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Outline – Lecture 16

Aim: See how we can use SMC for inference even in the absence of
any sequential structure in the model.

Outline:

1. Problem formulation
2. The annealing/tempering idea
3. Constructing the “SMC sampler”
4. User aspects
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Main reference

Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. Sequential Monte
Carlo samplers. Journal of the Royal Statistical Society: Series B,
68(3), pp. 411–436, 2006.
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Problem formulation

Let X be a space on which a probability density γ is defined. Let γ̃ be
an unnormalized version of the density, as γ(x) = γ̃(x)

Z . Assume that
only γ̃(x) can be evaluated pointwise.

Goal: Generate N samples xi ∈ X from the density γ(x).

ex) Typical situation: γ(x) = p(x|y), γ̃(x) = p(x, y) and Z = p(y).
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Most common solution

MCMC?

SMC sampler is an alternative!
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Metropolis-Hastings

Metropolis–Hastings targeting γ (a reminder)

for k = 1, 2, …
Propose a new sample x′ from a proposal r(x′ | xk)
Compute acceptance rate α = min(1, γ(x′)

γ(xk)
r(xk | x′)
r(x′ | xk) )

Set xk+1 ← x′ with probability α, otherwise set xk+1 ← xk
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Annealing/tempering

Sequential Monte Carlo needs something sequential. Construct a
sequence which transitions ‘smoothly’ in K steps from a simple
initial γ0(x) to the sought γK(x) ≡ γ(x).

For example:

• If γ(x) is a posterior γ(x) ∝ p(y | x)p(x), then γk(x) ∝ p(y | x)τkp(x),
τk = k/K (likelihood tempering)

• If γ(x) depends on some data y1:K as γ(x) = p(x | y1:K), then
γk(x) = p(x | y1:k) (data tempering)
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The SMC sampler: a sneak peek

Intuition: Track the evolving sequence γ0, γ1, . . . , γK using a weighting
- resampling - propagation scheme.

Howdowedo it? This sequence (unlike the state inference problem)
is not defined as a state-space model, neither does it fall into the
general SMC formulation (yet).
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Attempt I

Let’s try to make use of the sequence γ0, γ1, . . . , γK:

Sample xi from γ0 and set w̃i0(xi) = 1
for k = 1 to K

Evaluate w̃ik(xi) =
γk(xi)

γk−1(xi)
w̃ik−1

Valid but inefficient: effectively importance sampling with proposal
γ0 and target γ.
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Attempt II

Sample xi0 from γ0
for k = 1 to K

Use some Markov kernel κk to sample new xik from κk(xik−1, xik)
Set weights wik ∝

γk(xik)
ηk(xik)

and normalize

where ηk(xik) is ηk(xk) =
∫
X k γ0(x0)

∏k
j=1 κj(xj−1, xj)dx0:k−1.

In most cases intractable
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General SMC

Recall:

SMC can be used to approximate a sequence of probability distri-
butions

{πk(x0:k)}k≥0

on a sequence of probability spaces of increasing dimension,

X0:k = X0:k−1 ×Xk.

• The intermediate target distributions can be chosen arbitrarily.
• We need to be able to recover the original distribution of
interest (here γK(x) ≡ γ(x)) at iteration K.
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Attempt III

We have a sequence of distributions γ0(x), γ1(x), . . . , γK(x) evolving
smoothly from something simple (γ0) to the target distribution of
interest (γK).

Problem with directly applying SMC to this sequence: The γk’s are
all defined on the same space X .

SMC requires spaces of increasing dimension.

11/22



Attempt III

We have a sequence of distributions γ0(x), γ1(x), . . . , γK(x) evolving
smoothly from something simple (γ0) to the target distribution of
interest (γK).

Problem with directly applying SMC to this sequence: The γk’s are
all defined on the same space X .

SMC requires spaces of increasing dimension.

11/22



Attempt III

Introduce a backward kernel λk−1(xk, xk−1), and define

π0(x0) = γ0(x0), x0 ∈ X

π1(x0:1) = γ1(x1)λ0(x1, x0), x0:1 ∈ X × X = X 2

...

πK(x0:K) = γK(xK)
K∏
k=1

λk−1(xk, xk−1), x0:K ∈ X K+1

• γk is defined on X , whereas πk is defined on X k+1

• The marginal with index k of πk(x0:k) is
∫
πk(x0:k)dx0:k−1 = γk(xk)

• The marginal with index j < k of πk(x0:k) is
∫
πk(x0:k)dx0:j−1,j+1:k ̸=γj(xj)
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Attempt III

We now have a sequence π0, π1, . . . πK (with marginals that we are
interested in) defined on the spaces X ,X 2, . . . ,X K+1.

Use the general SMC scheme!

Sample xi ∼ γ0(x0) and set weights wi0 = 1/N
for k = 1 to K

If ESS too low, resample and set wik = 1/N
Use Markov kernel κk to sample xik
Set weights w̃ik = wik−1ω(xik−1:k) and normalize to wik

Here, ω(xk−1:k) = γk(xk)λk−1(xk,xk−1)
γk−1(xk−1)κk(xk−1,xk)
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Attempt III

How do we choose the backward kernels λk−1?

Assume that κk is an MCMC kernel with stationary distribution γk. We
can then select λk−1 as its reversal:

λk−1(xk, xk−1) =
γk(xk−1)κk(xk−1, xk)

γk(xk)

⇒
ω(xk−1:k) = =

γk(xk−1)
γk−1(xk−1)
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Attempt III

Design choices made: κk and λk−1

The γk-invariant MCMC kernel κk is one option for propagating the samples,
qk in the general SMC framework.

The backward kernel λk−1 is part of the model specification of π0, . . . , πK,
in the SMC context. (But since we are only interested in a marginal of πK
not depending on λk−1, it may appear to be part of the inference algorithm
rather than the model.)
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The final SMC sampler

Sample xi0 from γ0 and set weights wi0 = 1/N
for k = 1 to K

Set weights wik ∝ wik−1
γk(xik−1)

γk−1(xik−1)
and normalize

If ESS too low, resample and set wik = 1/N
Sample xik from MCMC kernel with stationary distribution γk.
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Estimating Z

For notational convenience, we have implicitly assumed we can
evaluate γ(x) exactly for any x ∈ X . The SMC is also applicable if we
only can evaluate γ̃(x), where γ(x) = γ̃(x)

Z .

If Z = ZK is of interest, we can estimate ZK/Z0 as

ẐK
Z0

=
K∏
k=1

Ẑk
Zk−1

where
Ẑk
Zk−1

=
N∑
i=1

wik−1
γk(xik−1)
γk−1(xik−1)

and Z0 is the normalizing constant of the user-chosen γ0.

Similar to annealed importance sampling, but with the added
benefit of interacting particles.
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SMC sampler vs MCMC

MCMC (Metropolis-Hastings)

Set initial x0
for k = 1, . . .

Propose a new sample x′ from r(x′ | xk)
Compute α = min(1, γ(x′)

γ(xk)
r(xk | x′)
r(x′ | xk)

)

Set xk+1 ← x′ with probability α,
otherwise xk+1 ← xk

end

SMC sampler

Sample xi0 from γ0 and set weights wi0 = 1/N
for k = 1 to K

Set w̃ik = wik−1
γk(x

i
k−1)

γk−1(x
i
k−1)

and normalize

If ESS too low, resample and set wik = 1/N
Sample xik by γk-invariant Metropolis-Hastings

end
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User’s generic recipe

1. Design a simulated annealing sequence (e.g., likelihood or data
tempering)

2. Design MCMC kernel κk (typically Metropolis-Hastings) for γk
3. Design backward kernel λk−1. Simplest choice is as the reversal
of κk, but other options are available.

4. Run the SMC sampler!
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Automatic adaptation

Adaptation of the MCMC kernels:

Paul Fearnhead and Benjamin M. Taylor. An adaptive sequential Monte Carlo sampler. Bayesian
analysis, 8(2), pp. 411–438, 2013.

Adaptation of the tempering sequence:

Yan Zhou, Adam M. Johansen and John A.D. Aston. Toward Automatic Model Comparison: An
Adaptive Sequential Monte Carlo Approach. Journal of Computational and Graphical Statistics,
25(3), pp. 701–726, 2016.
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Some further developments

Approximate Bayesian computations (ABC):

Pierre Del Moral, Arnaud Doucet, Ajay Jasra. An adaptive sequential Monte Carlo method for
approximate Bayesian computation. Statistics and computing, 22(5), pp. 1009–1020, 2012.

Use SMC sampler for unknown parameters in a state-space model:

Nicolas Chopin, Pierre E. Jacob, Omiros Papasiliopoulos. SMC2: An efficient algorithm for se-
quential analysis of state space models. Journal of the Royal Statistical Society: Series B, 75(3),
pp. 397–426, 2013.
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A few concepts to summarize lecture 16

• SMC sampler is an alternative to MCMC
• The simulated annealing sequence is key
• The formal construction is made possible by the use of
backward kernels λk
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