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Outline — Lecture 14

Aim: Present the particle Gibbs algorithm; a systematic method for
combining particle filters and MCMC within a Gibbs sampling framework.

Outline:

1. The conditional importance sampling kernel
2. The particle Gibbs kernel

3. Ancestor sampling
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Gibbs sampling for nonlinear dynamical systems

Gibbs sampling for dynamical system:

e Draw Q*NP(9|XO:T7y1:T)' OK!

e Draw x5 ~ p(xo.7 |0*,y1.7). Hard!

Problem: p(xo.7 |0, y1.7) not available!

Idea: Approximate p(xo.7 |0, y1.7) using a particle filter?

Better idea: Sample xj.+ from a Markov kernel kp 9, constructed using
a particle filter, which has p(xo.7 |6, y1.7) as a stationary distribution!
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Ex) Epidemiological modelling

Compute p(0, xo.7 | y1.7), where y1.7 = (y1,y2,...,y7) and use it to
compute the predictive distribution.
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Disease activity (number of infected individuals /;) over an eight year
period.

Fredrik Lindsten, Michael I. Jordan and Thomas B. Schon. Particle Gibbs with ancestor sam-
pling. Journal of Machine Learning Research (JMLR), 15:2145-2184, June 2014.
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The conditional importance
sampling kernel




Conditional importance sampling

Simplified setting: Given a target distribution 7(x), construct a Markov
kernel ry(x, x*)—using importance sampling—which has stationary
distribution 7(x).

Markov kernel = stochastic procedure with input x and output x*.

We define kp(x, x*) by the following “conditional importance sampler”:

. Draw b ~ C({w'}¥)

Input: x
1. Draw x' ~ q(x), i =1, ..., N 1
2. Set xN = x
wi= ) = e wi = W
3. Compute w' = ) = 1, ..., N and normalize: w' = ST
4
5

. Output: x* = x”
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ex) Conditional importance sampling illustration

Iterationm =1 MCMC samples
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Validity of the CIS kernel

Thm (stationarity): ry(x, x*) defined by the conditional importance
sampling procedure has 7(x) as stationary distribution for any N > 1.

Thm (ergodicity): Under weak conditions, samples generated from
kn(x, x*) converge (at a geometric rate) towards 7(x) from any starting
point.

(Proofs as exercises in the practical session.)
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Particle Gibbs



The particle Gibbs kernel

Let @ be fixed and let xp.7 € X T*! be a given state trajectory, denoted
the reference trajectory.

We want to construct a Markov kernel kn g(xo:7,Xx3.7) on X7+

Particle Gibbs: Run a particle filter, but at each time step
e sample only N — 1 particles in the standard way.
e set the Nth particle deterministically: x¥ = x; and a)) = N.

e At final time t = T, output x}.+ = xo+ with b ~ C({wr}V))
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The particle Gibbs algorithm

Algorithm Bootstrap particle filter
1. Initialize (¢t = 0):
- Draw x{ ~ p(x0), i=1, ..., N.

Set x¢{' = xo.

-Setwg=+x,i=1,..., N,

2. fort=1to T:
- Draw aj ~ C({w/_,}}y), i=1..... N — 1.

- Drawxéwp(xt|xtalil,0), i=1,..., N—1.
Set x' = x; and a¥ = N.
- Setwy = p(ye|x), i=1,..., N.
- Normalize the weights: W[ = ;Vitw, i=1,..., N.
Do W

2/ f i \N * b
Draw b ~ C({w7}L;) and output X+ = X 1

1
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The particle Gibbs kernel

State

e The algorithm stochastically “maps” xo.7 into xj. .
e Implicitly defines a Markov kernel k. o(Xo:7, X3 7) on X7
— the particle Gibbs kernel.
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Particle Gibbs sampler for SSMs

Algorithm Particle Gibbs for parameter inference in SSMs

1. Initialize: Set xo.7[1] and O[1] arbitrarily
2. For m =2 to M, iterate:

a. Draw 0[m] ~ p(0| xo.7[m — 1], y1.T)

b. Draw xo.7[m] ~ kn,o[m (x0:7[m — 1], x5.7)
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Some properties of the particle
Gibbs kernel




Validity

Stationary distribution: p(xo.7 |6, y1.7) is a stationary distribution of

the particle Gibbs kernel, for any number of particles N > 1,

/ O R S S Ny |

Ergodicity: The particle Gibbs kernel is ergodic for any N > 2 under
weak conditions.

...what's the catch?!?

Scaling: For the mixing rate not to deteriorate as T becomes large,
we need (at least) N oc T.

11/22



Path degeneracy for particle Gibbs

State

The scaling N oc T is required to tackle the path degeneracy, since

otherwise

P(X{ # x¢) — 0, as T —t — 0.
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ex) Particle Gibbs

Stochastic volatility model,

Xep1 = 0.9X; + V4, Vi ~ N(Oa @)a
Yt — Et exp (%Xt) B Et ~ N(O, ].)

Consider the ACF of 8[m] — E[© | y1.7].
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Ancestor sampling




Ancestor sampling

Particle Gibbs:

Let x1.7 = (x1, ..., x7) be a fixed reference trajectory.

e Sample only N — 1 particles in the standard way.

e Set the Nth particle deterministically: xV = x;.
o Serall=m_
e Sample al € {1, ..., N} with

P(AY =) o wi_1p(xe | x|_1,0)-
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Particle Gibbs with ancestor sampling
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PGAS
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ex) Stochastic volatility model, cont’d

Stochastic volatility model,

Xt+1 =0.9X; + V¢, Vi~ N(Oa @)a
Yt = Et eXp (%Xt) B Et ~ N(O, ].)

Consider the ACF of 8[m] — E[© | y1.7].
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Practical considerations




Resampling in the conditional particle filter

Care needs to be taken when implementing the resampling step in the

conditional particle filter!

Common implementation:
alt,:] <- resampling(w[t-1,:])
alt,N] <- N
alt,N] <- N

Low-variance resampling (stratified, systematic, ...) can be used, but

require special implementations to maintain the correct stationary dis-

tribution:
Nicolas Chopin and Sumeetpal S. Singh. On Particle Gibbs Sampling. Bernoulli, 21:1855—

@ 1883, 2015.
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Modularity of particle Gibbs

The on particle Gibbs is useful for constructing composite
MCMC schemes.

ex) Multiple dynamical systems

Multiple time series/state space models with shared parameter 6.

Model 1: Model n:
Xc = fl(Xt—l- Vt,@). Xt = fn(Xt—L Vt.@)A
Y= gl(Xr- Et, @). Y= gn(Xr‘ Et, @).

1. Use a separate particle Gibbs kernel for each model.

2. Update the parameter using all the models’ state variables.
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The on particle Gibbs is useful for constructing composite

MCMC schemes.
ex) Temporal blocking

e Consider a sub-block of states x.,
e Sample xg, ~ £} (x0T, xZ,) where k3" is a particle Gibbs kernel
targeting p(Xs:u | gvxsflv Xu+la)/s:u)-

e Only need N  |u — s|

@ Sumeetpal S. Singh, Fredrik Lindsten, and Eric Moulines. Blocking Strategies and Stability of
Particle Gibbs Samplers. Biometrika, 104:953-969, 2017. 21/22



A few concepts to summarize lecture 14

Particle Gibbs kernel: A Markov kernel on the space of state
trajectories, constructed using a particle filter, which has the exact joint
smoothing distribution as its stationary distribution.

Modularity of particle Gibbs: The particle Gibbs kernel can be used as
a plug-and-play component in other MCMC schemes.

Ancestor sampling: A simple modification of the particle Gibbs
construction, in which the ancestor indices of the input particles are
sampled anew at each time step of the underlying particle filter. This
mitigates the effect of path degeneracy and can therefore (significantly)
improve the ergodicity of the particle Gibbs kernel.
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