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Outline – Lecture 12

Aim: Describe how we can make use of the particle filter inside the

Metropolis Hastings algorithm to produce exact samples from the pa-

rameter posterior distribution for a nonlinear state space model.

Outline:

1. Using unbiased estimates within Metropolis Hastings

2. Exact approximation – Particle Metropolis Hastings (PMH)

3. Examples
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Bayesian parameter inference in SSMs

Full probabilistic model of a nonlinear parametric SSM:

p(x1:T , θ, y1:T ) = p(y1:T | x1:T , θ) p(x1:T , θ)︸ ︷︷ ︸
prior

=
T∏
t=1

p(yt | xt , θ)︸ ︷︷ ︸
observation

T−1∏
t=1

p(xt+1 | xt , θ)︸ ︷︷ ︸
dynamics

p(x1 | θ)︸ ︷︷ ︸
state

p(θ)︸︷︷︸
param.︸ ︷︷ ︸

prior

Bayesian parameter inference amounts to computing

p(θ | y1:T ) =
p(y1:T | θ)p(θ)

p(y1:T )

or more commonly some integral of the form

E[φ(θ) | y1:T ] =
∫
φ(θ)p(θ | y1:T ) dθ.
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Using MH for parameter inference in a dynamical system

Algorithm 1 Metropolis Hastings (MH)

1. Initialize: Set the initial state of the Markov chain θ[1].

2. For m = 1 to M, iterate:

a. Sample θ′ ∼ q(θ | θ[m]).

b. Sample u ∼ U [0, 1].
c. Compute the acceptance probability

α = min

(
1,

p(y1:T | θ′)p(θ′)
p(y1:T | θ[m])p(θ[m])

q(θ[m] | θ′)
q(θ′ | θ[m])

)
d. Set the next state θ[m + 1] of the Markov chain according to

θ[m + 1] =

{
θ′ u ≤ α
θ[m] otherwise
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Recall – Auxiliary variables (from lecture 6)

Target distribution: π(x), difficult to sample from

Idea: Introduce another variable U with conditional distribution π(u | x)

The joint distribution π(x , u) = π(u | x)π(x) admits π(x) as a marginal

by construction, i.e.,
∫
π(x , u)du = π(x).

Sampling from the joint π(x , u) may be easier than directly sampling

from the marginal π(x)!

The variable U is an auxiliary variable. It may have some “physical”

interpretation (an unobserved measurement, unknown temperature, . . . )

but this is not necessary.
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Particle Metropolis Hastings

The use of a non-negative and unbiased likelihood estimate within

Metropolis Hastings is called the pseudo-marginal approach.

Algorithm 2 Particle Metropolis Hastings

1. Initialize (m = 1): Set θ[1] and run a particle filter for ẑ [1].

2. For m = 2 to M, iterate:

a. Sample θ′ ∼ q(θ | θ[m − 1]).

b. Sample ẑ ′ ∼ ψ(z | θ′, y1:T ) (i.e. run a particle filter).

c. With probability

α = min

(
1,

ẑ ′p(θ′)

ẑ [m − 1]p(θ[m − 1])

q(θ[m − 1] | θ′)
q(θ′ | θ[m − 1])

)
set {θ[m], ẑ [m]} ← {θ′, ẑ ′} (accept candidate sample) and with

prob. 1− α set {θ[m], ẑ [m]} ← {θ[m − 1], ẑ [m − 1]} (reject
candidate sample).
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Exact approximation

The pseudo-marginal Metropolis Hastings algorithm is one member of

the family of so-called exact approximation algorithms.

Explanation for this slightly awkward name:

• It is an exact Metropolis Hastings algorithm in the sense that the

target distribution of interest is the stationary distribution of the

Markov chain,

• despite the fact that it makes use of an approximation of the

likelihood in evaluating the acceptance probability.

The variance of the estimator Ẑ will significantly impact the convergence

speed.
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Two reflections on the PMH algorithm

1. PMH is a standard MH algorithm sampling from the joint target

π(θ, z), rather than the original target π(θ). We have used the auxiliary

variables trick, where the marginal of the joint target π(θ, z) w.r.t. z is

by construction the original target π(θ).

2. Using a likelihood estimator Ẑ means that the marginal of

π(θ, z | y1:T ) =
zp(θ)ψ(z | θ, y1:T )

p(y1:T )

w.r.t. Ẑ will not equal the marginal of

ψ(θ, z | y1:T ) =
p(y1:T | θ)p(θ)ψ(z | θ, y1:T )

p(y1:T )

w.r.t. Ẑ . This is ok, since we are only interested in the marginal w.r.t. θ,

which remains the same for both π and ψ, namely p(θ | y1:T ).
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Using the PMH for smoothing

A possibly under-appreciated fact is that the PMH algorithm provides a

solution to the smoothing problem as well!

In step 2b, when we run the PF, select one of the state trajectories

according to its weights and store that together with the unbiased

likelihood estimate.

We then accept or reject the new parameter, the likelihood estimate and

the state trajectory is step 2c.
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Examples



ex) Nonlinear marine biogeochemical model

Studies nitrogen through an ecosystem in four compartments:

1. Nutrient (shown on next slide),

2. Phytoplankton,

3. Zooplankton and

4. Detritus.

The NPZD model used consists of

nonlinear continuous-time diff. eq.

with xt ∈ R15, θ ∈ R15, with

discrete-time noise.

ly, a relatively shallow mixed layer is maintained of

typical depth 25–40 m.

It has been noted that there are persistently high

macronutrient concentrations in the mixed layer and the

phytoplankton biomass is typically low. This phenom-

enon is observed throughout much of the open sub-

arctic Pacific ocean. While the concentration of dis-

solved inorganic nitrogen (DIN) is lower in summer

than in winter, it is rarely if ever depleted to levels that

may cause nutrient limitation in primary producers

(Harrison 2002). There is no discernible seasonal cycle in

chlorophyll a. Previous modeling studies of Matear

(1995), Denman and Pena (1999), and Denman (2003)

discuss the likely controls on phytoplankton biomass

and the seasonal variation in primary productivity and

zooplankton biomass.

Learning from observations: twin experiment

with climatological forcing

Twin experiments in a setting like that of OSP have

been conducted to compare samples from the posterior,

[W, h jY], produced by Bayesian inference, with known

‘‘true’’ values of the state and parameters. The term

‘‘twin,’’ borrowed from the data-assimilation literature,

refers to experiments where the model used for

inference, and the model from which synthetic observa-

tions are generated, are the same. Model forcing and

boundary conditions are taken from Matear (1995) and

are climatological in nature; details are given in

Appendix D.

Twin experiment: design.—To generate the synthetic

observations, we select a parameter set h* (the ‘‘true’’

parameters) and take a single realization of the

stochastic model fW�t : t ¼ 0, 1, . . . , Tg to produce the

trajectory fX�t : t ¼ 0, 1, . . . , Tg through state space

(again referred to as the truth). We have chosen a set of

‘‘true’’ parameters in the twin experiment that are shifted

away from the prior means (to provide a clearer test of

the inference procedure), but that nevertheless yield

state-variable trajectories qualitatively consistent with

OSP observations (e.g., high-nutrient low-chlorophyll

(HNLC) conditions). The (synthetic) observations Y are

generated by

Yt ¼ X�t expðntÞ t ¼ 0; 1; � � � ; T ð24Þ

where nt are independent and identically distributed

(IID) as the normal distribution N(0, r2
obs). The

standard deviation, robs, was 0.1 for DIN observations

and 0.2 for observations of the remaining state variables.

The log-normal error model was adopted because errors

in the estimates of plankton density are typically better

represented by log-normal multiplicative error than by

additive normal error (Campbell 1995), and the log-

normal multiplicative-error model delivers synthetic

observations that are nonnegative. The observation

errors are assumed to be independent over time,

FIG. 3. A map of the northeast Pacific Ocean displaying the location of Ocean Station Papa (Stn. P) with range circles at 100,
500, and 1000 km.

June 2013 687BAYESIAN LEARNING AND PREDICTABILITY
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ex) Nonlinear marine biogeochemical model
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Dissolved inorganic nitrogen concentration, circles are observations (very

noisy), blue posterior paths from PMMH, red predictions and the grey lines are

drawn from the prior.

John Parslow, Noel Cressie, Edward P. Campbell, Emlyn Jones and Lawrence Murray. Bayesian learning and predictability in a

stochastic nonlinear dynamical model. Ecological Applications, 23(4): 679–698, 2013.

10/14



ex) The pseudo-marginal idea is general

CG example (rendering images in heterogeneous media): An MH

algorithm producing samples of the light paths connecting the sensor

with light sources in the scene.

Results using equal time rendering

Our method that builds on MLT Metropolis light transport (MLT)

Joel Kronander, Thomas B. Schön and Jonas Unger. Pseudo-marginal Metropolis light transport. Proceedings of SIGGRAPH ASIA

Technical Briefs, Kobe, Japan, November, 2015.
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ex) Statistically exact sampling of generative diffusion models

Figure 1: We can use a PMCMC sampler to generate samples from diffusion

models while being statistically principled.

Zheng Zhao, Ziwei Luo, Jens Sjölund, and Thomas B. Schön. Conditional sampling within generative diffusion models. Philosophical

Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2025. In press.

Adrien Corenflos*, Zheng Zhao*, Simo Särkkä, Jens Sjölund, and Thomas B. Schön. Conditioning diffusion models by explicit

forward-backward bridging. In Proceedings of the 28th International Conference on Artificial Intelligence and Statistics (AISTATS),

2025.
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Particle MCMC = SMC + MCMC

A systematic and correct way of combining SMC and MCMC.

Builds on an extended target construction.

Intuitively: SMC is used as a high-dimensional proposal mechanism on

the space of state trajectories XT .

A bit more precise: Construct a Markov chain with p(θ, x1:T | y1:T ) (or
one of its marginals) as its stationary distribution.

Very useful both for parameter and state learning.

Exact approximations
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Further reading

Introducing PMCMC:

Christophe Andrieu, Arnaud Doucet and Roman Holenstein. Particle Markov chain Monte Carlo methods. Journal of the Royal

Statistical Society: Series B, 72:269-342, 2010.

A (hopefully) pedagogical tutorial on PMH:

Thomas B. Schön, Andreas Svensson, Lawrence Murray and Fredrik Lindsten. Probabilistic learning of nonlinear dynamical systems

using sequential Monte Carlo. Mechanical Systems and Signal Processing (MSSP), 104:866–883, 2018.

An implementation-focused tutorial on PMH:

Johan Dahlin and Thomas B. Schön. Getting started with particle Metropolis-Hastings for inference in nonlinear dynamical models.

Journal of Statistical Software (JSS), 88:1–41, 2019.

Introducing the pseudo-marginal idea in a general setting:

Christophe Andrieu and Gareth O. Roberts. The pseudo-marginal approach for efficient Monte Carlo computations. The Annals of

Statistics, 37(2):697–725, 2009.
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A few concepts to summarize lecture 12

Exact approximation: A family of MCMC algorithms that are exact in

the sense that the target distribution of interest is the stationary

distribution of the Markov chain, despite the fact that it makes use of an

approximation of the likelihood in evaluating the acceptance probability.

Pseudo-marginal Metropolis Hastings makes use of a non-negative

and unbiased likelihood estimate within the Metropolis Hastings

algorithm.

Particle Metropolis Hastings makes use of a particle filter to guide an

MCMC method through the parameter space. It provides a

state-of-the-art solution for learning nonlinear SSMs.
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