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Outline – Lecture 15

Aim: Show how SMC can be used for a much wider class of problems
than inference in state-space models.

Outline:

1. Examples of probabilistic models
2. General SMC formulation
3. Locally optimal proposals
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Examples of probabilistic models



Phylogenetic trees

A phylogenetic (evolutionary) tree shows the inferred evolutionary
relationships among various species based upon similarities and
differences in their physical or genetic characteristics.

p(Tr) =



2
∏

c∈Ch(r)
p(Tc)

if r is the root node,

2λe−(λ+µ)∆r ∏
c∈Ch(r)

p(Tc)

if r is a speciation,

µe−(λ+µ)∆r

if r is an extinction,

e−(λ+µ)∆r

if r is an extant species,
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Probabilistic graphical models

A probabilistic graphical model (PGM) is a probabilistic model where
a graph G = (V, E) represents the conditional independency
structure between random variables,

1. a set of vertices V (nodes) represents the random variables
2. a set of edges E containing elements (i, j) ∈ E connecting a pair
of nodes (i, j) ∈ V × V

y1 y2 y3

x1 x2 x3

x4

x5
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Gaussian process state-space model

The Gaussian process (GP) is a non-parametric and probabilistic
model for nonlinear functions.

Non-parametric means that it does not rely on any particular
parametric functional form to be postulated.

Xt = f(Xt−1) + Vt, s.t. f(X) ∼ GP(0, κη,f(x, x′)),
Yt = g(Xt) + Et, s.t. g(X) ∼ GP(0, κη,g(x, x′)).

The model functions f and g are assumed to be realizations from
Gaussian process priors and Vt ∼ N (0,Q), Et ∼ N (0,R).

Task: Compute the posterior p(f,g,Q,R, η, x0:T | y1:T).
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Dirichlet process mixtures models

The Dirichlet process is a Bayesian nonparametric model, which can
be used to construct mixture models with an unknown and possibly
infinite number of components.

Generative process:

p(xk+1 = j | x0:k)

=

{ nk,j
k+α for j = 1, . . . , Jk,
α

k+α for j = Jk + 1,
,

θk ∼ F(θ), k = 0, 1, . . . ,
p(yk | xk,{θk}k≥1) = G(yk | θxk),
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Probabilistic models

Classes of probabilistic models to which SMC has been applied:

• State-space models
• Phylogenetics
• Generic PGMs
• Bayesian nonparametric models
• Probabilistic programming languages
• Diffusion generative models
• Autoregressive (language) models
• …

6/20



General SMC formulation



Model specification

SMC can be used to approximate a sequence of probability distribu-
tions on a sequence of probability spaces of increasing dimension.

Let {πk(x0:k)}k≥0 be an arbitrary sequence of target distributions

πk(x0:k) =
π̃k(x0:k)
Zk

• The domain of xk is Xk, and X0:k = Xk ×X0:k−1 for all k.
• π̃k(x0:k) can be evaluated pointwise.
• The normalizing constant Zk may be unknown.

Common tasks:
1. Approximate the normalization constant Zk.
2. Approximate πk(x0:k) and compute

∫
ϕ(x0:k)πk(x0:k)dx0:k.
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ex) State space model

The sequence of target distributions {πk(x0:k)}k≥0 can be
constructed in many different ways.

The most basic construction arises from chain-structured graphs,
such as the state space model (SSM).

X0 X1 X2 . . . XT

Y1 Y2 YT

πt(x0:t)︷ ︸︸ ︷
p(x0:t | y1:t) =

π̃t(x0:t)︷ ︸︸ ︷
p(x0:t, y1:t)
p(y1:t)︸ ︷︷ ︸

Zt=
∫
π̃(x0:t)dx0:t

8/20



ex) State space model

The sequence of target distributions {πk(x0:k)}k≥0 can be
constructed in many different ways.

The most basic construction arises from chain-structured graphs,
such as the state space model (SSM).

X0 X1 X2 . . . XT

Y1 Y2 YT

πt(x0:t)︷ ︸︸ ︷
p(x0:t | y1:t) =

π̃t(x0:t)︷ ︸︸ ︷
p(x0:t, y1:t)
p(y1:t)︸ ︷︷ ︸

Zt=
∫
π̃(x0:t)dx0:t

8/20



General Sequential Monte Carlo

Sequential Monte Carlo approximates

πk(x0:k) ≈
N∑
i=1

wikδxi0:k(x0:k).

The weighted particle populations {xi0:k,wik}Ni=1 are generated
sequentially for k = 1, 2, . . .
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General Sequential Monte Carlo

Assume that we have obtained {xi0:k−1,wik−1}Ni=1
Resampling: Sample aik with P

(
aik = j

)
= ν jk−1, j = 1, . . . ,N.

Propagation: xik ∼ qk(xk | x
aik
0:k−1) and xi0:k = (xa

i
k
0:k−1, xik).

Weighting: wik ∝
wa

i
k
k−1

ν
aik
k−1

π̃k(xi0:k)

π̃k−1(x
aik
0:k−1)qk(xik | x

aik
0:k−1)

.

The result is a new weighted set of particles {xi0:k,wik}Ni=1.
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Fully adapted general SMC

The analogue of the fully adapted particle filter in the general case is
to use

Proposal: qk(xk | xi0:k−1) =
γk((xi0:k−1, xk))

νk−1(xi0:k−1)γk−1(xi0:k−1)

Resampling weights: ν ik−1 ∝ νk−1(xi0:k−1)wik−1

where

νk−1(x0:k−1) =
∫
γk(x0:k)dxk
γk−1(x0:k−1)
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SMC for probabilistic graphical
models



Recall – Probabilistic graphical models

A probabilistic graphical model (PGM) is a probabilistic model where
a graph G = (V, E) represents the conditional independency
structure between random variables,

1. a set of vertices V (nodes) represents the random variables
2. a set of edges E containing elements (i, j) ∈ E connecting a pair
of nodes (i, j) ∈ V × V

y1 y2 y3

x1 x2 x3

x4

x5
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Key idea

SMC methods are used to approximate a sequence of probability
distributions on a sequence of spaces of increasing dimension.

Key idea:
1. Introduce a sequential decomposition of the PGM.
2. Each subgraph induces an intermediate target dist.
3. Apply SMC to the sequence of intermediate target dist.

Using an artificial sequence of intermediate target distributions for
an SMC method is a powerful (quite possibly underutilized) idea.
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ex) Illustrating possible graph decomposition

Using a 2D lattice model from statistical physics, x ∈ (−π, π].

0 2 5

1 4 7

3 6 8

2 1 0

3 8 7

4 5 6

0 1 2

3 4 5

6 7 8

p(x0:K) ∝ e−βH(x0:K), H(x0:K) = −
∑

(i,j)∈E

Jij cos (xi − xj),

The intermediate sequence of target distributions can be chosen

π̃k(x0:k) ∝ exp

(
β
∑
(i,j)∈E
i,j≤k

Jij cos (xi − xj)
)
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ex) Illustrating possible graph decomposition

0 1 2

3 4 5

6 7 8

Ex. Sampling x4 conditionally on x0:3

Locally optimal proposal depends on

π̃k(x0:k)
π̃k−1(x0:k−1)

∝ exp

(
β
∑
i∈Nk

Jik cos (xi − xk)
)

where Nk = {i < k : (i, k) ∈ E}.
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ex) Classical XY-model
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Christian A. Naesseth, Fredrik Lindsten and Thomas B. Schön. Sequential Monte Carlo methods
for graphical models. Advances in Neural Information Processing Systems (NeurIPS), Montreal,
Canada, December, 2014.
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How to select the targets?

We want to sample from p(x0:K) ⇒ Require: πK(x0:K) = p(x0:K), but…

…all intermediate targets {πk(x0:k)}K−1k=0 are design choices!

Idea:

π̃ψk (x0:k) = π̃k(x0:k)︸ ︷︷ ︸
From graph decomp.

Twisting funct.︷ ︸︸ ︷
ψk(x0:k)

• In theory, possible to select ψk to get exact samples from p(x0:K)
at iteration K.

• Use deterministic inference method to approximate optimal ψk

SMC works as a post-correction of the biases associated with the
deterministic inference method of choice.
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ex) CAR-Binomial

Model:

• Precision: Qkk = 0.1× {|Ne(t)|+ 1} and Qkk′ = −0.1 if k ∼ k′
• yk ∼ Binomial(10, logit−1(xk))
• Spatial structure ∼ regions in Germany, K = 544

Fredrik Lindsten, Jouni Helske, and Matti Vihola. Graphical model inference: Sequential Monte
Carlo meets deterministic approximations. Advances in Neural Information Processing Systems
(NeurIPS), Montreal, Canada, December, 2018. 18/20



What about stability?

Recall: for a state-space model we need exponential forgetting for
the particle filter to be stable.

The same is true in the general case!
If there are strong and long-ranging dependencies among the vari-
ables X0:k under the distribution πk, then the asymptotic variance of
SMC may be exponential in k.

However,
• In many applications we do have fast enough forgetting
(though, it can be difficult to verify theoretically)

• Even if this is not the case, SMC can give good results for
moderate values of k
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Summary

SMC can be used to approximate a sequence of probability distribu-
tions {πk(x0:k)}k≥0 (available up to an unknown normalization con-
stant) on a sequence of spaces X0:k = Xk × X0:k−1 of increasing
dimension.

Often we only care about (some marginal) of the final target πK(x0:K)
in which case the intermediate targets {πk(x0:k)}K−1k=0 are design
choices.
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