

Sequential Monte Carlo methods

Lecture 16 – SMC samplers

Fredrik Lindsten, Linköping University 2025-02-28

Aim: See how we can use SMC for inference even in the absence of any sequential structure in the model.

Outline:

- 1. Problem formulation
- 2. The annealing/tempering idea
- 3. Constructing the "SMC sampler"
- 4. User aspects

Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. Sequential Monte Carlo samplers. Journal of the Royal Statistical Society: Series B, 68(3), pp. 411–436, 2006.

Problem formulation

Let \mathcal{X} be a space on which a probability density γ is defined. Let $\tilde{\gamma}$ be an unnormalized version of the density, as $\gamma(x) = \frac{\tilde{\gamma}(x)}{Z}$. Assume that only $\tilde{\gamma}(x)$ can be evaluated pointwise.

Goal: Generate *N* samples $x^i \in \mathcal{X}$ from the density $\gamma(x)$.

ex) Typical situation: $\gamma(x) = p(x|y)$, $\tilde{\gamma}(x) = p(x,y)$ and Z = p(y).

Most common solution

Most common solution

MCMC?

MCMC?

SMC sampler is an alternative!

Metropolis–Hastings targeting γ (a reminder)

for k = 1, 2, ...

Propose a new sample x' from a proposal $r(x' | x_k)$ Compute acceptance rate $\alpha = \min(1, \frac{\gamma(x')}{\gamma(x_k)} \frac{r(x_k | x')}{r(x' | x_k)})$ Set $x_{k+1} \leftarrow x'$ with probability α , otherwise set $x_{k+1} \leftarrow x_k$

Annealing/tempering

Sequential Monte Carlo needs something sequential. Construct a sequence which transitions 'smoothly' in K steps from a simple initial $\gamma_0(x)$ to the sought $\gamma_K(x) \equiv \gamma(x)$.

For example:

- If $\gamma(x)$ is a posterior $\gamma(x) \propto p(y|x)p(x)$, then $\gamma_k(x) \propto p(y|x)^{\tau_k}p(x)$, $\tau_k = k/K$ (likelihood tempering)
- If $\gamma(x)$ depends on some data $y_{1:K}$ as $\gamma(x) = p(x | y_{1:K})$, then $\gamma_k(x) = p(x | y_{1:k})$ (data tempering)

Intuition: Track the evolving sequence $\gamma_0, \gamma_1, \ldots, \gamma_K$ using a weighting

- resampling - propagation scheme.

The SMC sampler: a sneak peek

Intuition: Track the evolving sequence $\gamma_0, \gamma_1, \ldots, \gamma_K$ using a weighting

- resampling - propagation scheme.

How do we do it? This sequence (unlike the state inference problem) is not defined as a state-space model, neither does it fall into the general SMC formulation (yet).

Attempt I

Let's try to make use of the sequence $\gamma_0, \gamma_1, \ldots, \gamma_K$:

Sample x^i from γ_0 and set $\widetilde{W}_0^i(x^i) = 1$ for k = 1 to KEvaluate $\widetilde{W}_k^i(x^i) = \frac{\gamma_k(x^i)}{\gamma_{k-1}(x^i)}\widetilde{W}_{k-1}^i$

Attempt I

Let's try to make use of the sequence $\gamma_0, \gamma_1, \ldots, \gamma_K$:

Valid but inefficient: effectively importance sampling with proposal γ_0 and target $\gamma.$

Sample x_0^i from γ_0 for k = 1 to K

> Use some Markov kernel κ_k to sample new x_k^i from $\kappa_k(x_{k-1}^i, x_k^i)$ Set weights $w_k^i \propto \frac{\gamma_k(x_k^i)}{\eta_k(x_k^i)}$ and normalize

Sample x_0^i from γ_0 for k = 1 to K

Use some Markov kernel κ_k to sample new x_k^i from $\kappa_k(x_{k-1}^i, x_k^i)$ Set weights $w_k^i \propto \frac{\gamma_k(x_k^i)}{\eta_k(x_k^i)}$ and normalize where $\eta_k(x_k^i)$ is $\eta_k(x_k) = \int_{\mathcal{X}^k} \gamma_0(x_0) \prod_{i=1}^k \kappa_j(x_{j-1}, x_j) dx_{0:k-1}$.

In most cases intractable

General SMC

Recall:

SMC can be used to approximate a **sequence** of probability distributions

$${\pi_k(\mathbf{X}_{0:k})}_{k\geq 0}$$

on a sequence of probability spaces of increasing dimension,

$$\mathcal{X}_{0:k} = \mathcal{X}_{0:k-1} \times \mathcal{X}_k.$$

- \cdot The intermediate target distributions can be chosen arbitrarily.
- We need to be able to recover the original distribution of interest (here $\gamma_K(x) \equiv \gamma(x)$) at iteration K.

We have a **sequence of distributions** $\gamma_0(x)$, $\gamma_1(x)$, ..., $\gamma_K(x)$ evolving smoothly from something simple (γ_0) to the target distribution of interest (γ_K).

We have a sequence of distributions $\gamma_0(x)$, $\gamma_1(x)$, ..., $\gamma_K(x)$ evolving smoothly from something simple (γ_0) to the target distribution of interest (γ_K).

Problem with directly applying SMC to this sequence: The γ_k 's are all defined on the same space \mathcal{X} .

SMC requires spaces of increasing dimension.

$$\pi_0(X_0) = \gamma_0(X_0), \quad X_0 \in \mathcal{X}$$

$$\pi_0(X_0) = \gamma_0(X_0), \quad X_0 \in \mathcal{X}$$

$$\pi_1(x_{0:1}) = \gamma_1(x_1)\lambda_0(x_1, x_0), \quad x_{0:1} \in \mathcal{X} \times \mathcal{X} = \mathcal{X}^2$$

$$\pi_0(X_0) = \gamma_0(X_0), \quad X_0 \in \mathcal{X}$$

$$\pi_1(X_{0:1}) = \gamma_1(X_1)\lambda_0(X_1, X_0), \quad X_{0:1} \in \mathcal{X} \times \mathcal{X} = \mathcal{X}^2$$

$$= \gamma_{K}(X_{0:K}) = \gamma_{K}(X_{K}) \prod_{k=1}^{K} \lambda_{k-1}(X_{k}, X_{k-1}), \quad X_{0:K} \in \mathcal{X}^{K+1}$$

$$\pi_0(X_0) = \gamma_0(X_0), \quad X_0 \in \mathcal{X}$$

$$\pi_1(X_{0:1}) = \gamma_1(X_1)\lambda_0(X_1, X_0), \quad X_{0:1} \in \mathcal{X} \times \mathcal{X} = \mathcal{X}^2$$

$$\vdots$$

$$\pi_{K}(X_{0:K}) = \gamma_{K}(X_{K}) \prod_{k=1}^{K} \lambda_{k-1}(X_{k}, X_{k-1}), \quad X_{0:K} \in \mathcal{X}^{K+1}$$

- γ_k is defined on \mathcal{X} , whereas π_k is defined on \mathcal{X}^{k+1}
- The marginal with index k of $\pi_k(x_{0:k})$ is $\int \pi_k(x_{0:k}) dx_{0:k-1} = \gamma_k(x_k)$
- The marginal with index j < k of $\pi_k(\mathsf{x}_{0:k})$ is $\int \pi_k(\mathsf{x}_{0:k}) d\mathsf{x}_{0:j-1,j+1:k} \neq \gamma_j(\mathsf{x}_j)$

We now have a sequence $\pi_0, \pi_1, \ldots, \pi_K$ (with marginals that we are interested in) defined on the spaces $\mathcal{X}, \mathcal{X}^2, \ldots, \mathcal{X}^{K+1}$.

Use the general SMC scheme!

We now have a sequence $\pi_0, \pi_1, \ldots, \pi_k$ (with marginals that we are interested in) defined on the spaces $\mathcal{X}, \mathcal{X}^2, \ldots, \mathcal{X}^{k+1}$.

Use the general SMC scheme!

Sample $x^i \sim \gamma_0(x_0)$ and set weights $w_0^i = 1/N$ for k = 1 to KIf ESS too low, resample and set $w_k^i = 1/N$ Use Markov kernel κ_k to sample x_k^i Set weights $\widetilde{w}_k^i = w_{k-1}^i \omega(x_{k-1:k}^i)$ and normalize to w_k^i

Here, $\omega(x_{k-1:k}) = \frac{\gamma_k(x_k)\lambda_{k-1}(x_k, x_{k-1})}{\gamma_{k-1}(x_{k-1})\kappa_k(x_{k-1}, x_k)}$

How do we choose the backward kernels λ_{k-1} ?

Assume that κ_k is an MCMC kernel with stationary distribution γ_k . We can then select λ_{k-1} as its reversal:

$$\lambda_{k-1}(x_k, x_{k-1}) = \frac{\gamma_k(x_{k-1})\kappa_k(x_{k-1}, x_k)}{\gamma_k(x_k)}$$

 \Rightarrow

How do we choose the backward kernels λ_{k-1} ?

Assume that κ_k is an MCMC kernel with stationary distribution γ_k . We can then select λ_{k-1} as its reversal:

$$\lambda_{k-1}(x_k, x_{k-1}) = \frac{\gamma_k(x_{k-1})\kappa_k(x_{k-1}, x_k)}{\gamma_k(x_k)}$$

 $\omega(\mathbf{x}_{k-1:k}) = \frac{\gamma_k(\mathbf{x}_k)}{\gamma_{k-1}(\mathbf{x}_{k-1})} \frac{\gamma_k(\mathbf{x}_{k-1})\kappa_k(\mathbf{x}_{k-1},\mathbf{x}_k)}{\gamma_k(\mathbf{x}_k)\kappa_k(\mathbf{x}_{k-1},\mathbf{x}_k)}$

 \Rightarrow

How do we choose the backward kernels λ_{k-1} ?

Assume that κ_k is an MCMC kernel with stationary distribution γ_k . We can then select λ_{k-1} as its reversal:

$$\lambda_{k-1}(x_k, x_{k-1}) = \frac{\gamma_k(x_{k-1})\kappa_k(x_{k-1}, x_k)}{\gamma_k(x_k)}$$

$$\omega(x_{k-1:k}) = \frac{\gamma_k(x_k)}{\gamma_{k-1}(x_{k-1})} \frac{\gamma_k(x_{k-1})\kappa_k(x_{k-1}, x_k)}{\gamma_k(x_k)\kappa_k(x_{k-1}, x_k)} = \frac{\gamma_k(x_{k-1})}{\gamma_{k-1}(x_{k-1})}$$

Design choices made: κ_k and λ_{k-1}

The γ_k -invariant MCMC kernel κ_k is **one option** for propagating the samples, q_k in the general SMC framework.

The backward kernel λ_{k-1} is **part of the model specification** of π_0, \ldots, π_K , in the SMC context. (But since we are only interested in a marginal of π_K not depending on λ_{k-1} , it may appear to be part of the inference algorithm rather than the model.)

Sample x_0^i from γ_0 and set weights $w_0^i = 1/N$ for k = 1 to KSet weights $w_k^i \propto w_{k-1}^i \frac{\gamma_k(x_{k-1}^i)}{\gamma_{k-1}(x_{k-1}^i)}$ and normalize If ESS too low, resample and set $w_k^i = 1/N$ Sample x_k^i from MCMC kernel with stationary distribution γ_k .

Estimating Z

For notational convenience, we have implicitly assumed we can evaluate $\gamma(x)$ exactly for any $x \in \mathcal{X}$. The SMC is also applicable if we only can evaluate $\tilde{\gamma}(x)$, where $\gamma(x) = \frac{\tilde{\gamma}(x)}{Z}$.

Estimating Z

For notational convenience, we have implicitly assumed we can evaluate $\gamma(x)$ exactly for any $x \in \mathcal{X}$. The SMC is also applicable if we only can evaluate $\tilde{\gamma}(x)$, where $\gamma(x) = \frac{\tilde{\gamma}(x)}{Z}$.

If $Z = Z_K$ is of interest, we can estimate Z_K/Z_0 as

$$\frac{\widehat{Z_{K}}}{Z_{0}} = \prod_{k=1}^{K} \frac{\widehat{Z_{k}}}{Z_{k-1}}$$

where

$$\frac{\widehat{Z_{k}}}{Z_{k-1}} = \sum_{i=1}^{N} w_{k-1}^{i} \frac{\gamma_{k}(x_{k-1}^{i})}{\gamma_{k-1}(x_{k-1}^{i})}$$

and Z_0 is the normalizing constant of the user-chosen γ_0 .

Estimating Z

For notational convenience, we have implicitly assumed we can evaluate $\gamma(x)$ exactly for any $x \in \mathcal{X}$. The SMC is also applicable if we only can evaluate $\tilde{\gamma}(x)$, where $\gamma(x) = \frac{\tilde{\gamma}(x)}{Z}$.

If $Z = Z_K$ is of interest, we can estimate Z_K/Z_0 as

$$\widehat{\frac{Z_{K}}{Z_{0}}} = \prod_{k=1}^{K} \widehat{\frac{Z_{k}}{Z_{k-1}}}$$

where

$$\frac{\widehat{Z_{k}}}{Z_{k-1}} = \sum_{i=1}^{N} w_{k-1}^{i} \frac{\gamma_{k}(x_{k-1}^{i})}{\gamma_{k-1}(x_{k-1}^{i})}$$

and Z_0 is the normalizing constant of the user-chosen γ_0 .

Similar to annealed importance sampling, but with the added benefit of interacting particles.

MCMC (Metropolis-Hastings)

```
Set initial x_0

for k = 1, ...

Propose a new sample x' from r(x' | x_k)

Compute \alpha = \min(1, \frac{\gamma(x')}{\gamma(x_k)}, \frac{r(x_k | x')}{r(x' | x_k)})

Set x_{k+1} \leftarrow x' with probability \alpha,

otherwise x_{k+1} \leftarrow x_k

end
```

SMC sampler

Sample x_0^i from γ_0 and set weights $w_0^i = 1/N$ for k = 1 to KSet $\widetilde{w}_k^i = w_{k-1}^i \frac{\gamma_k (x_{k-1}^i)}{\gamma_{k-1} (x_{k-1}^i)}$ and normalize If ESS too low, resample and set $w_k^i = 1/N$ Sample x_k^i by γ_k -invariant Metropolis-Hastings

end

- 1. Design a simulated annealing sequence (e.g., likelihood or data tempering)
- 2. Design MCMC kernel κ_k (typically Metropolis-Hastings) for γ_k
- 3. Design backward kernel λ_{k-1} . Simplest choice is as the reversal of κ_k , but other options are available.
- 4. Run the SMC sampler!

Adaptation of the MCMC kernels:

Paul Fearnhead and Benjamin M. Taylor. An adaptive sequential Monte Carlo sampler. Bayesian analysis, 8(2), pp. 411–438, 2013.

Adaptation of the tempering sequence:

Yan Zhou, Adam M. Johansen and John A.D. Aston. Toward Automatic Model Comparison: An Adaptive Sequential Monte Carlo Approach. *Journal of Computational and Graphical Statistics*, 25(3), pp. 701–726, 2016.

Approximate Bayesian computations (ABC):

Pierre Del Moral, Arnaud Doucet, Ajay Jasra. An adaptive sequential Monte Carlo method for approximate Bayesian computation. *Statistics and computing*, 22(5), pp. 1009–1020, 2012.

Use SMC sampler for unknown parameters in a state-space model:

Nicolas Chopin, Pierre E. Jacob, Omiros Papasiliopoulos. SMC²: An efficient algorithm for sequential analysis of state space models. *Journal of the Royal Statistical Society: Series B*, 75(3), pp. 397–426, 2013.

- $\cdot\,$ SMC sampler is an alternative to MCMC
- The simulated annealing sequence is key
- The formal construction is made possible by the use of backward kernels λ_k