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Outline – Lecture 13

Aim: Show an alternative MCMC procedure (Gibbs sampling) and how
it conceptually can be used for learning of dynamical systems

Outline:

1. The Gibbs sampler
2. Composition of MCMC methods – “MCMC within Gibbs”
3. Gibbs sampling for dynamical systems
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The Gibbs sampler



Challenge with MCMC

Designing efficient Metropolis–Hastings kernels for arbitrary and high-
dimensional target distributions can be very challenging.

Gibbs sampling turns the overall sampling problem into a series of sub-
problems, each of which is hopefully easier to address.
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A first Gibbs sampler

Let π(x1, x2) be a target distribution over two (groups of) variables.

Basic factorization: π(x1, x2) = π(x2 | x1)π(x1)

Thus:

• If (X1,X2) ∼ π(x1, x2), then X1 is distributed according to π(x1).
• If X?

2 | (X1 = x1) ∼ π(x2 | x1), then (X1,X?
2 ) is distributed according

to π(x1, x2).

Starting with a sample from the joint distribution, we can replace any of
the variables by a draw from it’s full conditional and still have a sample
from the joint distribution.
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ex) Gibbs sampler illustration

Gibbs sampler:

Initialize x1[1] = 0, x2[1] = 0
for m = 2, . . . , M

Draw x1[m] ∼ π(x1 | x2[m − 1]);
Draw x2[m] ∼ π(x2 | x1[m]).

ex) Sample from,

π(x1, x2) = N

((
x1

x2

)
|

(
10
10

)
,

(
2 1
1 1

))
.
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ex) Gibbs sampler illustration
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MCMC kernels

An MCMC sampler generates the Markov chain {x [m]}M
m=1 by:

• Initialize: set x [1] arbitrarily.
• For m = 2 to M: sample x [m] ∼ κ(x [m − 1], x?).

κ(x , x?) is a Markov kernel on X , i.e. a conditional distribution for the
next state x? given the current state x .

Basic requirement 1: Stationarity of π(x),∫
π(x)κ(x , x?)dx = π(x?).

Basic requirement 2: Ergodicity — κ must allow the state to move in
order to explore the state space.
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The Gibbs Markov kernel

Target: π(x) = π(x1, . . . , xd)

Input a configuration x = (x1, . . . , xd)

for j = 1, . . . , d
Sample x?

j ∼ π(xj | x?
1 , . . . , x?

j−1, xj+1, . . . , xd)

Output x? = (x?
1 , . . . , x?

d ).

Gibbs kernel: This procedure defines a Markov kernel κ(x , x?) with
stationary distribution π(x).
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Limitations and extensions

Limitation: Can perform poorly if there are strong dependencies between
some components.

There are many possible extensions of the basic Gibbs procedure, which
also result in valid MCMC kernels.

• Random scan: select components to sample randomly (with or
without replacement)

• Overlapping blocks: the groups of variables need not be disjoint
• Collapsing: analytical marginalization of some of the variables (!)
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Extensions – Composition of MCMC methods

In many cases, exact sampling from some of the full conditional distri-
butions is not possible.

Sufficient to sample from some Markov kernel which has the full condi-
tional distribution as stationary distribution — we can make use of a
combination of MCMC techniques.

If exact sampling from π(xj | x−j) is not possible:

X?
j ∼ κj(x , x?

j ) where
∫

κj(x , x?
j )π(xj | x−j)dxj = π(x?

j | x−j)

For instance, κj can be a Metropolis–Hastings kernel on the lower
dimensional space Xj 3 xj .

(Short hand notation x−j = (x1, . . . , xj−1, xj+1, . . . , xd).)
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ex) Metropolis-within-Gibbs

Target:

π(x1, x2) ∝ π̃(x1, x2) = exp
(
− 1

2 (2x1 + sin(6.28x1))
2)
)︸ ︷︷ ︸

π̃(x1)

N (x2 | x3
1 , 0.1)︸ ︷︷ ︸

π(x2 | x1)

Gibbs sampler:

Set x1[1] = 0, x2[1] = 0
for m = 2, . . . , M

Draw x1[m] ∼ κ1(x [m − 1], x?
1 );

Draw x2[m] ∼ π(x2 | x1[m]).
where κ1 is a Metropolis–Hastings kernel for π(x1 | x2).

Note that π(x1 | x2) =
π(x1,x2)
π(x2)

. Hence, conditionally on x2,

π(x1 | x2) ∝ π(x1, x2) ∝ π̃(x1, x2).
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ex) Metropolis-within-Gibbs

Algorithm 1 Metropolis-within-Gibbs sampler for toy problem
1. Initialize: Set x1[1] = 0, x2[1] = 0.
2. For m = 2 to M, iterate:

a. Sample x ′
1 ∼ N (x1 | x1[m − 1], 0.52).

b. Sample u ∼ U [0, 1].
c. Compute the acceptance probability

α = min

(
1, π̃(x ′

1, x2[m − 1])
π̃(x1[m − 1], x2[m − 1]

)
d. Set

x1[m] =

{
x ′

1 if u ≤ α

x1[m − 1] otherwise

e. Draw x2[m] ∼ π(x2 | x1[m]).
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Gibbs sampling for dynamical
systems



ex) Gibbs sampling for linear Gaussian system

Simple LG-SSM,

Xt = 0.9Xt−1 + Vt , Vt ∼ N (0,Θ1),

Yt = Xt + Et , Et ∼ N (0,Θ2),

With inverse-Gamma priors: Θ1 ∼ IG(0.1, 0.1), Θ2 ∼ IG(0.1, 0.1).

Task: Compute p(θ | y1:T ) for a batch of T = 100 observations.

Problem: Targeting p(θ | y1:T ) directly with a Gibbs sampler is difficult.

Solution: Introduce unknown states as auxiliary variables. Target
p(θ, x0:T | y1:T ) with a Gibbs sampler.
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ex) Gibbs sampling for linear Gaussian system

Gibbs sampler:

Initialize θ1[1] = θ2[1] = 5 (arbitrary!)
for m = 2, . . . , M

• Draw x0:T [m] ∼ p(x0:T | θ[m − 1], y1:T ),

by using Kalman smoothing techniques.

• Draw θ[m] ∼ p(θ | x0:T [m], y1:T ),

i.e., simulate θ1[m] and θ2[m] from their inverse-Gamma posteriors.

The inverse-Gamma distribution is conjugate prior for an unknown vari-
ance of a Gaussian likelihood ⇒

p(θ1 | x0:T , y1:T ) = IG
(
θ1 | 0.1 + T

2 , 0.1 + 1
2
∑T

t=1(xt − 0.9xt−1)
2
)
,

p(θ2 | x0:T , y1:T ) = IG
(
θ2 | 0.1 + T

2 , 0.1 + 1
2
∑T

t=1(yt − xt)
2
)
.
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ex) Gibbs sampling for linear Gaussian system

First 500 iterations of the Gibbs sampler for θ1 and θ2.

0 100 200 300 400 500

MCMC iteration number

0

0.5

1

1.5

2
3

3
1

3
2
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ex) Gibbs sampling for linear Gaussian system

Marginal posterior distributions, p(θ1 | y1:T ) and p(θ2 | y1:T ), based on
50 000 iterations of the Gibbs sampler.
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Gibbs sampling for nonlinear dynamical systems

What about a general nonlinear/non-Gaussian dynamical system?

Xt | (Xt−1 = xt−1,Θ = θ) ∼ p(xt | xt−1, θ),

Yt | (Xt = xt ,Θ = θ) ∼ p(yt | xt , θ),

X0 ∼ p(x0), Θ ∼ p(θ).

Gibbs sampler:

• Draw θ? ∼ p(θ | x0:T , y1:T ),

OK!

• Draw x?
0:T ∼ p(x0:T | θ?, y1:T ).

Hard!

Problem: p(x0:T | θ, y1:T ) not available!

Idea: Approximate p(x0:T | θ, y1:T ) using a particle filter?
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Sampling based on the PF

With P
(
X?

0:T = x i
0:T
)
= w i

T we get X?
0:T

approx.∼ p(x0:T | θ, y1:T ).
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Sampling based on the PF
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Sampling based on the PF

Problems with this approach:
• Based on a PF ⇒ approximate sample.
• p(θ, x1:T | y1:T ) is not a stationary distribution.
• Relies on large N to be successful.
• A lot of wasted computations.

The PMCMC framework allows us to address these issues!
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A few concepts to summarize lecture 13

Gibbs sampler: an MCMC sampler that iteratively simulates the
unknown variables of the model from their conditional distributions.

MCMC within Gibbs: If exact sampling from some conditional is not
possible, we may use any valid MCMC kernel within a Gibbs sampler to
simulate from this conditional.

Gibbs sampling for dynamical systems: boils down to sampling the
model parameters with fixed states + sampling the states with fixed
parameters (state inference).
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