LeBrun, Li Du, Ben Lipkin, Clemente Pasti, Gabriel Grand, Tianyu Liu, Yahya Emara, Marjorie Freedman, Jason

Eisner, Ryan Cotterell, Vikash Mansinghka, Alexander K. Lew, Tim Vieira, Timothy J. O’Donnell. Syntactic and Semantic Control

of Large Language Models via Sequential Monte Carlo. ICLR, 2025.
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Conclusion

The sequential structure of modern deep generative models opens up the

possibility to combine them with SMC

Approximations when designing intermediate targets, but:

As long as πK (x1:K ) (or its marginal) coincides with the desired distri-

bution, SMC provides asymptotic guarantees
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