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Outline — Lecture 12

Aim: Describe how we can make use of the particle filter inside the
Metropolis Hastings algorithm to produce exact samples from the pa-
rameter posterior distribution for a nonlinear state space model.

Outline:

1. Using unbiased estimates within Metropolis Hastings

2. Exact approximation — Particle Metropolis Hastings (PMH)

3. Examples
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Bayesian parameter inference in SSMs

Full probabilistic model of a nonlinear parametric SSM:

p(xa.1,0,y1.7) = p(yr.7 | xa.7,0) p(x1.7,0)
w—/
pl’lor
T T-1
= HP(}/t | x¢,0) H p(xer1 | xe,0) p(xa | 6) p(6)
t=1

o T~ —~—

dynamics state param.

observation v
prior
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Bayesian parameter inference amounts to computing

plyi:T [0)p(9)
p(0|yrr) = —————
P(}/1:T)
or more commonly some integral of the form

E[p(6) | yi:7] = / P(0)p(0 | yi.7) do.
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Using MH for parameter inference in a dynamical system

Algorithm 1 Metropolis Hastings (MH)
1. Initialize: Set the initial state of the Markov chain 0[1].
2. For m =1 to M, iterate:

a. Sample 0" ~ q(0|6[m]).
b. Sample u ~ 1[0, 1].

c. Compute the acceptance probability
o =i (1, 2T DR0)_altlm] )
"y [0[m])p(0[m]) q(0" | 6[m])

d. Set the next state [m + 1] of the Markov chain according to

o’ u<a
Om+ 1] =

0[m] otherwise
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Recall — Auxiliary variables (from lecture 6)

Target distribution: 7(x), difficult to sample from

Idea: Introduce another variable U with conditional distribution 7(u | x)

The joint distribution 7(x, u) = 7(u | x)7(x) admits 7w(x) as a marginal
by construction, i.e., [ 7(x,u)du = 7(x).

Sampling from the joint 7(x, u) may be easier than directly sampling
from the marginal 7(x)!

The variable U is an auxiliary variable. It may have some “physical”
interpretation (an unobserved measurement, unknown temperature, . ..)
but this is not necessary.
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Particle Metropolis Hastings

The use of a non-negative and unbiased likelihood estimate within
Metropolis Hastings is called the pseudo-marginal approach.

Algorithm 2 Particle Metropolis Hastings
1. Initialize (m = 1): Set 0[1] and run a particle filter for 2[1].
2. For m =2 to M, iterate:

a. Sample 0" ~ q(0 | 0[m — 1]).
b. Sample 2’ ~ 9(z|0', y1.7) (i.e. run a particle filter).

c. With probability
R <1 Fp(0)  qlolm—1]] e'))
" 2[m — 1]p(0[m — 1]) q(6' [0[m — 1])

set {0[m], 2[m]} < {0, 2"} (accept candidate sample) and with
prob. 1 — a set {0[m], 2[m]} < {0]m — 1], 2[m — 1]} (reject
candidate sample).
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Exact approximation

The pseudo-marginal Metropolis Hastings algorithm is one member of
the family of so-called exact approximation algorithms.
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Exact approximation

The pseudo-marginal Metropolis Hastings algorithm is one member of
the family of so-called exact approximation algorithms.

Explanation for this slightly awkward name:

e It is an exact Metropolis Hastings algorithm in the sense that the
target distribution of interest is the stationary distribution of the
Markov chain,

e despite the fact that it makes use of an approximation of the
likelihood in evaluating the acceptance probability.
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Exact approximation

The pseudo-marginal Metropolis Hastings algorithm is one member of
the family of so-called exact approximation algorithms.

Explanation for this slightly awkward name:
e It is an exact Metropolis Hastings algorithm in the sense that the
target distribution of interest is the stationary distribution of the
Markov chain,

e despite the fact that it makes use of an approximation of the
likelihood in evaluating the acceptance probability.

The variance of the estimator Z will significantly impact the convergence

speed.
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Two reflections on the PMH algorithm

1. PMH is a standard MH algorithm sampling from the joint target
7(0, z), rather than the original target m(#). We have used the auxiliary
variables trick, where the marginal of the joint target 7(f,z) w.r.t. z is
by construction the original target w(6).
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Two reflections on the PMH algorithm

1. PMH is a standard MH algorithm sampling from the joint target
7(0, z), rather than the original target m(#). We have used the auxiliary
variables trick, where the marginal of the joint target 7(f,z) w.r.t. z is
by construction the original target 7(6).

2. Using a likelihood estimator Z means that the marginal of

_zp(0)p(z 10, y1.7)
(0, z|y1.7) = p(yr1)

w.r.t. Z will not equal the marginal of

W(0, 7] yi1) = p(y1:7 | 0)p(0)e(z | 60, y1.7)
T pyi.T)

w.r.t. Z. This is ok, since we are only interested in the marginal w.r.t. 6,
which remains the same for both 7 and v, namely p(0|y1.7).
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Using the PMH for smoothing

A possibly under-appreciated fact is that the PMH algorithm provides a
solution to the smoothing problem as well!

In step 2b, when we run the PF, select one of the state trajectories
according to its weights and store that together with the unbiased
likelihood estimate.

We then accept or reject the new parameter, the likelihood estimate and
the state trajectory is step 2c.
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Examples




ex) Nonlinear marine biogeochemical model

Studies nitrogen through an ecosystem in four compartments:
1. Nutrient (shown on next slide),
2. Phytoplankton,
3. Zooplankton and
4. Detritus
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Studies nitrogen through an ecosystem in four compartments:
1. Nutrient (shown on next slide),
2. Phytoplankton,
3. Zooplankton and
4. Detritus.
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nonlinear continuous-time diff. eq.
with x, € R'®,6 € R'®, with -
discrete-time noise. ol
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ex) Nonlinear marine biogeochemical model
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Dissolved inorganic nitrogen concentration, circles are observations (very
noisy), blue posterior paths from PMMH, red predictions and the grey lines are
drawn from the prior.

John Parslow, Noel Cressie, Edward P. Campbell, Emlyn Jones and Lawrence Murray. Bayesian learning and predictability in a
@ stochastic nonlinear dynamical model. Ecological Applications, 23(4): 679-698, 2013
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ex) The pseudo-marginal idea is general

CG example (rendering images in heterogeneous media): An MH
algorithm producing samples of the light paths connecting the sensor
with light sources in the scene.
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rginal idea is general

CG example (rendering images in heterogeneous media): An MH
algorithm producing samples of the light paths connecting the sensor

with light sources in the scene.

Results using equal time rendering

Our method that builds on MLT Metropolis light transport (MLT)

Joel Kronander, Thomas B. Schén and Jonas Unger. Pseudo-marginal Metropolis light transport. Proceedings of SIGGRAPH ASIA

@ Technical Briefs, Kobe, Japan, November, 2015.
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ex) Statistically exact sampling of generative diffusion models

Tnput Truth PF sample 0 Gibbs chain sample 0

Truth PF sample 0 Gibbs chain sample 0

Figure 1: We can use a PMCMC sampler to generate samples from diffusion
models while being statistically principled.

Zheng Zhao, Ziwei Luo, Jens Sjélund, and Thomas B. Schén. Conditional sampling within generative diffusion models. Philosophical
@ Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2025. In press.

Adrien Corenflos*, Zheng Zhao*, Simo Sarkkd, Jens Sjélund, and Thomas B. Schén. Conditioning diffusion models by explicit
@ forward-backward bridging. In Proceedings of the 28th International Conference on Artificial Intelligence and Statistics (AISTATS),
2025.

12/14



Particle MCMC = SMC 4+ MCMC

A systematic and correct way of combining SMC and MCMC.
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A systematic and correct way of combining SMC and MCMC.
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the space of state trajectories X'7.

A bit more precise: Construct a Markov chain with p(0, x1.7 | y1.7) (or
one of its marginals) as its stationary distribution.

Very useful both for parameter and state learning.
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the space of state trajectories X'7.

A bit more precise: Construct a Markov chain with p(0, x1.7 | y1.7) (or
one of its marginals) as its stationary distribution.
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[ Exact approximations
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Further reading

Introducing PMCMC:

Christophe Andrieu, Arnaud Doucet and Roman Holenstein. Particle Markov chain Monte Carlo methods. Journal of the Royal
Statistical Society: Series B, 72:269-342, 2010.

A (hopefully) pedagogical tutorial on PMH:

P

Thomas B. Schén, Andreas Svensson, Lawrence Murray and Fredrik Lindsten. P ilistic learning of lii d; ical systems
@ using sequential Monte Carlo. Mechanical Systems and Signal Processing (MSSP), 104:866-883, 2018.

An implementation-focused tutorial on PMH:

Johan Dahlin and Thomas B. Schon. Getting started with particle Metropolis-Hastings for inference in nonlinear dynamical models.
Journal of Statistical Software (JSS), 88:1-41, 2019.

Introducing the pseudo-marginal idea in a general setting:

Christophe Andrieu and Gareth O. Roberts. The pseudo-marginal approach for efficient Monte Carlo computations. The Annals of
Statistics, 37(2):697-725, 2009.
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A few concepts to summarize lecture 12

Exact approximation: A family of MCMC algorithms that are exact in
the sense that the target distribution of interest is the stationary
distribution of the Markov chain, despite the fact that it makes use of an
approximation of the likelihood in evaluating the acceptance probability.

Pseudo-marginal Metropolis Hastings makes use of a non-negative
and unbiased likelihood estimate within the Metropolis Hastings
algorithm.

Particle Metropolis Hastings makes use of a particle filter to guide an
MCMC method through the parameter space. It provides a
state-of-the-art solution for learning nonlinear SSMs.
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