

Sequential Monte Carlo methods

Lecture 15 – General Sequential Monte Carlo

Fredrik Lindsten, Linköping University 2025-02-28

Aim: Show how SMC can be used for a much wider class of problems than inference in state-space models.

Outline:

- 1. Examples of probabilistic models
- 2. General SMC formulation
- 3. Locally optimal proposals

Examples of probabilistic models

A phylogenetic (evolutionary) tree shows the inferred evolutionary relationships among various species based upon similarities and differences in their physical or genetic characteristics.

Probabilistic graphical models

A probabilistic graphical model (PGM) is a probabilistic model where a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ represents the conditional independency structure between random variables,

- 1. a set of vertices $\mathcal V$ (nodes) represents the random variables
- 2. a set of edges \mathcal{E} containing elements $(i, j) \in \mathcal{E}$ connecting a pair of nodes $(i, j) \in \mathcal{V} \times \mathcal{V}$

The Gaussian process (GP) is a **non-parametric** and **probabilistic** model for nonlinear functions.

Non-parametric means that it does not rely on any particular parametric functional form to be postulated.

 $\begin{aligned} X_t &= f(X_{t-1}) + V_t, \qquad \text{s.t.} \quad f(X) \sim \mathcal{GP}(0, \kappa_{\eta, f}(X, X')), \\ Y_t &= g(X_t) + E_t, \qquad \text{s.t.} \quad g(X) \sim \mathcal{GP}(0, \kappa_{\eta, g}(X, X')). \end{aligned}$

The model functions f and g are assumed to be realizations from Gaussian process priors and $V_t \sim \mathcal{N}(0, Q)$, $E_t \sim \mathcal{N}(0, R)$.

Task: Compute the posterior $p(f, g, Q, R, \eta, x_{0:T} | y_{1:T})$.

The **Dirichlet process** is a Bayesian nonparametric model, which can be used to construct mixture models with an **unknown** and **possibly infinite** number of components.

Generative process:

$$p(x_{k+1} = j \mid x_{0:k})$$

$$= \begin{cases} \frac{n_{k,j}}{k+\alpha} & \text{for } j = 1, \dots, J_k, \\ \frac{\alpha}{k+\alpha} & \text{for } j = J_k + 1, \end{cases},$$

$$\theta_k \sim F(\theta), \quad k = 0, 1, \dots,$$

$$p(y_k \mid x_k, \{\theta_k\}_{k \ge 1}) = G(y_k \mid \theta_{x_k}),$$

Classes of probabilistic models to which SMC has been applied:

- State-space models
- Phylogenetics
- Generic PGMs
- Bayesian nonparametric models
- Probabilistic programming languages
- Diffusion generative models
- Autoregressive (language) models
- ...

General SMC formulation

Let $\{\pi_k(\mathbf{x}_{0:k})\}_{k\geq 0}$ be an arbitrary sequence of target distributions

$$\pi_k(\mathsf{X}_{0:k}) = \frac{\widetilde{\pi}_k(\mathsf{X}_{0:k})}{Z_k}$$

Let $\{\pi_k(\mathbf{x}_{0:k})\}_{k\geq 0}$ be an arbitrary sequence of target distributions

$$\pi_k(\mathsf{x}_{0:k}) = \frac{\widetilde{\pi}_k(\mathsf{x}_{0:k})}{Z_k}$$

• The domain of x_k is \mathcal{X}_k , and $\mathcal{X}_{0:k} = \mathcal{X}_k \times \mathcal{X}_{0:k-1}$ for all k.

Let $\{\pi_k(\mathbf{x}_{0:k})\}_{k\geq 0}$ be an arbitrary sequence of target distributions

$$\pi_k(\mathbf{x}_{0:k}) = \frac{\widetilde{\pi}_k(\mathbf{x}_{0:k})}{Z_k}$$

- The domain of x_k is \mathcal{X}_k , and $\mathcal{X}_{0:k} = \mathcal{X}_k \times \mathcal{X}_{0:k-1}$ for all k.
- $\widetilde{\pi}_k(\mathbf{x}_{0:k})$ can be evaluated pointwise.

Let $\{\pi_k(\mathbf{x}_{0:k})\}_{k\geq 0}$ be an arbitrary sequence of target distributions

$$\pi_k(\mathsf{x}_{0:k}) = \frac{\widetilde{\pi}_k(\mathsf{x}_{0:k})}{Z_k}$$

- The domain of x_k is \mathcal{X}_k , and $\mathcal{X}_{0:k} = \mathcal{X}_k \times \mathcal{X}_{0:k-1}$ for all k.
- $\widetilde{\pi}_k(\mathbf{x}_{0:k})$ can be evaluated pointwise.
- The normalizing constant Z_k may be unknown.

Let $\{\pi_k(\mathbf{x}_{0:k})\}_{k\geq 0}$ be an arbitrary sequence of target distributions

$$\pi_k(\mathsf{x}_{0:k}) = \frac{\widetilde{\pi}_k(\mathsf{x}_{0:k})}{Z_k}$$

- The domain of x_k is \mathcal{X}_k , and $\mathcal{X}_{0:k} = \mathcal{X}_k \times \mathcal{X}_{0:k-1}$ for all k.
- $\widetilde{\pi}_k(\mathbf{x}_{0:k})$ can be evaluated pointwise.
- The normalizing constant Z_k may be unknown.

Common tasks:

- 1. Approximate the normalization constant Z_k .
- 2. Approximate $\pi_k(\mathbf{x}_{0:k})$ and compute $\int \phi(\mathbf{x}_{0:k})\pi_k(\mathbf{x}_{0:k})d\mathbf{x}_{0:k}$.

ex) State space model

The sequence of target distributions $\{\pi_k(\mathbf{x}_{0:k})\}_{k\geq 0}$ can be constructed in many different ways.

ex) State space model

The sequence of target distributions $\{\pi_k(\mathbf{x}_{0:k})\}_{k\geq 0}$ can be constructed in many different ways.

The most basic construction arises from **chain-structured graphs**, such as the state space model (SSM).

Sequential Monte Carlo approximates

$$\pi_k(\mathbf{x}_{0:k}) \approx \sum_{i=1}^N W_k^i \delta_{\mathbf{x}_{0:k}^i}(\mathbf{x}_{0:k}).$$

The weighted particle populations $\{x_{0:k}^i, w_k^i\}_{i=1}^N$ are generated sequentially for k = 1, 2, ...

Assume that we have obtained $\{\mathbf{x}_{0:k-1}^{i}, \mathbf{w}_{k-1}^{i}\}_{i=1}^{N}$

Resampling: Sample a_k^i with $\mathbb{P}(a_k^i = j) = \nu_{k-1}^j$, $j = 1, \dots, N$.

Assume that we have obtained $\{x_{0:k-1}^{i}, w_{k-1}^{i}\}_{i=1}^{N}$

Resampling: Sample a_k^i with $\mathbb{P}(a_k^i = j) = \nu_{k-1}^j$, $j = 1, \dots, N$. **Propagation:** $x_k^i \sim q_k(x_k \mid x_{0:k-1}^{d_k})$ and $x_{0:k}^i = (x_{0:k-1}^{d_k}, x_k^i)$.

Assume that we have obtained $\{x_{0:k-1}^{i}, w_{k-1}^{i}\}_{i=1}^{N}$

Resampling: Sample a_{k}^{i} with $\mathbb{P}(a_{k}^{i} = j) = \nu_{k-1}^{j}, j = 1, ..., N$. **Propagation:** $x_{k}^{i} \sim q_{k}(x_{k} | x_{0:k-1}^{a_{k}^{i}})$ and $x_{0:k}^{i} = (x_{0:k-1}^{a_{k}^{i}}, x_{k}^{i})$. **Weighting:** $w_{k}^{i} \propto \frac{w_{k-1}^{a_{k}^{i}}}{\nu_{k-1}^{a_{k}^{i}}} \frac{\widetilde{\pi}_{k}(x_{0:k}^{i})}{\widetilde{\pi}_{k-1}(x_{0:k-1}^{a_{k}^{i}})q_{k}(x_{k}^{i} | x_{0:k-1}^{a_{k}^{i}})$.

Assume that we have obtained $\{x_{0:k-1}^{i}, w_{k-1}^{i}\}_{i=1}^{N}$

Resampling: Sample a_{k}^{i} with $\mathbb{P}(a_{k}^{i} = j) = \nu_{k-1}^{j}, j = 1, ..., N$. **Propagation:** $x_{k}^{i} \sim q_{k}(x_{k} | x_{0:k-1}^{a_{k}^{i}})$ and $x_{0:k}^{i} = (x_{0:k-1}^{a_{k}^{i}}, x_{k}^{i})$. **Weighting:** $w_{k}^{i} \propto \frac{w_{k-1}^{a_{k}^{i}}}{\nu_{k-1}^{a_{k}^{i}}} \frac{\widetilde{\pi}_{k}(x_{0:k}^{i})}{\widetilde{\pi}_{k-1}(x_{0:k-1}^{a_{k}^{i}})q_{k}(x_{k}^{i} | x_{0:k-1}^{a_{k}^{i}})}$.

The result is a new weighted set of particles $\{x_{0:k}^{i}, w_{k}^{i}\}_{i=1}^{N}$

The analogue of the fully adapted particle filter in the general case is to use

Proposal:
$$q_k(x_k | x_{0:k-1}^i) = \frac{\gamma_k((x_{0:k-1}^i, x_k))}{\nu_{k-1}(x_{0:k-1}^i)\gamma_{k-1}(x_{0:k-1}^i)}$$

Resampling weights: $\nu_{k-1}^i \propto \nu_{k-1}(x_{0:k-1}^i)w_{k-1}^i$

where

$$\nu_{k-1}(x_{0:k-1}) = \frac{\int \gamma_k(x_{0:k}) dx_k}{\gamma_{k-1}(x_{0:k-1})}$$

SMC for probabilistic graphical models

Recall – Probabilistic graphical models

A probabilistic graphical model (PGM) is a probabilistic model where a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ represents the conditional independency structure between random variables,

- 1. a set of vertices $\mathcal V$ (nodes) represents the random variables
- 2. a set of edges \mathcal{E} containing elements $(i, j) \in \mathcal{E}$ connecting a pair of nodes $(i, j) \in \mathcal{V} \times \mathcal{V}$

SMC methods are used to approximate a **sequence of probability distributions** on a sequence of spaces of increasing dimension.

SMC methods are used to approximate a **sequence of probability distributions** on a sequence of spaces of increasing dimension.

Key idea:

- 1. Introduce a sequential decomposition of the PGM.
- 2. Each subgraph induces an intermediate target dist.
- 3. Apply SMC to the sequence of intermediate target dist.

SMC methods are used to approximate a **sequence of probability distributions** on a sequence of spaces of increasing dimension.

Key idea:

- 1. Introduce a sequential decomposition of the PGM.
- 2. Each subgraph induces an intermediate target dist.
- 3. Apply SMC to the sequence of intermediate target dist.

Using an artificial sequence of intermediate target distributions for an SMC method is a powerful (quite possibly underutilized) idea.

Using a 2D lattice model from statistical physics, $x \in (-\pi, \pi]$.

Using a 2D lattice model from statistical physics, $x \in (-\pi, \pi]$.

$$p(\mathbf{X}_{0:K}) \propto e^{-\beta H(\mathbf{X}_{0:K})}, \qquad H(\mathbf{X}_{0:K}) = -\sum_{(i,j) \in \mathcal{E}} J_{ij} \cos{(\mathbf{X}_i - \mathbf{X}_j)},$$

Using a 2D lattice model from statistical physics, $x \in (-\pi, \pi]$.

$$p(\mathbf{x}_{0:K}) \propto e^{-\beta H(\mathbf{x}_{0:K})}, \qquad H(\mathbf{x}_{0:K}) = -\sum_{(i,j)\in\mathcal{E}} J_{ij} \cos{(\mathbf{x}_i - \mathbf{x}_j)},$$

The intermediate sequence of target distributions can be chosen

$$\widetilde{\pi}_{k}(\mathsf{X}_{0:k}) \propto \exp\left(\beta \sum_{\substack{(i,j) \in \mathcal{E} \\ i,j \leq k}} J_{ij} \cos\left(\mathsf{X}_{i} - \mathsf{X}_{j}\right)\right)$$

Ex. Sampling x_4 conditionally on $x_{0:3}$

Locally optimal proposal depends on

$$\frac{\widetilde{\pi}_{k}(\mathsf{x}_{0:k})}{\widetilde{\pi}_{k-1}(\mathsf{x}_{0:k-1})} \propto \exp\left(\beta \sum_{i \in \mathcal{N}_{k}} J_{ik} \cos\left(\mathsf{x}_{i} - \mathsf{x}_{k}\right)\right)$$

where $\mathcal{N}_k = \{i < k : (i, k) \in \mathcal{E}\}.$

ex) Classical XY-model

Christian A. Naesseth, Fredrik Lindsten and Thomas B. Schön. Sequential Monte Carlo methods for graphical models. Advances in Neural Information Processing Systems (NeurIPS), Montreal, Canada, December, 2014.

How to select the targets?

We want to sample from $p(\mathbf{x}_{0:K}) \Rightarrow$ **Require:** $\pi_K(\mathbf{x}_{0:K}) = p(\mathbf{x}_{0:K})$, but...

...all intermediate targets $\{\pi_k(X_{0:k})\}_{k=0}^{K-1}$ are design choices!

How to select the targets?

We want to sample from $p(\mathbf{x}_{0:K}) \Rightarrow$ **Require:** $\pi_K(\mathbf{x}_{0:K}) = p(\mathbf{x}_{0:K})$, but...

...all intermediate targets $\{\pi_k(\mathbf{x}_{0:k})\}_{k=0}^{K-1}$ are design choices!

Idea:

$$\widetilde{\pi}_{k}^{\psi}(\mathsf{X}_{0:k}) = \underbrace{\widetilde{\pi}_{k}(\mathsf{X}_{0:k})}_{\widetilde{\psi}_{k}(\mathsf{X}_{0:k})} \underbrace{\widetilde{\psi}_{k}(\mathsf{X}_{0:k})}_{\widetilde{\psi}_{k}(\mathsf{X}_{0:k})}$$

From graph decomp.

• In theory, possible to select ψ_k to get exact samples from $p(x_{0:K})$ at iteration *K*.

How to select the targets?

We want to sample from $p(\mathbf{x}_{0:K}) \Rightarrow \text{Require: } \pi_K(\mathbf{x}_{0:K}) = p(\mathbf{x}_{0:K})$, but...

...all intermediate targets $\{\pi_k(X_{0:k})\}_{k=0}^{K-1}$ are design choices!

Idea:

$$\widetilde{\pi}_{k}^{\psi}(\mathsf{X}_{0:k}) = \underbrace{\widetilde{\pi}_{k}(\mathsf{X}_{0:k})}_{\psi_{k}(\mathsf{X}_{0:k})} \underbrace{\widetilde{\psi}_{k}(\mathsf{X}_{0:k})}_{\psi_{k}(\mathsf{X}_{0:k})}$$

From graph decomp.

- In theory, possible to select ψ_k to get exact samples from $p(x_{0:K})$ at iteration *K*.
- Use deterministic inference method to approximate optimal ψ_k

SMC works as a **post-correction** of the **biases** associated with the deterministic inference method of choice.

ex) CAR-Binomial

Model:

- Precision: $Q_{kk} = 0.1 \times \{|Ne(t)| + 1\}$ and $Q_{kk'} = -0.1$ if $k \sim k'$
- $y_k \sim \text{Binomial}(10, \text{logit}^{-1}(x_k))$
- Spatial structure \sim regions in Germany, K = 544

Fredrik Lindsten, Jouni Helske, and Matti Vihola. Graphical model inference: Sequential Monte Carlo meets deterministic approximations. Advances in Neural Information Processing Systems (NeurIPS), Montreal, Canada, December, 2018.

What about stability?

Recall: for a state-space model we need exponential forgetting for the particle filter to be stable.

The same is true in the general case!

If there are **strong** and **long-ranging** dependencies among the variables $X_{0:k}$ under the distribution π_k , then the asymptotic variance of SMC may be exponential in k.

However,

- In many applications we *do* have fast enough forgetting (though, it can be difficult to verify theoretically)
- Even if this is not the case, SMC can give good results for moderate values of *k*

SMC can be used to approximate a sequence of probability distributions $\{\pi_k(\mathbf{x}_{0:k})\}_{k\geq 0}$ (available up to an unknown normalization constant) on a sequence of spaces $\mathcal{X}_{0:k} = \mathcal{X}_k \times \mathcal{X}_{0:k-1}$ of increasing dimension.

Often we only care about (some marginal) of the final target $\pi_k(x_{0:k})$ in which case the intermediate targets $\{\pi_k(x_{0:k})\}_{k=0}^{k-1}$ are design choices.